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Visual	 perception	 and	 imagery	 rely	 on	 similar	 representations	 in	 the	 visual	 cortex.	

During	perception,	visual	activity	is	characterized	by	distinct	processing	stages,	but	the	

temporal	 dynamics	 underlying	 imagery	 remain	 unclear.	 Here,	 we	 investigated	 the	

dynamics	of	visual	imagery	in	human	participants	using	magnetoencephalography.	We	

show	 that,	 contrary	 to	 perception,	 the	 onset	 of	 imagery	 is	 characterized	 by	 broad	

temporal	generalization.	Furthermore,	 there	 is	consistent	overlap	between	 imagery	

and	 perceptual	 processing	 around	 150	ms	 and	 from	 300	ms	 after	 stimulus	 onset,	

presumably	 reflecting	 completion	 of	 the	 feedforward	 sweep	 and	 perceptual	

stabilization	 respectively.	 These	 results	 indicate	 that	 during	 imagery	 either	 the	

complete	 representation	 is	 activated	 at	 once	 and	does	 not	 include	 low-level	 visual	

areas,	or	the	order	in	which	visual	features	are	activated	is	less	fixed	and	more	flexible	

than	 during	 perception.	 These	 findings	 have	 important	 implications	 for	 our	

understanding	of	the	neural	mechanisms	of	visual	imagery.		

	

Visual	imagery	is	the	ability	to	generate	visual	experience	in	the	absence	of	the	associated	

sensory	 input.	 This	 ability	 plays	 an	 important	 role	 in	 various	 cognitive	 processes	 such	 as	

(working)	memory,	spatial	navigation,	mental	rotation,	and	reasoning	about	future	events1.	

When	we	engage	in	visual	 imagery,	a	large	network	covering	parietal,	frontal	and	occipital	

areas	becomes	active2,3.	Multivariate	fMRI	studies	have	shown	that	imagery	activates	similar	

distributed	representations	in	the	visual	cortex	as	perception	for	the	same	content4–6.	There	

is	a	gradient	in	this	representational	overlap,	in	which	higher,	anterior	visual	areas	show	more	

overlap	between	imagery	and	perception	than	lower,	posterior	visual	areas5,7.	The	overlap	in	

low-level	visual	areas	furthermore	depends	on	the	amount	of	visual	detail	required	by	the	

task8,9	 and	 the	 experienced	 imagery	 vividness6,10.	 Thus,	much	 is	 known	 about	 the	 spatial	

features	of	neural	 representations	underlying	 imagery.	However,	 the	temporal	 features	of	

these	representations	remain	unclear.		

In	 contrast,	 the	 temporal	 properties	 of	 perceptual	 processing	 are	 well	 studied.	

Perception	is	a	highly	dynamic	process	during	which	representations	change	rapidly	over	time	

before	arriving	at	a	stable	percept.	After	signals	from	the	retina	reach	the	cortex,	activation	

progresses	 up	 the	 visual	 hierarchy	 starting	 at	 primary,	 posterior	 visual	 areas	 and	 then	
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spreading	towards	secondary,	more	anterior	visual	areas	over	time11–13.	First,	simple	features	

such	as	orientation	and	spatial	frequency	are	processed	in	posterior	visual	areas14	after	which	

more	complex	features	such	as	shape	and	eventually	semantic	category	are	processed	more	

anteriorly15–17.	After	this	initial	feedforward	sweep,	feedback	from	anterior	to	posterior	areas	

is	believed	to	 further	sharpen	the	visual	 representation	over	time	until	a	stable	percept	 is	

achieved18–20.				

However,	the	temporal	dynamics	of	visual	imagery	remain	unclear.	During	imagery,	

there	is	no	bottom-up	sensory	input.	Instead,	visual	areas	are	assumed	to	be	activated	by	top-

down	connections	from	fronto-parietal	areas21,22.	Given	the	absence	of	bottom-up	input,	it	is	

unlikely	that	activity	begins	at	lower	levels	and	then	reaches	higher	levels	later	in	time,	like	

during	perception.	A	more	likely	scenario	is	that	during	imagery,	high-level	representations	in	

anterior	visual	areas	are	activated	first,	after	which	activity	is	propagated	down	to	more	low-

level	 areas	 to	 fill	 in	 the	 visual	 details.	 This	 would	 be	 in	 line	 with	 the	 reverse	 hierarchy	

theory23,24.	 Alternatively,	 there	may	 be	 no	 ordering	 such	 that	 during	 imagery,	 perceptual	

representations	at	different	levels	of	the	hierarchy	are	reinstated	simultaneously.		

