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Abstract 

 

While both genes and environment contribute to phenotype, deciphering environmental 

contributions to phenotype is a challenge. Furthermore, elucidating how different phenotypes 

may share similar environmental etiologies also is challenging. One way to identify 

environmental influences is through a discordant monozygotic (MZ) twin study design. Here, we 

assessed differential gene expression in MZ discordant twin pairs (affected vs. non-affected) for 

seven phenotypes, including chronic fatigue syndrome, obesity, ulcerative colitis, major 

depressive disorder, intermittent allergic rhinitis, physical activity, and intelligence quotient, 

comparing the spectrum of genes differentially expressed across seven phenotypes individually. 

Second, we performed meta-analysis for each gene to identify commonalities and differences in 

gene expression signatures between the seven phenotypes. In our integrative analyses, we found 

that there may be a common gene expression signature (with small effect sizes) across the 

phenotypes; however, differences between phenotypes with respect to differentially expressed 

genes were more prominently featured. Therefore, defining common environmentally induced 

pathways in phenotypes remains elusive. We make our work accessible by providing a new 

database (DiscTwinExprDB: http://apps.chiragjpgroup.org/disctwinexprdb/) for investigators to 

study non-genotypic influence on gene expression. 
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Introduction 

Gene expression is influenced by both inherited and non-inherited (or environmental) factors; 

however identifying how environment influences phenotype, such as disease, remains a 

challenge1. A common approach to identify differentially expressed genes in disease is the case-

control study. Case-control studies involve the matching of affected individuals with healthy 

controls to assess the differences of gene expression in cases versus controls. However, it is 

difficult to identify the causes of differences of gene expression with respect to inherited factors, 

environmental, or phenotypic state; further, associations may be biased due to confounding 

variables.  

 

One way to partition the role of environment and inherited factors in gene expression is to use a 

family-based twin-design, whereby twins are discordant for phenotypes. For example, 

monozygotic (MZ) discordant twins are twins that share the same genome but are discordant for 

a phenotype (e.g., one twin has a certain phenotype, the other does not). The monozygotic 

discordant twin study design provides a natural study design in order to identify significant genes 

for a particular phenotype after controlling for non-temporally dependent variables, such as 

shared genetics, sex, and age2. 

 

Is there a consistent gene expression signature of environmental influence? Or, how much does 

gene expression due to potential environmental influence vary across phenotypes? We 

hypothesized that integrating gene expression data from multiple phenotypes can allow the 

elucidation of heterogeneity of discordant gene expression (how gene expression differences 
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between twins vary) and furthermore, gene signatures across phenotypes. More specifically, we 

claim it is possible to measure cross-phenotype heterogeneity by meta-analyzing across mean 

expression differences for each gene from discordant twin samples. As of this writing, gene 

expression data from discordant twin samples have not been utilized to perform such analyses. 

 

Our study’s goal was to identify significant differentially expressed genes between samples of 

affected and non-affected MZ twin pairs and integrate mean expression differences across seven  

phenotypes. We hypothesize that it is possible to detect potential environmentally modulated 

gene expression values shared and distinct among different phenotypes. We further claim that 

identifying genes that are different and shared among numerous phenotypes will shed light on 

shared environmental etiology in phenotypic variation. 

 

In order to identify genes in discordant twins, we formulated a computational approach in four 

parts. First, we queried public repositories such as the Gene Expression Omnibus4 (GEO) for 

gene expression studies of discordant monozygotic twin pairs. Next, we identified significantly 

altered genes in twin pairs that are discordant for each of the seven phenotypes. We then 

compared gene signatures across the seven phenotypes in a pairwise fashion and by using a 

meta-analytic approach.Last, we hypothesized that sex may also play a role in gene expression 

variation; thus, we attempted to identify genes in a sex-specific manner across multiple 

phenotypes.  
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Results 

Differential gene expression analysis in each of the seven phenotypes individually 

For our gene expression analyses we used expression data from the Gene Expression Omnibus4 

(GEO), Array Express5 (AE),  and a study from the Database of Genotypes and 

Phenotypes6 (dbGAP) study (Fig. 1, Table 1). The seven phenotypes we interrogated included 4 

diseases such as chronic fatigue (CFS), major depressive disorder (MDD), ulcerative colitis 

(UC), intermittent allergic rhinitis (IAR in vitro), and 3 phenotypes including physical activity 

(PA), obesity (OB), intelligence quotient (IQ). To ensure adequate power for detection, we used 

seven studies that each had at least 10 twin pair samples. The sample sources (tissues and cell 

lines) used by the studies included peripheral blood, lymphoblastoid cell lines, adipose tissue, 

muscle tissue, and colon tissue (Table 1).  All results are accessible via our R Shiny web 

application (http://apps.chiragjpgroup.org/disctwinexprdb/). 

