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Abstract 18 
Lower frequency, feedback, activity in the alpha and beta range is thought to predominantly 19 
originate from infragranular cortical layers, whereas feedforward signals in the gamma range stem 20 
largely from supragranular layers.  Distinct anatomical and spectral channels may therefore play 21 
specialized roles in communication within hierarchical cortical networks; however, empirical 22 
evidence for this organization in humans is limited. We leverage high precision MEG to test this 23 
proposal, directly and non-invasively, in human participants during visually guided actions. Visual 24 
alpha activity mapped onto deep cortical laminae, whereas visual gamma activity predominantly 25 
arose from superficial laminae. This laminar-specificity was echoed in sensorimotor beta and gamma 26 
activity. Visual gamma activity scaled with task demands in a way compatible with feedforward 27 
signaling. For sensorimotor activity, we observed a more complex relationship with feedback and 28 
feedforward processes. Distinct frequency channels thus operate in a laminar-specific manner, but 29 
with dissociable functional roles across sensory and motor cortices.  30 
 31 
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Introduction 36 
The cerebral cortex is hierarchically organized via feedback and feedforward connections that 37 
originate predominantly from deep and superficial layers, respectively (Barone et al., 2000; Felleman 38 
and Van Essen, 1991; Markov et al., 2013, 2014a, 2014b). Evidence from non-human animal models 39 
suggests that information along those pathways is carried via distinct frequency channels: lower 40 
frequency (<30Hz) signals predominantly arise from deeper, infragranular layers, whereas higher 41 
frequency (>30Hz) signals stem largely from more superficial, supragranular layers (Bollimunta et al., 42 
2008, 2011; Buffalo et al., 2011; Haegens et al., 2015; van Kerkoerle et al., 2014; Maier et al., 2010; 43 
Roopun et al., 2006, 2010; Smith et al., 2013; Sotero et al., 2015; Spaak et al., 2012; Sun and Dan, 44 
2009; Xing et al., 2012). These data have inspired general theories of cortical functional organization 45 
which ascribe specific computational roles to these pathways (Adams et al., 2013; Arnal and Giraud, 46 
2012; Bastos et al., 2012; Donner and Siegel, 2011; Fries, 2005, 2015; Friston and Kiebel, 2009; 47 
Jensen and Mazaheri, 2010; Jensen et al., 2015; Stephan et al., 2017; Wang, 2010). In these 48 
proposals, lower frequency activity subserves feedback, top-down communication, and originates in 49 
infragranular layers, whereas high-frequency activity is predominantly carried via projections from 50 
supragranular layers and conveys feedforward, bottom-up information.   51 

However, evidence for these proposals in humans is largely indirect and focused on visual and 52 
auditory areas (Fontolan et al., 2014; Kok et al., 2016; Koopmans et al., 2010; Michalareas et al., 53 
2016; Olman et al., 2012; Scheeringa and Fries, 2017). Whether it is indeed possible to attribute low 54 
and high frequency activity in humans to laminar-specific sources, throughout the cortical hierarchy, 55 
remains unclear. Here we leverage recent advances in high precision magnetoencephalography 56 
(MEG; Meyer et al., 2017a; Troebinger et al., 2014a) to address this issue directly and non-invasively 57 
across human visual and sensorimotor cortices.  58 

MEG is a direct measure of neural activity (Baillet, 2017; Hämäläinen et al., 1993), with millisecond 59 
temporal precision that allows for delineation of brain activity across distinct frequency bands. 60 
Recently developed 3D printed headcast technology gives us more stability in head positioning as 61 
well as highly precise models of the underlying cortical anatomy. Together, this allows us to record 62 
higher signal-to-noise ratio (SNR) MEG data than previously achievable (Meyer et al., 2017a; 63 
Troebinger et al., 2014a). Theoretical and simulation work shows that these gains allow for 64 
distinguishing the MEG signal originating from either deep or superficial laminae (Troebinger et al., 65 
2014b), in a time-resolved and spatially localized manner (Bonaiuto et al., 2017). We therefore 66 
employed this approach to directly test for the proposed laminar-specificity of distinct frequency 67 
channels in human cortex. Such a demonstration would provide important clarification for the 68 
proposed mechanism of inter-regional communication in hierarchical cortical networks. 69 

 70 
Results  71 
 72 
Behavioral responses vary with perceptual evidence and cue congruence 73 
We investigated the laminar and spectral specificity of feedforward and feedback signals in visual 74 
and sensorimotor cortex with a visually guided action selection task. The task was designed to 75 
induce well-studied patterns of low- and high-frequency activity in visual (Busch et al., 2004; Fries et 76 
al., 2001; Hari and Salmelin, 1997; Hoogenboom et al., 2006; Mazaheri et al., 2014; Müller et al., 77 
1996; Muthukumaraswamy and Singh, 2013; Sauseng et al., 2005; Thut, 2006; Yamagishi et al., 2005) 78 
and sensorimotor cortices (Cheyne et al., 2008; Crone et al., 1998; Donner et al., 2009; Gaetz et al., 79 
2011; Haegens et al., 2011; Huo et al., 2010; de Lange et al., 2013; Pfurtscheller and Neuper, 1997; 80 
Pfurtscheller et al., 1996; Tan et al., 2016, 2014; Torrecillos et al., 2015) . Participants first viewed a 81 
random dot kinetogram (RDK) with coherent motion to the left or the right, which in most trials was 82 
congruent to the direction of the following instruction cue indicating the required motor response 83 
(an arrow pointing left equated to an instruction to press the left button, and vice versa; Figure 1A). 84 
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Participants could therefore accumulate the sensory evidence from the RDK during the 2s it was 85 
presented for in order to prepare their response in advance of the instruction cue. However, in 86 
incongruent trials the instruction cue was an arrow pointing in the opposite direction from the 87 
direction of coherent motion of the RDK, and so the opposite response from the expected one was 88 
required. The strength of the motion coherence was varied, modulating the strength of instructed 89 
response predictability, and thus we assume, feedforward and feedback activity (Figure 1B; Donner 90 
et al., 2009; de Lange et al., 2013).  91 
 92 