In	 the	 current	 study,	 we	 investigated	 this	 question	 by	 tracking	 the	 neural	

representations	 of	 imagined	 and	 perceived	 stimuli	 over	 time.	 We	 combined	

magnetoencephalography	 (MEG)	 with	 multivariate	 decoding.	 First,	 we	 investigated	 the	

stability	and	recurrence	of	activation	patterns	over	time	using	temporal	generalization25,26.	If	

different	areas	are	activated	after	each	other,	activation	patterns	will	be	changing	rapidly	and	

thus	will	not	generalize	to	other	time	points.	If	different	levels	are	activated	simultaneously,	

representations	 at	 the	 onset	will	 already	 show	 high	 generalization	 to	 time	 points	 further	

away.	

Furthermore,	to	be	able	to	dissociate	between	a	bottom-up	and	a	top-down	flow	of	

activation	through	the	visual	hierarchy	during	imagery,	we	investigated	at	which	time	points	

during	perception	a	classifier	could	generalize	to	imagery.	If	visual	areas	are	activated	in	line	

with	 the	 visual	 hierarchy,	 earlier	 time	points	during	perception	 should	 show	overlap	with	

earlier	time	points	during	imagery	than	later	time	points	of	perception.	If	instead	there	is	a	

reversal	 in	 the	 direction,	 we	would	 see	 the	 opposite:	 late	 time	 points	 during	 perception	

overlapping	with	early	time	points	during	imagery	and	vice	versa.		
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Results	
Behavioral	results	

Twenty-five	 participants	 executed	 a	 retro-cue	 task	 in	which	 they	 perceived	 and	 imagined	

faces	and	houses	and	rated	their	experienced	imagery	vividness	on	each	trial	(see	Fig.	1).	Prior	

to	scanning,	participants	filled	in	the	Vividness	of	Visual	 Imagery	Questionnaire,	which	is	a	

measure	of	people’s	imagery	ability27.	There	was	a	significant	correlation	between	VVIQ	and	

averaged	vividness	 ratings	 (r	=	 -0.45,	p	 =	0.02),	which	 indicates	 that	people	with	a	higher	

imagery	vividness	as	measured	by	the	VVIQ	also	rated	their	imagery	as	more	vivid	on	average	

during	the	experiment.	Participants	reported	relatively	high	vividness	on	average	(49.6	±	26.6	

on	a	scale	between	-150	and	+150).	There	was	no	significant	difference	in	vividness	ratings	

between	faces	(54.0	±	29.7)	and	houses	(48.7	±	26.7;	t(24)	=	1.46,	p	=	0.16).	To	ensure	that	

participants	were	imagining	the	correct	images,	on	7%	of	the	trials	participants	had	to	indicate	

which	of	four	exemplars	they	imagined.	The	imagined	exemplar	was	correctly	 identified	in	

89.8%	(±	5.4%)	of	the	catch	trials,	indicating	that	participants	performed	the	task	correctly.	

There	 was	 also	 no	 significant	 difference	 between	 the	 two	 stimulus	 categories	 in	 the	

percentage	of	correct	catch	trials	(faces:	90.9	±	6.6,	houses:	88.8	±	7.1;	t(24)	=	-1.25,	p	=		0.22).		

	
Figure	1.	Experimental	design.	Two	images	were	presented	for	0.8	seconds	each,	with	a	random	inter-stimulus	interval	(ISI)	
between	400	and	600	ms.	After	 the	second	 image,	a	mask	with	 random	noise	was	on	screen	 for	500	ms.	The	 retro-cue	
indicating	which	of	 the	 two	 images	 the	participants	 had	 to	 imagine	was	 shown	 for	 500	ms.	 Subsequently,	 a	 frame	was	
presented	 for	 3.5	 s	 within	 which	 the	 participants	 imagined	 the	 cued	 stimulus.	 After	 this,	 they	 rated	 their	 experienced	
vividness	on	a	continuous	scale.	On	a	random	subset	(7%)	of	trials,	the	participants	indicated	which	of	four	exemplars	they	
imagined	that	trial.		
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Representational	dynamics	during	perception	and	imagery	

To	 uncover	 the	 temporal	 dynamics	 of	 category	 representations	 during	 perception	 and	

imagery,	we	decoded	the	category	from	the	MEG	signal	over	time.	The	results	are	shown	in	