 

We performed differential gene expression analysis on each of the monozygotic discordant twin 

gene expression studies, performed meta-analysis of probe-level (transcript-level) values to 

obtain gene-level values7, and corrected the p-values for each gene-level value using the false 

discovery rate (FDR) method15.  In order to minimize the false positive rate (FPR), Sweeney et 

al. suggested to utilize stringent significance and effect size thresholds7. Therefore, we identified 

significant differentially expressed genes for each phenotype that fell under a FDR threshold of 

0.05 and had an effect size threshold greater than the 95th percentile of the absolute value of 

mean gene expression differences in each phenotype (Fig. 2, Fig. S1). Figure S1 shows the 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2017. ; https://doi.org/10.1101/226449doi: bioRxiv preprint 

https://doi.org/10.1101/226449
http://creativecommons.org/licenses/by/4.0/


 

 

6 

empirical cumulative distribution of mean differences for each phenotype. The number of 

significant genes ranged from a total of three significant in chronic fatigue syndrome (CFS) to 

677 in intelligence quotient (IQ).  Overall, the total number of unique significant genes across all 

the seven datasets was 1,286 out of the 25,154 total number of genes measured across all of 

those datasets (5%).  

 

Across the seven studies (phenotypes) incorporated into our analyses, we found that intelligence 

quotient (IQ) had 30 of the most significant genes (with FDR less than 0.05 and mean difference 

greater than the absolute value effect size threshold of the 95th percentile). Out of the disease 

phenotypes incorporated into our study, intermittent allergic rhinitis (IAR in vitro) had the most 

significant gene (COQ5 [Coenzyme Q5, Methyltransferase], a gene involved in 

methyltransferase activity) with a FDR value of 2.4E-09 (mean difference = 105 units, or 

affected twins had higher gene expression than their unaffected twin pair).  

 

The disease with the highest total number of significant genes out of the ones included in our 

analysis was UC (424 significant genes) and the one with the least was CFS (three significant 

genes). The non-disease phenotype with the highest total number of significant genes was IQ 

(677 significant genes) and the one with the least was physical activity (PA, 15 significant 

genes).  

 

Little overlap of differentially expressed genes in discordant twins across seven phenotypes 
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Next, we computed the pairwise similarity of gene expression between phenotypes in two ways. 

First, we computed the intersection between genes found significant between phenotypes. 

Second, we correlated the expression differences using a nonparametric Spearman correlation.  

 

We report the percentage of the number of overlaps of significant genes out of the number of 

overlaps of measured genes for pairs of phenotypes (Table 2, S1, and S2). We found that the 

phenotype pair with the highest number of overlapping significant genes was UC and IQ (16 

genes or ~0.09% of total possible genes that overlapped, Table 2). The disease-disease pair with 

the most number of overlapping significant genes was OB and UC (13 genes or 0.06% of the 

total possible genes). The average percent of overlapping genes between phenotypes was 

0.009%. 

 

The pairwise Spearman correlations between the mean expression differences for each of the 

phenotype pairs were modest (Table 3). The absolute value of Spearman correlation coefficients 

ranged from 7.9E-4 to 1.8E-1.We found no significant correlations (with an unadjusted p-value 

threshold of 0.05) between the mean gene expression differences. 

 

Discordant twin gene expression is heterogeneous across seven phenotypes 

We hypothesized that it is possible to identify shared environmental etiology between 

phenotypes by identifying genes across multiple phenotypes. We performed meta-analysis (using 

the Dersimonian and Laird meta-analytic technique8) on each gene across all seven possible 

phenotypes to (1) estimate the overall mean difference of each gene across seven phenotypes 

(genes putatively expressed in greater than one phenotype) and (2) estimate how each gene’s 
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mean expression difference varied across all of the seven studies (gene expression 

heterogeneity). The empirical cumulative distribution of meta-analyzed mean differences is 

shown in Figure S2. The I2 (heterogeneity) estimates versus the negative log (base 10) of FDR-

corrected QEp values (measure of significance of I2 different from 0) is depicted in Fig. S3 and 

the empirical cumulative distribution plot of I2 values is shown in Fig. 3.  