 93 
Figure 1. Task structure and participant behavior. A) Each trial consisted of a fixation baseline (1-2s), random dot 94 
kinetogram (RDK; 2s), delay (0.5s), and instruction cue intervals, followed by a motor response (left/right button press) in 95 
response to the instruction cue (an arrow pointing in the direction of required button press). During congruent trials the 96 
coherent motion of the RDK was in the same direction that the arrow pointed in the instruction cue, while in incongruent 97 
trials the instruction cue pointed in the opposite direction. B) The task involved a factorial design, with three levels of 98 
motion coherence in the RDK and congruent or incongruent instruction cues. Most of the trials (70%) were congruent. C) 99 
Mean accuracy over participants during each condition. Error bars denote the standard error. Accuracy increased with 100 
increasing coherence in congruent trials, and worsened with increasing coherence in incongruent trials. D) The mean 101 
response time (RT) decreased with increasing coherence in congruent trials (* p<0.05). 102 
 103 
As expected, particpants responded more accurately and more quickly with increasing RDK motion 104 
coherence during congruent trials, while behavioral performance worsened with increasing 105 
coherence during incongruent trials (Figure 1C, D). This was demonstrated by a significant 106 
interaction between congruence and coherence for accuracy (F(2,35)=8.201, p=0.004), and RT 107 
(F(2,35)=7.392, p=0.006). Pairwise comparisons (Bonferroni corrected) showed that RTs were faster 108 
during congruent trials than incongruent trials at medium (t(7)=-3.235, p=0.0429) and high 109 
coherence levels (t(7)=-3.365, p=0.036). Participants were thus faster and more accurate when the 110 
cued action matched the action they had prepared (congruent trials), and slower and less accurate 111 
when these actions were incongruent. 112 
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 113 
High SNR MEG recordings using individualized headcasts 114 
Subject-specific headcasts minimize both within-session movement and co-registration error (Meyer 115 
et al., 2017a; Troebinger et al., 2014a). This ensures that when MEG data are recorded over separate 116 
days, the brain remains in the same location with respect to the MEG sensors. In all participants, 117 
within-session movement was <0.2mm in the x and y dimensions and <1.5mm in the z dimension, 118 
while co-registration error was <1.5mm in any dimension (estimated by calculating the within-119 
participant standard deviation of the absolute coil locations across recording blocks; Figure S1). To 120 
assess the between-session homogeneity of our data, we examined topographic maps, event-related 121 
fields (ERFs), and time-frequency decompositions. In each, the data were analyzed in three ways: 122 
aligned to the onset of the RDK (Figure 2A), instruction cue (Figure 2B), or button response (Figure 123 
2C). The data were acquired during four separate recording sessions, spaced at least a week apart. 124 
This analysis revealed that topographic maps and event-related fields from individual MEG sensors 125 
and time-frequency spectra from sensor clusters are highly reproducible across different days of 126 
recording within an individual participant. Because the headcast approach ensured that participants 127 
were in an identical position on repeated days of recording, we were able to obtain very high signal-128 
to-noise (SNR) datasets.  129 
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130 
Figure 2: Cross-session reproducibility. Topographic maps (left column), event-related fields (ERFs, middle column), and 131 
time-frequency decompositions (right column) aligned to: A) onset of the random dot kinetogram (RDK), B) onset of the 132 
instruction cue, or C) the participant’s response (button press). Data shown are for a single representative participant for 133 
four sessions on different days (each including three, 15 minute blocks, 180 trials per block). The white circles on the 134 
topographic maps denote the sensor from which the ERFs in the middle are recorded. Each blue line in the ERF plots 135 
represents a single session (average of 540 trials), with shading representing the standard error (within-session variability) 136 
and the red lines showing the time point that the topographic maps are plotted for (150ms for the RDK and instruction cue, 137 
35ms for the response). The insets show a magnified view of the data plotted within the black square. The time-frequency 138 
decompositions are baseline corrected (RDK-aligned: [-500, 0ms]; instruction cue-aligned: [-3s, -2.5s]; response-aligned: [-139 
500ms, 0ms relative to the RDK]) and averaged over the sensors shown in the insets. 140 
 141 
 142 
Low and high frequency activity localize to different cortical laminae 143 
To address our main question about the laminar specificity of different frequency channels in human 144 
cortex, we extracted task-related low- and high-frequency activity from visual and sensorimotor 145 
cortices. Attention to visual stimuli is associated with decreases in alpha (Hari and Salmelin, 1997; 146 
Mazaheri et al., 2014; Sauseng et al., 2005; Thut, 2006; Yamagishi et al., 2005) and increases in 147 
gamma activity in visual cortex (Busch et al., 2004; Fries et al., 2001; Hoogenboom et al., 2006; 148 
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Müller et al., 1996; Muthukumaraswamy and Singh, 2013). We therefore examined the decrease in 149 
alpha (7-13Hz) power following the onset of the RDK, as well as the increase in gamma (60-90Hz) 150 
activity following the onset of the RDK and the instruction cue.  151 

Motor responses are associated with a stereotypical pattern of spectral activity in contralateral 152 
sensorimotor cortex involving a decrease in beta power during response preparation, followed by a 153 
rebound in beta activity. Moreover, a burst of gamma activity typically occurs in contralateral 154 
sensorimotor cortex aligned to the movement (Cheyne et al., 2008; Crone et al., 1998; Gaetz et al., 155 
2011; Huo et al., 2010; Pfurtscheller and Neuper, 1997; Pfurtscheller et al., 1996). These two signals 156 
are relevant for testing the proposed feedback and feedforward role of low and high frequency 157 
activity, respectively, for the following reasons. First, the beta power decrease prior to movement is 158 
thought to reflect the removal of inhibition that prevents movement (Engel and Fries, 2010). 159 
Moreover, gamma bursts at movement onset arise from motor cortex, are effector-specific, and are 160 
thought to reflect the feedback control of discrete movements (Cheyne et al., 2008; 161 
Muthukumaraswamy, 2010), and prediction error processing for the purpose of updating motor 162 
predictions (Mehrkanoon et al., 2014). The akinetic role of pre-movement beta and the proposed 163 
role of movement-related gamma would be difficult to reconcile with the proposed role of these 164 
frequency channels in feedback and feedforward control in sensory cortices. This suggests that in 165 
sensorimotor cortex, these activity channels may not be organized in the same laminar-specific 166 
manner. Alternatively, the same laminar-specific organization may have functional roles that are 167 
distinct from the proposed feedback and feedforward communication in sensory cortex. We 168 
therefore analyzed the decrease in sensorimotor beta (15-30Hz) power during the RDK and its 169 
subsequent rebound following the participant’s response, as well as the response-aligned gamma 170 
(60-90Hz) burst.  171 

Localization of activity measured by MEG sensors requires accurate generative forward models 172 
which map from cortical source activity to measured sensor data (Baillet, 2017; Hillebrand and 173 
Barnes, 2002, 2003; Larson et al., 2014). We constructed a generative model for each participant 174 
based on a surface mesh including both their white matter and pial surfaces, representing both deep 175 
and superficial cortical laminae, respectively (Figure 3, left column). We were thus able to compare 176 
the estimated source activity for measured visual and sensorimotor activity on the white matter and 177 
pial surface, and infer its laminar origin as deep if the activity is strongest on the white matter 178 
surface or superficial if it is strongest on the pial surface. For the purposes of comparison with 179 
invasive neural recordings, deep laminae correspond to infragranular cortical layers, and superficial 180 
laminae correspond to supragranular layers.  181 

The veracity of laminar inferences using this analysis is highly dependent on the accuracy of the 182 
white matter and pial surface segmentations. Imprecise surface reconstructions from standard 1mm 183 
isotropic T1-weighted volumes result in coarse-grained meshes, which do not accurately capture the 184 
separation between the two surfaces, and thus do not allow distinctions to be made between deep 185 
and superficial laminae (Figure S2). We therefore extracted each surface from high-resolution 186 
(800μm isotropic) MRI multi-parameter maps (Carey et al., 2017), allowing fine-grained 187 
segmentation of the white matter and pial surfaces. 188 