Figure	 2.	 Testing	 and	 training	 on	 the	 same	 time	 points	 revealed	 that	 during	 perception,	

significantly	different	patterns	of	activity	for	faces	and	houses	were	present	from	73	ms	after	

stimulus	onset	with	 the	peak	 accuracy	 at	 153	ms	 (Fig.	 2A,	 left).	During	 imagery,	 category	

information	could	be	decoded	significantly	from	540	ms	after	retro-cue	onset,	with	the	peak	

at	1073	ms	(Fig.	2A,	right,	Fig.	S1B).	The	generation	of	a	visual	representation	from	a	cue	thus	

seems	to	take	 longer	than	the	activation	via	bottom-up	sensory	 input.	Note	that,	 to	allow	

better	comparison	between	perception	and	imagery,	we	only	showed	the	first	1000	ms	after	

cue	onset	during	imagery	(see	Supplementary	Figure	S1	for	the	results	throughout	the	entire	

imagery	period).	

	 To	reveal	the	generalization	of	representations	over	time,	classifiers	were	trained	on	

one	time	point	and	tested	on	all	other	time	points	[25]	(Fig.	2B).	Furthermore,	to	investigate	

the	 temporal	 specificity	 of	 the	 representations	 at	 each	 time	 point,	 we	 calculated	 the	

proportion	of	off-diagonal	classifiers	that	had	a	significantly	lower	accuracy	than	the	diagonal	

classifier	of	that	time	point26	(Fig.	2C;	see	Materials	and	Methods).		

	 During	 perception,	 distinct	 processing	 stages	 can	 be	 distinguished	 (Fig.	 2B-C,	 left).	

During	 the	 first	 stage,	between	70	ms	and	120	ms,	diagonal	decoding	was	 significant	and	

there	was	 very	high	 temporal	 specificity.	 This	 indicates	 sequential	 processing	with	 rapidly	

changing	representations25.	During	this	time	period,	the	classifier	mostly	relied	on	activity	in	

posterior	 visual	 areas	 (Fig.	 2D,	 left).	 Therefore,	 these	 results	 are	 consistent	 with	 initial	

feedforward	 stimulus	 processing.	 In	 the	 second	 stage,	 around	 160	 ms,	 the	 classifier	

generalized	 to	 neighboring	 points	 as	 well	 as	 testing	 points	 after	 250	ms.	 The	 associated	

sources	are	spread	out	over	the	ventral	visual	stream	(Fig.	2D,	left),	indicating	that	high-level	

representations	 are	 activated	 at	 this	 time.	 In	 the	 third	 stage,	 around	 210	 ms,	 we	 again	

observed	high	temporal	specificity	(Fig	2C,	left)	and	a	gap	in	generalization	to	160	ms	(Fig.	2B,	

left).	 This	 pattern	 could	 reflect	 feedback	 to	 low-level	 visual	 areas.	 Finally,	 from	 300	 ms	

onwards	 there	 is	a	broad	off-diagonal	generalization	pattern	 that	also	generalizes	 to	 time	

points	around	160	ms	and	an	associated	drop	 in	 temporal	 specificity	 (Fig.	2B-C,	 left).	This	

broad	off-diagonal	pattern	likely	reflects	stabilization	of	the	visual	representation.		
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	 In	contrast,	during	imagery,	we	did	not	observe	any	clear	distinct	processing	stages.	

Instead,	there	was	a	broad	off-diagonal	generalization	throughout	the	entire	imagery	period	

(Fig.	 2B,	 right;	 Fig.	 S1A).	 Already	 at	 the	 onset	 of	 imagery	 decoding,	 there	 was	 high	

generalization	 and	 low	 specificity	 (Fig.	 2B-C,	 right).	 This	 indicates	 that	 the	 neural	

representation	 during	 imagery	 remains	 highly	 stable25.	 The	 only	 change	 seems	 to	 be	 in	

decoding	strength,	which	first	increases	and	then	decreases	over	time	(Fig.	S1B),	indicating	

that	either	representations	at	those	times	are	weaker	or	that	they	are	more	variable	over	

trials.	The	sources	that	contributed	to	classification	were	mostly	located	in	the	ventral	visual	

stream	 and	 there	was	 also	 some	 evidence	 for	 frontal	 and	 parietal	 contributions	 (Fig.	 2D,	