 

First, we discuss genes that were expressed over all phenotypes in discordant twins. We 

identified 19 out of the 25,154 total genes (0.08%) that were differentially expressed in 

discordant twin samples across multiple phenotypes (FDR-corrected p-value of mean difference 

less than 0.05, mean difference greater than the absolute value effect size threshold of the 95th 

percentile, and measured in more than one study; Fig. S2). The top significant differentially 

expressed genes (significant genes that were measured for multiple phenotypes) included those 

that are involved in keratinization such as KRTAP19-5 (Keratin Associated Protein 19-5) and 

KRTAP20-2 (Keratin Associated Protein 20-2). A third included FGF6 (Fibroblast Growth 

Factor 6), a gene involved in normal muscle regeneration, all with FDR values less than 3.7E-4.   

We found no genes that were significant overall (FDR-corrected p-value of mean difference < 

0.05, mean difference greater than the absolute value effect size threshold of the 95th percentile, 

and measured in more than one study) and that were also significant in individual disease 

phenotypes. 

 

Second, we discuss overall heterogeneity of the differentially expressed genes. Out of all the 

25,154 genes measured, 2,401 genes (10%) were found to have FDR-corrected QEp (measure of 

significance of I2) values less than 0.05, corresponding with I2 values of greater than 68%.  None 
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of the overall significant (FDR-corrected p-value of mean difference less than 0.05, mean 

difference greater than the absolute value effect size threshold of the 95th percentile, and 

measured in more than one study) genes were found to also have FDR-corrected QEp values less 

than 0.05. Also,we found 40% of all measured genes to have I2 values of 0. In fact, 11 out of the 

19 significant genes were found to have an I2 values equal to 0. The gene with the highest I2  

estimate (47%) was ZNF12[Zinc Finger Protein 12] (mean difference of -0.13 and FDR-

corrected p-value of mean difference of 0.04), a gene involved in transcription factor activity. 

We have little data to support that differential expression for most genes across multiple 

phenotypes is heterogeneous. 

 

Sex-specific gene expression heterogeneity across three phenotypes (MDD, OB, CFS) 

We hypothesized that sex may play a role in differences in gene expression across twins. For the 

three phenotypes (MDD, CFS , and OB [Table 1]) that had samples labelled with sex, we carried 

out sex-specific differential expression analyses and meta-analyzed over each gene’s expression 

values (for each sex group separately).  

 

For males, we found 9 overall significant genes (overall FDR-corrected p-values of mean 

difference  < 0.05, mean difference greater than the effect size threshold of the 95th percentile of 

absolute value of mean expression differences, and measured in more than 1 phenotype). The 

most significant genes (with overall FDR values <  1.4E-7) were PTPRN (Protein Tyrosine 

Phosphatase, Receptor Type N), a gene involved in phosphatase activity and TRNT1 (TRNA 

Nucleotidyl Transferase 1), a gene involved in nucleotidyltransferase activity.  Next, we 

identified significant genes (using FDR and effect size thresholds) that had extremely low I2 
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(heterogeneity) estimates (0%) across male groups from all three phenotypes. We found all 9 

genes to have I2 values of 0. Of those genes, the ones with the lowest FDR values were again 

PTPRN and TRNT1. All of the overall significant genes for males had I2 estimates equal to 0 % , 

suggesting that the significant genes in males have expression levels that are similar across 

different phenotypes.  

 

For females, we found 12 overall significant genes (overall FDR < 0.05, mean difference greater 

than the absolute value effect size threshold of the 95th percentile, and measured in more than 1 

phenotype). The most significant genes (with overall FDR values < 7E-3) were RPL22 

(Ribosomal Protein L22), a gene involved in poly(A) RNA binding, WFDC1 (WAP Four-

Disulfide Core Domain 1), a gene involved in growth inhibitory activity, and DHX40 (DEAH-

Box Helicase 40), a gene involved in helicase activity. Out of the 12 overall significant genes, 

we found 11 genes to have I2 of 0.  The overall significant gene with the highest I2 estimate 

(99%) was MS4A4A (Membrane Spanning 4-Domains A4A). Except for MS4A4A, we found that 

all other female-specific overall significant genes had I2 estimates equal to 0%. While we found 

similar number of genes differentially expressed in male and female groups of discordant twin 

pairs, there was no overlap between the sexes.  