For each low- and high-frequency visual and sensorimotor signal, the laminar analysis first calculated 189 
the absolute change in power from a baseline time window on the vertices of each surface, and then 190 
compared the power change between surfaces using paired t-tests. The resulting t-statistic was 191 
positive when the change in power was greater on the pial surface (superficial), and negative when 192 
the change was greater on the white matter surface (deep; Figure 3). To get a global measure of 193 
laminar specificity, we averaged the change in power over the whole brain (all vertices) within each 194 
surface. In order to make spatially localized laminar inferences, we then identified regions of interest 195 
(ROIs) in each subject based on the mean frequency-specific change in power from a baseline time 196 
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window on vertices from either surface (Bonaiuto et al., 2017; Figure 3). We further compared two 197 
metrics for defining the ROIs: functionally defined (centered on the vertex with the peak mean 198 
difference in power), and anatomically-constrained (centered on the vertex with the peak mean 199 
power difference within the visual cortex bilaterally, or in the contralateral motor cortex). 200 
 201 

 202 
Figure 3: Laminar analysis. Pial and white matter surfaces are extracted from quantitative maps of proton density and T1 203 
times obtained from a multi-parameter mapping MRI protocol (A, top). The model constitutes a generative model 204 
combining both surfaces (A, bottom) which is used to perform source inversion using the measured sensor data, resulting in 205 
an estimate of the activity at every vertex on each surface (B, top left). The ROI analysis defined a region of interest by 206 
comparing the change in power in a particular frequency band during a time window of interest from a baseline time period 207 
(B, top right). The ROI includes all vertices in either surface in the 80th percentile as well as corresponding vertices in the 208 
other surface. The absolute change in power on each surface was then compared within the ROI (B, bottom; C, top). 209 
Pairwise t-tests were performed between corresponding vertices on each surface within the ROI to examine the distribution 210 
of t-statistics (C, bottom), as well as on the mean absolute change in power within the ROI on each surface to obtain a 211 
single t-statistic which was negative if the greatest change in power occurred on the white matter surface, and positive if it 212 
occurred on the pial surface (C, middle). 213 
 214 
Visual alpha and gamma have distinct laminar specific profiles 215 
Based on in vivo laminar recordings in non-human primates (Bollimunta et al., 2008, 2011; Buffalo et 216 
al., 2011; Haegens et al., 2015; van Kerkoerle et al., 2014; Maier et al., 2010; Spaak et al., 2012; Sun 217 
and Dan, 2009; Xing et al., 2012), we reasoned that changes in alpha activity following the RDK 218 
should predominate in infragranular cortical layers. By contrast, changes in gamma activity following 219 
the RDK and instruction cue should be strongest in supragranular layers. Source reconstructions of 220 
the change in visual alpha activity following the onset of the RDK on the white matter and pial 221 
surfaces approximating the proposed laminar origins are shown for an example participant over the 222 
whole brain and within the functionally defined ROI in Figure 4A. Activity on both surfaces localized 223 
to visual cortex bilaterally. When performing paired t-tests comparing corresponding vertices on the 224 
pial and white matter surfaces over all trials, the distribution of alpha activity was skewed toward 225 
the white matter surface, in line with an infragranular origin. This bias was also observed within the 226 
functionally defined ROI. When averaging the change in power either over the whole brain, within a 227 
functionally-defined, or an anatomically constrained ROI, the visual alpha activity of most 228 
participants was classified as originating from the white matter surface (global: 8/8 participants, 229 
functional ROI: 7/8 participants, anatomical ROI: 5/8 participants; Figure 4A, right).  230 

Conversely, the increase in visual gamma following the onset of the RDK and instruction cue was 231 
strongest on the pial surface (Figure 4B, C) as expected. Example source reconstructions on the pial 232 
and the white matter surface show activity in the same bilateral areas over visual cortex as visual 233 
alpha (Figure 4B, C). For visual gamma, the distributions of t-statistics for pairwise vertex 234 
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comparisons were skewed toward the pial surface, a finding that is compatible with a supragranular 235 
origin of high-frequency gamma activity. This was confirmed in subsequent global, functional, and 236 
anatomical ROI metrics (RDK gamma, global: 7/8 participants; RDK gamma, functional ROI: 7/8 237 
participants; RDK gamma, anatomical ROI: 7/8 participants; instruction cue gamma, global: 7/8 238 
participants; instruction cue gamma, functional ROI: 7/8 participants; instruction cue gamma, 239 
anatomical ROI: 5/8 participants). 240 

We then conducted three control analyses to ascertain the robustness of our findings: shuffling of 241 
the position of the sensors, simulation of increased co-registration error, and decreasing effective 242 
SNR by using only a random subset of the trials for each participant (see Supplemental Information). 243 
Shuffling the position of the sensors destroys any correspondence between the anatomy and the 244 
sensor data. Added co-registration error simulates the effect of between-session spatial uncertainty 245 
arising from head movement and inaccuracies of the forward model typically experienced without 246 
headcasts (Hillebrand and Barnes, 2003, 2011; Medvedovsky et al., 2007; Meyer et al., 2017b; 247 
Troebinger et al., 2014b; Uutela et al., 2001). For both control analyses, visual alpha and gamma 248 
activity now localized to the pial surface (Figure S3, S4), suggesting that the laminar discrimination 249 
between visual alpha and gamma in our main analyses would not have been possible were it not for 250 
the high-SNR data coupled with the high-precision anatomical models.  251 

The magnitude of the ROI t-statistics for all participants increased with the number of trials used in 252 
the analysis, with more trials required for visual gamma signals to reach significance (Figure S5). 253 
Therefore, the laminar bias exhibited by visual alpha and gamma was unlikely to be driven by a small 254 
subset of the trials. One concern was that the effects could be driven by signal power (i.e. higher 255 
power signals always localize deeper). Importantly however, regardless of the SNR the shuffled 256 
sensor models did not show this behavior within the functionally defined and anatomically 257 
constrained ROIs (Figure S5).  258 
 259 
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 260 
Figure 4: Laminar specificity of visual alpha and gamma. A) Estimated changes in alpha power (7-13Hz) from baseline on 261 
the white matter and pial surface following the onset of the random dot kinetogram (RDK), over the whole brain (global) 262 
and within a functionally defined region of interest (ROI). Histograms show the distribution of t-statistics comparing the 263 
absolute change in power between corresponding pial and white matter surface vertices over the whole brain, or within the 264 
ROI. Negative t-statistics indicate a bias toward the white matter surface, and positive t-statistics indicate a pial bias. The 265 
bar plots show the t-statistics comparing the absolute change in power between the pial and white matter surfaces 266 
averaged within the ROIs, over all participants. T-statistics for the whole brain (black bars), functionally defined (grey bars), 267 
and anatomically constrained (white bars) ROIs are shown (red = biased toward the white matter surface, blue = biased 268 
pial). Dashed lines indicate the threshold for single subject statistical significance. B) As in A, for gamma (60-90Hz) power 269 
following the RDK. C) As in A and B, for gamma (60-90Hz) power following the instruction cue. 270 
 271 
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Sensorimotor beta and gamma originate from distinct cortical laminae 272 
The above results provide novel support for distinct anatomical pathways through which different 273 
frequency channels contribute to intra-areal communication within visual cortex. We next addressed 274 
whether this laminar specificity of different frequency channels was common to other portions of 275 
cortex, specifically sensorimotor cortex.  276 