 

Checking for Batch Effects 
 
We were cautious of possible batch effects impacting our analyses. In order to check for possible 

batch effects, we utilized the COmbat CO-Normalization Using conTrols (COCONUT29) tool to 

batch correct the samples and ran our differential analysis pipeline on these batch-corrected 

samples. We compared the results of the samples prior to the correction with the results after the 
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correction by correlating the mean differences obtained before and after correction. The 

correlations ranged from 0.72 (OB) to 0.95(IQ) (Table S3). We also specifically computed the 

Spearman correlations between the mean differences obtained before and after correction of 

genes found significant (only using FDR < 0.05 threshold in differential analyses prior to 

correction). These correlations ranged from 0.88(UC) to 1(MDD) (Table S4). We did not have 

evidence to support that batch correction would significantly alter the findings. Therefore, to 

increase sensitivity of the number of genes queried, we decided to report non-corrected results. 
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Discussion 

We present a computational workflow to execute differential expression and heritability analyses 

using discordant twin samples across multiple (previously) disparate phenotypes. In addition, our 

work has resulted in an online database resource (DiscTwinExprDB : 

http://apps.chiragjpgroup.org/disctwinexprdb/ ) for researchers to query differentially expressed 

genes in discordant twins. Briefly, we first identified genes differentially expressed in seven 

different phenotypes (each with at least ten twin pair samples) by finding differences in 

transcript-level (probe-level) expression values and meta-analyzing those transcript-level 

differences to get overall gene-level differences using monozygotic (MZ) discordant twin 

samples.  

 

There have been multiple investigations (whose data have been deposited in the GEO and dbGaP 

repositories) that have been published recently utilizing the MZ discordant twin study design to 

perform differential expression analyses such as Byrnes et al.9 (GEO: GSE16059). It is important 

to note that most of these studies have reported transcript-level (probe-level) values. For most 

microarray platforms, multiple probes map to the same gene and each probe sequence has 

different binding affinity leading to ‘different measurement scales’ (Ramasamy et al.10). Hence, 

rather than reporting the transcript-level values, summarizing those values to gene-level values 

by meta-analyzing over each gene’s corresponding probe-level values may yield more 

interpretable results10. While studying expression at the transcript or gene-level is of debate10, 

here, rather than studying differential expression on the transcript level, we used the meta-

analytic gene-level summarization technique (as has been implemented previously by Sweeney 
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et al.7). We hypothesize that the use of this technique provides better power than alternative 

transcript-level methods; in fact, we showed that we were able to detect more genes (found total 

of 10 significant genes) than the Byrnes et al.9 investigation (this study detected none).While we 

claim investigating gene-level expression differences enhances interpretability, further study 

must be devoted to systematically test what methods yield more power.  

 

We note the variation in the magnitude of mean expression differences across the different 

phenotypes and studies. The inter-study variation may be explained by the diverse platforms, 

sample preparation and processing, sample types, and sample sizes of the different studies. 

Furthermore, the variation may also be explained by the vast potential differences in mechanisms 

of environmental exposure or phenotype itself on gene expression. To enhance comparability 

across studies, we also reported the ranks of the gene expression differences within each study in 

our R Shiny web application. 

 

Our study is also the first -- to the best of our knowledge -- to carry out differential gene 

expression analysis in MDD discordant twin pair samples. We identified five significant 

differentially expressed genes. Many of these genes have not been identified as being directly 

associated with MDD in scientific literature before and these genes need to be replicated. 

However, a few of these genes were mentioned as being associated with depression and 

alternative splicing of exons (for example TRA2B11). 

 

One factor that may play a role in population-level differences in gene expression includes sex. 

By stratifying our analyses by sex, we have identified multiple significant differentially 

expressed genes in the sex-specific analyses that appear to be involved in protein and RNA 
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binding activity. For example, PTPRN and TRNT1, which we have identified to be significant in 

the male-specific analyses, both appear to play a role in enzyme binding activity. We also 

observed that in the female-specific analyses, the most significant genes appeared to be enriched 

for RNA binding. There was little to none overlap of overall significant genes between the sexes. 

We found an intersection of 2 genes between the gender groups with a less stringent effect size 

threshold initially and after using a more stringent absolute value effect size threshold (95th 

percentile of absolute value of mean expression differences) we found no overlap. It is unclear 

why such a difference manifests between sexes and more investigations must commence to 

uncover the causative role of sex in phenotype12. 

 

From our overall meta-analysis, we identified genes across various studies with low I2 

(heterogeneity) estimates and relatively few with higher I2. For example, we found that genes 

such as those involved in keratinization were expressed across all of the phenotypes (e.g. 

KRTAP19-5), but we lacked power to implicate these genes in any single phenotype. Second, 

these genes exhibited little heterogeneity and were not found significant in any one phenotype, 

suggesting a critical role across phenotypes. As the reader may know, these genes are known to 

play an integral role in hair shaft formation13. Most of the overall significant genes were found to 

have little heterogeneity (variance across multiple phenotypes) suggesting that, while there may 

be a common discordant differential gene expression signature across disparate phenotypes, their 

effect sizes (difference) is modest. 

 

In conclusion, we found genes significantly expressed in discordant twins are specific to 

phenotype and we have little evidence to support shared environmental etiology between these 
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seven phenotypes. For example, we found little overlap between genes expressed in disparate 

phenotypes (on average, 0.009% of co-measured genes). Second, from our meta-analysis, we 

identified overall common differential gene expression signatures for the phenotypes, but these 

signatures were not identified in individual phenotypes. This suggests that if there is a common 

thread of gene expression across disparate phenotypes, the effects are probably small.  

 

Our work has multiple limitations. One limitation to our and other studies using monozygotic 

discordant twin pair samples is that they are relatively small in number (sample size range for 

individual phenotypes was 10 to 44 pairs and total sample size was 92 pairs). It is a challenge to 

recruit and assay identical twins and even collect publicly available data for a given phenotype. 

Relatedly, and critically, genes we report need to be followed up and replicated in other twin 

investigations. Our second limitation was the lack of adequate datasets with sufficient sex 

information to untangle the role of sex in differential gene expression. Third, while studying MZ 

twins is a natural way to control for the role of inherited factors in gene expression variation, we 

cannot rule out the role of the disease or phenotype itself in modulating gene expression (e.g., 

reverse causality). One phenotype for which this is readily apparent is physical activity. For 

example, it is possible that the phenotypic state itself may induce changes in gene expression 

decoupled from environmental influence. A way to mitigate the chance of reverse causation for 

disease-related phenotypes includes incorporating time into the analysis, such as following twin 

pairs through the life course. In the future, we aim to collect twin data in an unbiased manner to 

ascertain the role of reverse causation in expression to deconvolve the role of phenotype on gene 

expression change. We emphasize that more resources devoted to the functional and biological 

differences between discordant and concordant twins should be developed and made available to 
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enhance replication and study design, such as the impactful TwinsUK cohort14.  To enable 

investigations across the studies analyzed here, we provide a web-accessible database 

(DiscTwinExprDB) for straightforward reuse of our analyses in other integrative contexts. 

 

We hope that our work will inspire future studies to further understand the role of the 

environment in multiple phenotypes, eventually leading to the identification of environment-

specific influences in multiple disease phenotypes.  

 

Methods and Materials 

A schematic diagram depicting our analysis workflow is shown in Fig. 1. 

  

MZ Discordant Twins’ Gene Expression Data 

 We collected gene expression datasets from the Gene Expression Omnibus4 (GEO : 

https://www.ncbi.nlm.nih.gov/geo/) [Table 1]. The other data sources we used for our analyses 

were the Database of Genotypes and Phenotypes5 (dbGAP) and Array Express6 (AE). We used 

the phs000486.v1.p1 (“Integration of Genomics and Transcriptomics in unselected Twins and in 

Major Depression”) study from dbGAP and the E-MEXP-1425 study from AE.  

 

Our data selection process is depicted in Fig. 1. We selected 5 monozygotic discordant twin 

studies (measuring discordance for phenotype) with at least 10 pairs in each of the studies from 

GEO (Table 1), which provided 92 MZ discordant twin pairs to analyze the gene expression 

samples from. We filtered out studies that had ambiguity in reporting (e.g., for some samples it 

was unclear as to which samples constitute a twin pair and what phenotypic status the samples 
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had) and those that had with very low sample sizes (number of twin pairs < 10). We filtered out 

29 such studies.  