Cortical regions vary in terms of thickness (Fischl and Dale, 2000; Jones et al., 2000; Kabani et al., 277 
2001; Lerch and Evans, 2005; MacDonald et al., 2000), as a result of inter-regional variation in 278 
cortical folding and laminar morphology (Barbas and Pandya, 1989; Hilgetag and Barbas, 2006; 279 
Matelli et al., 1991; Rajkowska and Goldman-Rakic, 1995). Moreover, the distinction between 280 
feedback and feedforward cortical processing channels may be less clear for motor cortex, which is 281 
agranular (missing layer IV) and projects directly to the spinal cord. Supporting this argument, motor 282 
gamma bursts are closely tied to movement onset, and thought to reflect the execution, or feedback 283 
control, of movement (Cheyne and Ferrari, 2013; Cheyne et al., 2008). 284 

While frequency-specific activity thus occurs throughout cortex, the laminar distribution of different 285 
frequency channels may differ across different levels in the cortical hierarchy. Because MEG is only 286 
sensitive to the synchronous activity of large populations of pyramidal cells, it is likely that different 287 
laminar microcircuits could give rise to the same measurable MEG signals (Cohen, 2017). 288 
Alternatively, if the layer specificity of low and high frequency activity is a general organizing 289 
principle of cortex, one would expect the pre-movement beta decrease and post-movement 290 
rebound to originate from infragranular cortical layers, and the movement-related gamma increase 291 
to be strongest in supragranular layers. Moreover, the ability of MEG to accurately segregate deep 292 
from superficial laminar source activity may vary throughout cortex, a possibility we have previously 293 
explored in simulation (Bonaiuto et al., 2017). 294 

To explore this possibility empirically, we analyzed two task-related modulations of sensorimotor 295 
beta activity: the decrease in beta power following the onset of the RDK, just prior to the motor 296 
response, and the post-movement beta rebound (Cassim et al., 2001; Jurkiewicz et al., 2006; Parkes 297 
et al., 2006; Pfurtscheller et al., 1996; Salmelin et al., 1995). Both signals localized to the left 298 
sensorimotor cortex (contralateral to the hand used to indicate the response; Figure 5A, B), and 299 
both signals were strongest on the white matter surface, as evidenced by the white matter skews in 300 
the global and functional ROI t-statistics (Figure 5). This laminar pattern with both the beta decrease 301 
and rebound classified as originating from the white matter surface held for all but one participant. 302 
This general finding is of relevance as it addresses concerns that the high SNR of beta activity trivially 303 
leads to its attribution to the deeper cortical surface. Here, the two epochs of beta activity were 304 
characterized by power decreases and increases, respectively, meaning that SNR alone cannot 305 
explain the laminar localization of beta activity. 306 

The burst of gamma aligned with the onset of the movement localized to the same patch of left 307 
sensorimotor cortex (Figure 5C), and in the example participant shown in Figure 5 and for most 308 
participants, was strongest on the pial surface (global: 7/8 participants; function ROI: 6/8 309 
participants; anatomical ROI: 6/8 participants). 310 
 311 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2017. ; https://doi.org/10.1101/226274doi: bioRxiv preprint 

https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

 312 
Figure 5: Laminar specificity of sensorimotor beta and gamma. As in figure 4, for A) the beta (15-30Hz) decrease prior to 313 
the response, B) beta (15-30Hz) rebound following the response, and C) gamma (60-90Hz) power change from baseline 314 
during the response. In the histograms and bar plots, positive and negative values indicate a bias towards the superficial 315 
and deeper cortical layers, respectively. The dashed lines indicate single subject level significance thresholds. The black, 316 
grey, and white bars indicate statistics based on regions of interest comprising the whole brain, functional and 317 
anatomically-constrained ROIs, respectively.  318 
 319 
Next we repeated our control analysis on the sensorimotor data, which mirrored those of visual 320 
alpha and gamma. Sensor shuffling, as well as the addition of co-registration error, resulted in 321 
sensorimotor beta and gamma localizing to the pial surface (Figure S3, S4), and the ROI t-statistics 322 
increased in magnitude with the number of trials used in the analysis, with more trials required for 323 
sensorimotor gamma signals to pass the significance threshold (Figure S5). Again, importantly, the 324 
gamma superficial bias within the functionally defined and anatomically constrained ROIs did not 325 
increase with SNR for the shuffled sensor data, meaning that the superficial localization of gamma 326 
was not driven by low SNR (Figure S5). 327 
 328 
Superficial visual gamma scales with cue congruence 329 
Next, we asked whether the observed low and high-frequency laminar-specific activity in visual and 330 
sensorimotor cortex dynamically varied with task demands in line with proposals about their role in 331 
feedback and feedforward message passing (Adams et al., 2013; Arnal and Giraud, 2012; Bastos et 332 
al., 2012; Donner and Siegel, 2011; Fries, 2005, 2015; Friston and Kiebel, 2009; Jensen and Mazaheri, 333 
2010; Jensen et al., 2015; Stephan et al., 2017; Wang, 2010). This would provide additional indirect 334 
support for the idea that communication in hierarchical cortical networks is organized through 335 
distinct frequency channels along distinct anatomical pathways, to orchestrate top-down and 336 
bottom-up control.  337 
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In our task, the direction of the instruction cue was congruent with the motion coherence direction 338 
in the RDK during most trials (70%). As such, if the direction of motion coherence is to the left, the 339 
instruction cue will most likely be a leftward arrow. Gamma activity increases in sensory areas during 340 
presentation of unexpected stimuli (Arnal et al., 2011; Gurtubay et al., 2001; Todorovic et al., 2011), 341 
and therefore we expected visual gamma activity in supragranular layers to be greater following 342 
incongruent instruction cues than after congruent cues. Indeed, the increase in visual gamma on the 343 
pial surface following the onset of the instruction cue was greater in incongruent compared to 344 
congruent trials (W(8)=0, p=0.008; 8/8 participants; incongruent-congruent M=1.64%, SD=2.34%; 345 
Figure 6). 346 
 347 
 348 

 349 
Figure 6: Visual gamma activity modulation by task condition. Visual gamma activity following the onset of the instruction 350 
stimulus within the functionally defined ROI of an example participant (left), and averaged within the time window 351 
represented by the shaded yellow rectangle for all participants (right). Each dashed line on the right shows the change in 352 
normalized values for the different conditions for each participant. The bar height represents the mean normalized change 353 
in gamma power, and the error bars denote the standard error. Visual gamma activity is stronger following the onset of the 354 
instruction cue when it is incongruent to the direction of the coherent motion in the random dot kinetogram (RDK). 355 
 356 
 357 
Deep sensorimotor beta scales with RDK motion coherence and cue congruence 358 
Changes in sensorimotor beta power during response preparation predict forthcoming motor 359 
responses (Donner et al., 2009; Haegens et al., 2011; de Lange et al., 2013), whereas the magnitude 360 
of sensorimotor beta rebound is attenuated by movement errors (Tan et al., 2014, 2016; Torrecillos 361 
et al., 2015). We therefore predicted that, in infragranular layers, the decrease in sensorimotor beta 362 
would scale with the motion coherence of the RDK, and the magnitude of the beta rebound would 363 
be decreased during incongruent trials when the prepared movement has to be changed in order to 364 
make a correct response. 365 

The behavioral results presented thus far suggest that participants accumulated perceptual evidence 366 
from the RDK in order to prepare their response prior to the onset of the instruction cue. This 367 
preparation was accompanied by a reduction in beta power in the sensorimotor cortex contralateral 368 
to the hand used to indicate the response (Figure 5A). This beta decrease began from the onset of 369 
the RDK and was more pronounced with increasing coherence, demonstrating a significant effect of 370 
coherence on the white matter surface (Figure 7A; Χ2(2)=9.75, p=0.008), with beta during high 371 
coherence trials significantly lower than during low coherence trials (8/8 participants; t(7)=-3.496, 372 
p=0.033; low-high M=2.42%, SD=1.96%). Following the response, there was an increase in beta in 373 
contralateral sensorimotor cortex (beta rebound) which was greater in congruent, compared to 374 
incongruent trials on the white matter surface (Figure 7B; W(8)=34, p=0.023; 7/8 participants, 375 
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congruent-incongruent M=5.13%, SD=5.19%). In other words, the beta rebound was greatest when 376 
the cued response matched the prepared response.  377 
 378 

 379 
Figure 7: Sensorimotor beta activity modulated by task condition. A) Beta decrease following the onset of the random dot 380 
kinetogram (RDK) within the functionally defined ROI of an example participant over the duration of the RDK (left), and 381 
averaged over this duration for all participants (right). The bar height represents the mean normalized change in gamma 382 
power, and the error bars denote the standard error. The beta decease becomes more pronounced with increasing 383 
coherence. B) As in A, for beta rebound following the response and averaged within the time window shown by the shaded 384 
yellow rectangle. Beta rebound is stronger following responses in congruent trials. 385 
 386 
Discussion 387 

We have demonstrated that low and high frequency channels localize predominantly to deep and 388 
superficial laminae, respectively, in human visual and sensorimotor cortex. These channels play 389 
distinct roles in feedback and feedforward processing during visually guided action selection, with 390 
high frequency visual activity enhanced by a mismatch between feedforward and feedback signals, 391 
and low frequency sensorimotor activity modulated by a combination of feedforward and feedback 392 
influences during different task epochs. Through the use of novel MEG headcast technology (Meyer 393 
et al., 2017a; Troebinger et al., 2014a) and spatially and temporally resolved laminar analyses 394 
(Bonaiuto et al., 2017; Troebinger et al., 2014b), we provide novel evidence for the layer- and 395 
frequency-specific accounts of hierarchical cortical organization in humans. 396 
 397 
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Low and high frequency channels localize to deep and superficial cortical laminae across visual and 398 
sensorimotor cortex 399 
We found that low frequency activity (alpha, 7-13Hz; and beta, 15-30Hz) predominately originated 400 
from deep cortical laminae, and high frequency activity (gamma, 60-90Hz) from superficial laminae 401 
in both visual and sensorimotor cortex. Our analysis included two built-in controls. Firstly, visually 402 
induced gamma after both the RDK and the instruction cue localized superficially, reinforcing the 403 
proposal that visual gamma generally predominates from superficial laminae. Secondly, both a 404 
decrease and increase in sensorimotor beta power localized to deep laminae, meaning that the 405 
laminar analysis was not simply biased toward deep sources for high power signals. Moreover, this 406 
laminar specificity was abolished by shuffling the sensors (Figure S3) or introducing co-registration 407 
error (Figure S4), underlining the need for spatially precise anatomical data and MEG recordings. 408 
Finally, the laminar bias of both low and high frequency signals increased monotonically as the 409 
number of trials included in the analysis increased, but not when the sensors were shuffled (Figure 410 
S5). 411 

The localization of alpha activity to predominately deep laminae of visual cortex is in line with 412 
evidence from depth electrode recordings in visual areas of the non-human primate brain (Buffalo et 413 
al., 2011; van Kerkoerle et al., 2014; Maier et al., 2010; Smith et al., 2013; Spaak et al., 2012; Xing et 414 
al., 2012). Several studies who have found alpha generators in both infra- and supragranular layers 415 
in primary sensory areas (Bollimunta et al., 2008, 2011; Haegens et al., 2015), and it has been 416 
suggested that this discrepancy is due to a contamination of infragranular layer LFP signals by 417 
volume conduction from strong alpha generators in supragranular layers (Haegens et al., 2015; 418 
Halgren et al., 2017). This is unlikely to apply to the results presented here as this type of laminar 419 
MEG analysis is biased toward superficial laminae when SNR is low (Figure S3, S4; Bonaiuto et al., 420 
2017). However, this analysis can only determine the laminar origin of the strongest activity when it 421 
occurs simultaneously at multiple depths (Bonaiuto et al., 2017), which is consistent with the fact 422 
that infragranular cortical layers contain the primary local pacemaking alpha generators (Bollimunta 423 
et al., 2008, 2011).  424 

We found that gamma activity was strongest in superficial cortical laminae, which was expected 425 
given that gamma activity has been found to predominantly occur in supragranular layers in visual 426 
cortex (Buffalo et al., 2011; van Kerkoerle et al., 2014; Smith et al., 2013; Spaak et al., 2012; Xing et 427 
al., 2012), but see (Nandy et al., 2017). The mechanisms underlying the generation of gamma activity 428 
are diverse across the cortex (Buzsáki and Wang, 2012), but commonly involve reciprocal 429 
connections between pyramidal cells and interneurons, or between interneurons (Tiesinga and 430 
Sejnowski, 2009; Whittington et al., 2011). The local recurrent connections necessary for such 431 
reciprocal interactions are most numerous in supragranular layers (Buzsáki and Wang, 2012), as are 432 
fast-spiking interneurons which play a critical role in generating gamma activity (Cardin et al., 2009; 433 
Carlén et al., 2012; Sohal et al., 2009). 434 

It is widely hypothesized that the laminar segregation of frequency specific channels is a common 435 
organizing principle across the cortical hierarchy (Arnal and Giraud, 2012; Bastos et al., 2012; Fries, 436 
2015; Wang, 2010). However, most evidence for this claim comes from depth electrode recordings 437 
in primary sensory areas, with the vast majority in visual cortical regions (Buffalo et al., 2011; van 438 
Kerkoerle et al., 2014; Smith et al., 2013; Spaak et al., 2012; Xing et al., 2012). While in vivo laminar 439 
data from primate sensorimotor cortex are lacking, in vitro recordings from somatosensory and 440 
motor cortices demonstrate that beta activity is generated in neural circuits dominated by 441 
infragranular layer V pyramidal cells (Roopun et al., 2006, 2010; Yamawaki et al., 2008). By contrast, 442 
gamma activity is thought to arise from supragranular layers II/III of mouse somatosensory cortex 443 
(Cardin et al., 2009; Carlén et al., 2012). The results presented here support generalized theories of 444 
laminar organization across cortex, and are the first to non-invasively provide evidence for the 445 
laminar origin of movement-related sensorimotor activity. 446 
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 447 
High frequency activity in visual cortex is enhanced by mismatches in feedforward and feedback 448 
signals 449 
We found that visual gamma was enhanced following the presentation of the instruction cue in 450 
incongruent compared to congruent trials. This was in agreement with our predictions, based on the 451 
fact that supragranular layer gamma activity is implicated in feedforward processing (van Kerkoerle 452 
et al., 2014). In our task, the direction of coherent motion in the RDK was congruent with the 453 
direction of the following instruction cue in most trials. Participants could therefore form a sensory 454 
expectation of the direction of the forthcoming instruction cue, which was violated in incongruent 455 
trials. The enhancement of visual gamma following incongruent cues is therefore consistent with the 456 
gamma activity increase observed in sensory areas during perceptual expectation violations (Arnal et 457 
al., 2011; Gurtubay et al., 2001; Todorovic et al., 2011) as well as layer-specific synaptic currents in 458 
supragranular cortical layers during performance error processing (Sajad et al., 2017). 459 