 

We downloaded one study (phs000486.v1.p1) from dbGAP that has 28 MZ discordant twin pairs 

for major depression. Further, we downloaded a dataset (E-MEXP-1425) from ArrayExpress 

(AE)  on Obesity that had 13 MZ discordant twin pairs. The summary of all of these datasets that 

were used are shown in Table 1. 

 

For the sex-specific analyses, we used 1 GEO study (GSE16059, CFS) along with the AE study 

(E-MEXP-1425, OB) and dbGAP study(phs000486.v1.p1, MDD) , as these were the only three 

studies that had systematically provided the corresponding gender attribute information.   

 

We wrote R scripts to download and transform these expression datasets into a compatible 

format for our analyses (https://github.com/stejat98/disctwinexpr/).  

  

Phenotype-specific analysis of genes differentially expressed in twins 

 In summary, we performed differential gene expression analysis on the seven different MZ 

discordant twin gene expression studies across a total of 25,154 genes and identified a list of 

significant genes (using a false discovery rate [FDR] threshold of less than 0.05 and effect size 

threshold of 95th percentile [of absolute value of mean expression differences in each 

phenotype]) for the phenotype being observed in each study.  
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Specifically, we executed a paired t-test on the twins’ gene expression (probe- or transcript-level) 

data in each of the seven monozygotic discordant twin gene expression studies separately. We 

obtained the mean differences, the standard errors, and the p-values for each microarray probe. 

Next, we mapped each probe to its corresponding gene using the annotation tables for each of the 

platform types used by the seven different studies. We performed a fixed-effect meta-analysis 

across probe-level values for each gene (inspired by Sweeney et al.7) using the R ‘rmeta’ 

package28. This yielded the overall mean differences, standard errors, and the p-values for each 

gene for each of the seven studies. Since the seven studies used different microarray platforms, 

the numbers of total measured genes were different from study to study (the number of pairwise 

measured genes is in Table S2). To enhance comparison among the seven studies, we also 

computed the rank order of the expression differences in each study (available in the R Shiny 

web application: http://apps.chiragjpgroup.org/disctwinexprdb/).). 

 

Last, we also performed FDR (False Discovery Rate [Benjamini-Hochberg]15) correction on the 

p-values for each gene for each study. We identified significant genes within each study using a 

FDR threshold of 0.05 and effect size threshold of the 95th percentile (of absolute value of mean 

expression differences in each phenotype [Table S5 for thresholds]) and deemed these as 

“significant” in our study. We leveraged the same pipeline to identify sex-specific expression 

differences. Specifically, we carried out the paired t-test and the meta-analytic gene-level 

summarization for each sex group separately, using the CFS, OB, and MDD datasets. 

 

We performed meta-analysis on each gene-specific value across all studies to measure how each 

gene’s mean expression difference varied across the seven studies for each of the 25,154 unique 
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genes measured in total (across all studies). This was done by using the Dersimonian and Laird 

meta-analytic technique with the ‘metafor’ package16 (rma.uni function).We also produced forest 

plots to illustrate the variance of expression levels for each gene 

(http://apps.chiragjpgroup.org/disctwinexprdb/). The meta-analysis yields two important metrics 

for measuring heterogeneity (I2 and QEp).The I2 estimate is a commonly used metric to measure 

percentage of variation in meta-analysis that is due to the actual heterogeneity of the studies 

included in the meta-analysis17. The QEp is a statistic (p-value) used to measure the significance 

of heterogeneity (with the null hypothesis that there is no heterogeneity) 18. 

 

 

Code availability: 

We made our code accessible at (https://github.com/stejat98/disctwinexpr/). 

Web Application: 

We built a web application to visualize the results from our analyses using the Shiny Web 

Application Framework in R that is accessible at 

(http://apps.chiragjpgroup.org/disctwinexprdb/). 
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Table Legends 

 

Table 1: Summary of Datasets. This table shows the phenotype and number of genes being 

measured, sample size, platform, tissue, source, and reference paper for each of the seven 

studies. 

 

Table 2.  Percentages of Overlaps of Significant (FDR < 0.05 and Absolute Value Effect 

Size Threshold of 95th percentile) Genes. This table shows the percentages of overlapping 

significant genes in phenotype pairs out of the total overlapping measured genes in those pairs. 

 

Table 3. Spearman correlations of mean gene expression differences between phenotypes. 

This table shows the Spearman correlations between seven phenotypes in each phenotype pair. 
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Figure Legends 

 

Figure 1. Analysis Procedure. A schematic diagram depicting the analysis pipeline.(1) Data 

Selection involved a filtration process for selecting twin expression datasets (2) Differential 

Expression Analysis was carried out (using probe or transcript-level values)  to find significant 

differentially expressed transcripts using FDR and effect size thresholds (3) Meta-Analytic Gene 

Level Summarization was carried out to summarize transcript-level differences to gene-level 

differences   

 

Figure 2.  Volcano plots for seven phenotypes. The mean differences versus the negative log 

(base 10) of FDR for the seven phenotypes (each with greater than 10 twin pairs). The blue color 

indicates FDR significant genes (FDR < 0.05) and the red color indicates FDR nonsignificant 

genes. The black lines indicate the effect size thresholds (95th percentile of absolute value of 

mean expression differences for each phenotype). 

 

Figure 3. Empirical Cumulative Distribution Function Plot of I2  values. The distribution of 

all measured genes (from the seven studies) among their I2   values. 
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Tables  

Table 1: Summary of Datasets 

 

Study 
identifier 

Reference
(s) 

Number 
of Twin 

Pairs Phenotype 
Number 
of Genes Platform 

Sample Source( 
Tissue and cell 
lines) Source 

GSE22619 

Lepage et 
al.21  ,  
Häsler et 
al.22 10 

ulcerative 
colitis (UC) 22836 GPL570 

Primary 
mucosal tissue, 

colon GEO 

GSE16059 
Byrnes et 
al.9  44 

chronic fatigue 
syndrome 

(CFS) 22836 GPL570 
Peripheral 

venous blood GEO 

GSE20319 
Leskinen 
et al.23 10 

physical 
activity (PA) 19429 GPL6884 

Musculus vastus 
lateralis GEO 

GSE33476 Yu et al.24  17 
intelligence 
quotient(IQ) 18638 GPL6244 

Lymphoblastoid 
cell lines GEO 

GSE37146 
Sjogren et 
al.25 11 

intermittent 
allergic rhinitis 

(in vitro) 
(IAR_invitro) 19580 GPL6102 

Peripheral blood 
mononuclear 

cells GEO 

MDD(dbGAP) 
Wright et 
al.26    28 

major 
depressive 
disorder 
(MDD) 19284 GPL13667 Peripheral blood dbGAP 

E-MEXP-1425 
Pietiläinen 
et al. 27 13 obesity (OB) 22836 GPL570 Adipose tissue 

Array 
Express 
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Table 2:  Percentages of Overlaps of Significant (FDR < 0.05 and Absolute Value Effect 

Size Threshold of 95th percentile) Genes 

 

Phenotype PA UC IAR_invitro CFS IQ MDD OB 

PA 0.08 0.01 0.00 0.00 0.00 0.00 0.00 

UC 0.01 1.86 0.01 0.00 0.09 0.01 0.06 

IAR_invitro 0.00 0.01 0.37 0.00 0.01 0.00 0.00 

CFS 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

IQ 0.00 0.09 0.01 0.00 3.63 0.00 0.01 

MDD 0.00 0.01 0.00 0.00 0.00 0.03 0.01 

OB 0.00 0.06 0.00 0.00 0.01 0.01 0.59 
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Table 3: Spearman correlations of mean gene expression differences between phenotypes  

 

Phenotype PA UC IAR_invitro CFS MDD IQ OB 

PA 1.00 0.00 -0.02 0.02 0.01 0.02 0.00 

UC 0.00 1.00 -0.01 0.18 0.04 0.07 0.04 

IAR_invitro -0.02 -0.01 1.00 0.00 0.03 -0.04 0.00 

CFS 0.02 0.18 0.00 1.00 0.18 0.09 -0.13 

MDD 0.01 0.04 0.03 0.18 1.00 0.03 -0.04 

IQ 0.02 0.07 -0.04 0.09 0.03 1.00 -0.02 

OB 0.00 0.04 0.00 -0.13 -0.04 -0.02 1.00 
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Figures 

 

Figure 1: Analysis procedure.
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 Figure 2 : Volcano plots for seven phenotypes
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Figure 3 : Empirical Cumulative Distribution Function Plot of I2  values.  
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