 460 
Low frequency activity in sensorimotor cortex reflects a combination of feedforward and feedback 461 
processes 462 
There are numerous theories for the computational role of beta activity in motor systems. Decreases 463 
in beta power prior to the onset of a movement predict the selected action (Donner et al., 2009; 464 
Haegens et al., 2011; de Lange et al., 2013), whereas the beta rebound following a movement is 465 
attenuated by error monitoring processes (Tan et al., 2014, 2016; Torrecillos et al., 2015). Our results 466 
unify both of these accounts, showing that the level of beta decrease prior to a movement is 467 
modulated by the accumulation of sensory evidence predicting the cued movement, while the beta 468 
rebound is diminished when the prepared action must be suppressed in order to correctly perform 469 
the cued action. This suggests that in the sensorimotor system, low frequency activity can reflect 470 
both bottom-up and top-down processes depending on the task epoch. This may occur via bottom-471 
up, feedforward projections from intraparietal regions to motor regions (Hanks et al., 2006; Kayser 472 
et al., 2010; Platt and Glimcher, 1999; Tosoni et al., 2008) or top-down, feedback projections from 473 
the dorsolateral prefrontal cortex (Curtis and Lee, 2010; Georgiev et al., 2016; Heekeren et al., 2006, 474 
2004; Hussar and Pasternak, 2013). The dissociation between bottom-up and top-down influences 475 
during different task epochs could indicate that the decrease in beta and the following rebound are 476 
the result of functionally distinct processes. 477 

 478 
Future directions 479 
Our ROI-based comparison of deep and superficial laminae can only determine the origin of the 480 
strongest source of activity, which does not imply that activity within a frequency band is exclusively 481 
confined to either deep or superficial sources within the same patch of cortex (Bollimunta et al., 482 
2011; Haegens et al., 2015; Maier et al., 2010; Smith et al., 2013; Spaak et al., 2012; Xing et al., 483 
2012).  We should also note that in all of our control studies, in which we discard spatial information, 484 
a bias towards the superficial (pial) cortical surface was present. However, this bias does not 485 
increase with SNR for high frequency activity with poor anatomical models, mirroring the results of 486 
simulations showing that this type of laminar analysis is biased superficially at low SNR levels, but 487 
that the metrics are not statistically significant at these levels (Bonaiuto et al., 2017). Moreover, we 488 
used white matter and pial surface meshes to represent deep and superficial cortical laminae, 489 
respectively, and therefore our analysis is insensitive to granular sources. Recent studies have shown 490 
that beta, and perhaps gamma, activity is generated by stereotyped patterns of proximal and distal 491 
inputs to infragranular and supragranular pyramidal cells (Jones, 2016; Lee and Jones, 2013; 492 
Sherman et al., 2016). Future extensions to our laminar analysis could use a sliding time window in 493 
order determine the time course of laminar activity. MEG is a global measure of neural activity, and 494 
therefore uniquely situated to test large scale computational models of laminar and frequency-495 
specific interactions (Lee et al., 2013; Mejias et al., 2016; Pinotsis et al., 2017; Wang et al., 2013), as 496 
well as the possibility that other cortical areas are organized along different principles; for example, 497 
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in inferior temporal cortex the primary local pacemaking alpha generators are in supragranular 498 
layers (Bollimunta et al., 2008). Finally, in the task used here, participants were told that the 499 
direction of coherent motion in the RDK predicts the forthcoming instruction cue. Further research 500 
will determine how predictive cues are learned implicitly, and how this process shapes beta and 501 
gamma activity in visual and sensorimotor areas. 502 
 503 
Experimental Procedures 504 
Behavioral Task 505 
Eight neurologically healthy volunteers participated in the experiment (6 male, aged 28.5±8.52 506 
years). The study protocol was in full accordance with the Declaration of Helsinki, and all participants 507 
gave written informed consent after being fully informed about the purpose of the study. The study 508 
protocol, participant information, and form of consent, were approved by the local ethics committee 509 
(reference number 5833/001). Participants completed a visually guided action decision making task 510 
in which they responded to visual stimuli projected on a screen by pressing one of two buttons on a 511 
button box using the index and middle finger of their right hand. On each trial, participants were 512 
required to fixate on a small white cross in the center of a screen. After a baseline period randomly 513 
varied between 1s and 2s, a random dot kinetogram (RDK) was displayed for 2s with coherent 514 
motion either to the left or to the right (Figure 1A). Following a 500ms delay, an instruction cue 515 
appeared, consisting of an arrow pointing either to the left or the right, and participants were 516 
instructed to press the corresponding button (left or right) as quickly and as accurately as possible. 517 
Trials ended once a response had been made or after a maximum of 1s if no response was made.  518 

The task had a factorial design with congruence (whether or not the direction of the instruction cue 519 
matched that of the coherent motion in the RDK) and coherence (the percentage of coherently 520 
moving dots in the RDK) as factors (Figure 1B). Participants were instructed that in most of the trials 521 
(70%), the direction of coherent motion in the RDK was congruent to the direction of the instruction 522 
cue. Participants could therefore reduce their mean response time (RT) by preparing to press the 523 
button corresponding to the direction of the coherent motion.  The RDK consisted of a 10°×10° 524 
square aperture centered on the fixation point with 100, 0.3° diameter dots, each moving at 4°/s. 525 
The levels were individually set for each participant by using an adaptive staircase procedure 526 
(QUEST; Watson and Pelli, 1983) to determine the motion coherence at which they achieved 82% 527 
accuracy in a block of 40 trials at the beginning of each session, in which they had to simply respond 528 
with the left or right button to leftwards or rightwards motion coherence. The resulting level of 529 
coherence was then used as medium, and 50% and 150% of it as low and high, respectively.  530 

Each block contained 126 congruent trials, and 54 incongruent trials, and 60 trials for each 531 
coherence level with half containing coherent leftward motion, and half rightward (180 trials total). 532 
All trials were randomly ordered. Participants completed 3 blocks per session, and 1-5 sessions on 533 
different days, resulting in 540-2700 trials per participant (M=1822.5, SD=813.21). The behavioral 534 
task was implemented in MATLAB (The MathWorks, Inc., Natick, MA) using the Cogent 2000 toolbox 535 
(http://www.vislab.ucl.ac.uk/cogent.php). 536 
 537 
MRI Acquisition 538 
Prior to MEG sessions, participants underwent two of MRI scanning protocols during the same visit:  539 
one for the scan required to generate the scalp image for the headcast, and a second for MEG 540 
source localization. Structural MRI data were acquired using a 3T Magnetom TIM Trio MRI scanner 541 
(Siemens Healthcare, Erlangen, Germany). During the scan, the participant lay in the supine position 542 
with their head inside a 12-channel coil. Acquisition time was 3 min 42 s, plus a 45 s localizer 543 
sequence.  544 

The first protocol was used to generate an accurate image of the scalp for headcast construction 545 
(Meyer et al., 2017a). This used a T1-weighted 3D spoiled fast low angle shot (FLASH) sequence with 546 
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the following acquisition parameters: 1mm isotropic image resolution, field-of view set to 256, 256, 547 
and 192 mm along the phase (anterior-posterior, A–P), read (head-foot, H–F), and partition (right-548 
left, R–L) directions, respectively. The repetition time was 7.96ms and the excitation flip angle was 549 
12°. After each excitation, a single echo was acquired to yield a single anatomical image. A high 550 
readout bandwidth (425Hz/pixel) was used to preserve brain morphology and no significant 551 
geometric distortions were observed in the images. Acquisition time was 3 min 42s, a sufficiently 552 
short time to minimize sensitivity to head motion and any resultant distortion. Care was also taken 553 
to prevent distortions in the image due to skin displacement on the face, head, or neck, as any such 554 
errors could compromise the fit of the headcast.  Accordingly, a more spacious 12 channel head coil 555 
was used for signal reception without using either padding or headphones. 556 

The second protocol was a quantitative multiple parameter mapping (MPM) protocol, consisting of 3 557 
differentially-weighted, RF and gradient spoiled, multi-echo 3D FLASH acquisitions acquired with 558 
whole-brain coverage at 800µm isotropic resolution. Additional calibration data were also acquired 559 
as part of this protocol to correct for inhomogeneities in the RF transmit field (Callaghan et al., 2015; 560 
Lutti et al., 2010, 2012). For this protocol, data were acquired with a 32-channel head coil to 561 
increase SNR. 562 

The FLASH acquisitions had predominantly proton density (PD), T1 or magnetization transfer (MT) 563 
weighting. The flip angle was 6° for the PD- and MT-weighted volumes and 21° for the T1 weighted 564 
acquisition. MT-weighting was achieved through the application of a Gaussian RF pulse 2 kHz off 565 
resonance with 4 ms duration and a nominal flip angle of 220° prior to each excitation. The field of 566 
view was set to 224, 256, and 179 mm along the phase (A–P), read (H–F), and partition (R–L) 567 
directions, respectively. Gradient echoes were acquired with alternating readout gradient polarity at 568 
eight equidistant echo times ranging from 2.34 to 18.44 ms in steps of 2.30 ms using a readout 569 
bandwidth of 488 Hz/pixel. Only six echoes were acquired for the MT-weighted acquisition in order 570 
to maintain a repetition time (TR) of 25 ms for all FLASH volumes. To accelerate the data acquisition 571 
and maintain a feasible scan time, partially parallel imaging using the GRAPPA algorithm (Griswold et 572 
al., 2002) was employed with a speed-up factor of 2 and forty integrated reference lines in each 573 
phase-encoded direction (A-P and R-L). 574 

To maximize the accuracy of the measurements, inhomogeneity in the transmit field was mapped by 575 
acquiring spin echoes and stimulated echoes across a range of nominal flip angles following the 576 
approach described in Lutti et al. (2010), including correcting for geometric distortions of the EPI 577 
data due to B0 field inhomogeneity. Total acquisition time for all MRI scans was less than 30 min. 578 

Quantitative maps of proton density (PD), longitudinal relaxation rate (R1 = 1/T1), magnetization 579 
transfer saturation (MT) and effective transverse relaxation rate (R2* = 1/T2*) were subsequently 580 
calculated according to the procedure described in Weiskopf et al. (2013). Each quantitative map 581 
was co-registered to the scan used to design the headcast, using the T1 weighted map. The resulting 582 
maps were used to extract cortical surface meshes using FreeSurfer (see below). 583 
 584 
Headcast Construction 585 
From an MRI-extracted image of the skull, a headcast that fit between the participant’s scalp and the 586 
MEG dewar was constructed (Meyer et al., 2017a; Troebinger et al., 2014a). Scalp surfaces were first 587 
extracted from the T1-weighted MRI scans acquired in the first MRI protocol using standard SPM12 588 
procedures (http://www.fil.ion.ucl.ac.uk/spm/). Next, this tessellated surface was converted into the 589 
standard template library (STL) format, commonly used for 3D printing. Importantly, this conversion 590 
imposed only a rigid body transformation, meaning that it was easily reverse-transformable at any 591 
point in space back into native MRI space. Accordingly, when the fiducial locations were optimized 592 
and specified in STL space as coil-shaped protrusions on the scalp, their exact locations could be 593 
retrieved and employed for co-registration. Next, the headcast design was optimized by accounting 594 
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for factors such as headcast coverage in front of the ears, or angle of the bridge of the nose. To 595 
specify the shape of the fiducial coils, a single coil was 3D scanned and three virtual copies of it were 596 
placed at the approximate nasion, left peri-auricular (LPA), and right peri-auricular (RPA) sites, with 597 
the constraint that coil placements had to have the coil-body and wire flush against the scalp, in 598 
order to prevent movement of the coil when the headcast was worn.  The virtual 3D model was 599 
placed inside a virtual version of the scanner dewar such that the distance to the sensors was 600 
minimized (by placing the head as far up within the dewar as possible) while ensuring that vision was 601 
not obstructed. Next, the head-model (plus spacing elements and coil protrusions) was printed using 602 
a Zcorp 3D printer (Zprinter 510) with 600 x 540 dots per inch resolution. The 3D printed head model 603 
was then placed inside the manufacturer-provided replica of the dewar and liquid resin was poured 604 
in between the surfaces to fill the negative space, resulting in the subject-specific headcast. The 605 
fiducial coil protrusions in the 3D model now become indentations in the resulting headcast, in 606 
which the fiducial coils can sit during scanning. The anatomical landmarks used for determining the 607 
spatial relationship between the brain and MEG sensors are thus in the same location for repeated 608 
scans, allowing data from multiple sessions to be combined (Meyer et al., 2017a).  609 
 610 
FreeSurfer Surface Extraction 611 
FreeSurfer (v5.3.0; Fischl, 2012) was used to extract cortical surfaces from the multi-parameter 612 
maps. Use of multi-parameter maps as input to FreeSurfer can lead to localized tissue segmentation 613 
failures due to boundaries between the pial surface, dura matter and CSF showing different contrast 614 
compared to that assumed within FreeSurfer algorithms (Lutti et al., 2014). Therefore, an in-house 615 
FreeSurfer surface reconstruction procedure was used to overcome these issues, using the PD and 616 
T1 maps as inputs. Detailed methods for cortical surface reconstruction can be found in Carey et al. 617 
(Carey et al., 2017). This process yields surface extractions for the pial surface (the most superficial 618 
layer of the cortex adjacent to the cerebro-spinal fluid, CSF), and the white/grey matter boundary 619 
(the deepest cortical layer). Each of these surfaces is downsampled by a factor of 10, resulting in two 620 
meshes comprising about 30,000 vertices each (M=30,094.75, SD=2,665.45 over participants).  For 621 
the purpose of this paper, we will use these two surfaces to represent deep (white/grey interface) 622 
and superficial (grey-CSF interface) cortical models. 623 
 624 
MEG Acquisition 625 
MEG recordings were made using a 275-channel Canadian Thin Films (CTF) MEG system with 626 
superconducting quantum interference device (SQUID)-based axial gradiometers (VSM MedTech, 627 
Vancouver, Canada) in a magnetically shielded room. The data collected were digitized continuously 628 
at a sampling rate of 1200 Hz. A projector displayed the visual stimuli on a screen (~8m from the 629 
participant), and participants made responses with a button box.  630 
 631 
Behavioral Analyses 632 
Participant responses were classified as correct when the button pressed matched the direction of 633 
the instruction cue, and incorrect otherwise. The response time (RT) was measured as the time of 634 
button press relative to the onset of the instruction cue. Both measures were analyzed using 635 
repeated measures ANOVAs with congruence (congruent or incongruent) and coherence (low, 636 
medium, and high) as factors. Pairwise follow-up tests were performed between congruence levels 637 
at each coherence level, Bonferroni corrected. 638 
 639 
MEG Preprocessing 640 
All MEG data preprocessing and analyses were performed using SPM12 641 
(http://www.fil.ion.ucl.ac.uk/spm/) using Matlab R2014a and are available at 642 
http://github.com/jbonaiuto/meg-laminar. The data were filtered (5th order Butterworth bandpass 643 
filter: 2-100 Hz) and downsampled to 250 Hz. Eye-blink artifacts were removed using multiple source 644 
eye correction (Berg and Scherg, 1994). Trials were then epoched from 1s before RDK onset to 1.5s 645 
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after instruction cue onset, and from 2s before the participant’s response to 2s after. Blocks within 646 
each session were merged, and trials whose variance exceeded 2.5 standard deviations from the 647 
mean were excluded from analysis. 648 
 649 
Source reconstruction  650 
Source inversion was performed using the empirical Bayesian beamformer (EBB; Belardinelli et al., 651 
2012; López et al., 2014) within SPM. The sensor data were first reduced into 180 orthogonal spatial 652 
(lead field) modes and 16 temporal modes. The empirical Bayes optimization rests upon estimating 653 
hyper-parameters which express the relative contribution of source and sensor level covariance 654 
priors to the data (López et al., 2014). We assumed the sensor level covariance to be an identity 655 
matrix, with a single source level prior estimated from the data. The source level prior was based on 656 
the beamformer power estimate across a two-layer manifold comprised of pial and white cortical 657 
surfaces with source orientations defined as normal to the cortical surface. There were therefore 658 
only two hyper-parameters to estimate – defining the relative contribution of the source and sensor 659 
level covariance components to the data. We used the Nolte single shell head model as 660 
implemented in SPM (Nolte, 2003). 661 
 662 
Analyses for Laminar Discrimination 663 
The laminar analysis reconstructed the data onto a mesh combining the pial and white matter 664 
surfaces, thus providing an estimate of source activity on both surfaces (Figure 3). We analyzed six 665 
different visual and sensorimotor signals at different frequencies and time windows of interest 666 
(WOIs): RDK-aligned visual alpha (7-13Hz; WOI=[0s, 2s]; baseline WOI=[-1s, -.5s]), RDK-aligned visual 667 
gamma (60-90Hz; WOI=[250ms, 500ms]; baseline WOI=[-500ms, -250ms]), instruction cue-aligned 668 
visual gamma (60-90Hz; WOI=[100ms, 500ms]; baseline WOI=[-500ms, -100ms]), RDK-aligned 669 
sensorimotor beta (15-30Hz; WOI=[0s, 2s]; baseline WOI=[-500ms, 0ms]), response-aligned 670 
sensorimotor beta (15-30Hz; WOI=[500ms, 1s]; baseline WOI=[-250ms 250ms]), response-aligned 671 
sensorimotor gamma (60-90Hz; WOI=[-100ms, 200ms]; baseline WOI=[-1.5s, -1s]). For each signal, 672 
we defined an ROI by comparing power in the associated frequency band during the WOI with a 673 
prior baseline WOI at each vertex and averaging over trials. Vertices in either surface with a mean 674 
value in the 80th percentile over all vertices in that surface, as well as the corresponding vertices in 675 
the other surface, were included in the ROI. This ensured that the contrast used to define the ROI 676 
was orthogonal to the subsequent pial versus white matter surface contrast. For each trial, ROI 677 
values for the pial and white matter surfaces were computed by averaging the absolute value of the 678 
change in power compared to baseline in that surface within the ROI. Finally, a paired t-test was 679 
used to compare the ROI values from the pial surface with those from the white matter surface over 680 
trials (Figure 3). This resulted in positive t-statistics when the change in power was greatest on the 681 
pial surface, and negative values when the change was greatest on the white matter surface. All t-682 
tests were performed with corrected noise variance estimates in order to attenuate artifactually 683 
high significance values (Ridgway et al., 2012). 684 

The control analyses utilized the same procedure, but each introduced some perturbation to the 685 
data. The shuffled analysis permuted the lead fields of the forward model prior to source 686 
reconstruction in order to destroy any correspondence between the cortical surface geometry and 687 
the sensor data. This was repeated 10 times per session, with a different random lead field 688 
permutation each time. Each permutation was then used in the laminar analysis for every low and 689 
high frequency signal. The co-registration error analysis introduced a rotation (M=10°, SD=2.5°) and 690 
translation (M=10mm, SD=2.5mm) in a random direction of the fiducial coil locations prior to source 691 
inversion, simulating between-session co-registration error. This was done 10 times per session, with 692 
a different random rotation and translation each time. Again, each perturbation was used in the 693 
laminar analysis for every low and high frequency signal. The SNR analysis used a random subset of 694 
the available trials from each subject, gradually increasing the number of trials used from 10 to the 695 
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number of trials available. This was repeated 10 times, using a different random subset of trials each 696 
time, and the resulting t-statistics were averaged. 697 
 698 
Condition Comparison 699 
For each visual and sensorimotor frequency band/task epoch combination, induced activity was 700 
compared between task conditions on the surface and within the anatomically constrained ROI 701 
identified from the corresponding laminar analysis. Seven-cycle Morlet wavelets were used to 702 
compute power within the frequency band and this was baseline-corrected in a frequency-specific 703 
manner using robust averaging. For each participant, the mean percent change in power over the 704 
WOI was averaged over all trials within every condition. Wilcoxon tests for comparing two repeated 705 
measures were used to compare the change in power for instruction cue-aligned visual gamma and 706 
sensorimotor beta rebound between congruent and incongruent trials. A Friedman test for 707 
comparing multiple levels of a single factor with repeated measures was used to compare the 708 
sensorimotor beta decrease between low, medium, and high RDK coherence trials. This was 709 
followed up by Tukey-Kramer corrected pairwise comparisons. Only trials in which a correct 710 
response was made were analyzed. 711 
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