right).		
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Figure	 2.	 Decoding	
performance	 of	
perception	 and	 imagery	
over	 time.	 (A)	 Decoding	
accuracy	from	a	classifier	
that	 was	 trained	 and	
tested	on	 the	 same	 time	
points.	 Filled	 areas	 and	
thick	 lines	 indicate	
significant	 above	 chance	
decoding	 (cluster	
corrected,	 p	 <	 0.05).	 The	
shaded	 area	 represents	
the	standard	error	of	the	
mean.	 The	 dotted	 line	
indicates	 chance	 level.	
For	 perception,	 zero	
signifies	 the	onset	of	 the	
stimulus,	 for	 imagery,	
zero	signifies	the	onset	of	
the	 retro-cue.	 (B)	
Temporal	 generalization	
matrix	 with	 discretized	
accuracy.	Training	time	is	
shown	on	the	vertical	axis	
and	 testing	 time	 on	 the	
horizontal	 axis.	
Significant	 clusters	 are	
indicated	 by	 black	
contours.	 (C)	 Proportion	
of	 time	 points	 of	 the	
significant	 time	 window	
that	 had	 significantly	
lower	 accuracy	 than	 the	
diagonal,	i.e.	specificity	of	
the	neural	representation	
at	each	time	point	during	
above	 chance	 diagonal	
decoding	(D)	Source	level	
contribution	 to	 the	
classifiers	 at	 selected	
training	times.		
	

	

Temporal	overlap	between	perception	and	imagery		

To	investigate	when	perceptual	processing	generalizes	to	imagery,	we	trained	a	classifier	on	

one	data	 segment	and	 tested	 it	on	 the	other	 segment.	We	 first	 trained	a	classifier	during	

perception	and	then	used	this	classifier	to	decode	the	neural	signal	during	imagery	(Fig.	3A-

B).	Already	around	350	ms	after	 imagery	cue	onset,	 classifiers	 trained	on	perception	data	

from	160	ms,	700	ms	and	960	ms	after	stimulus	onset	could	significantly	decode	the	imagined	

stimulus	category	(Fig.	3A).	This	is	earlier	than	classification	within	imagery,	which	started	at	

540	ms	after	cue	onset	(Fig	2A,	right).	Considering	that	we	have	more	data	in	this	analysis,	
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this	 difference	 may	 reflect	 differences	 in	 signal-to-noise	 ratio	 (SNR)	 between	 the	 two	

analyses.		

	 Furthermore,	 the	 distinct	 processing	 stages	 found	 during	 perception	 (Fig.	 2B,	 left)	

were	also	reflected	in	the	generalization	to	imagery	(Fig	3A-B).	Perceptual	processes	around	

160	 ms	 and	 after	 300	 ms	 significantly	 overlapped	 with	 imagery	 (Fig	 3B,	 right	 plots).	 In	

contrast,	processing	at	90	ms	did	not	generalize	to	any	time	point	during	imagery	(Fig.	3B,	top	

left).	Perceptual	processing	at	210	ms	showed	intermittent	generalization	to	imagery,	with	

generalization	at	some	time	points	and	no	generalization	at	other	times	(Fig.	3B,	bottom	left).	

Significant	 generalization	 at	 this	 time	 could	 also	 reflect	 the	 effects	 of	 smoothing	 over	

neighboring	time	points	which	are	significant	(see	Materials	and	Methods).	This	would	mean	

that	there	is	no	real	overlap	at	210	ms	but	that	this	overlap	is	caused	by	overlap	from	earlier	

or	later	time	points.	

To	further	pinpoint	when	perception	started	to	overlap	with	imagery,	we	performed	

an	 additional	 analysis	 in	 which	 we	 reversed	 the	 generalization:	 we	 trained	 classifiers	 on	

different	time	points	during	imagery	and	used	these	to	classify	perception	data.	This	analysis	

revealed	a	similar	pattern	of	high	overlap	with	perception	around	160	and	after	300	ms	and	

low	overlap	before	100	ms	and	around	210	ms	 (Fig.	3C-D).	Note	 that	 this	profile	 is	 stable	

throughout	 imagery	 and	 is	 already	 present	 at	 the	 start	 of	 imagery,	 albeit	 with	 lower	

accuracies	(Fig.	3-D,	bottom	panel).	Furthermore,	the	onset	of	perceptual	overlap	is	highly	

consistent	over	the	course	of	imagery:	overlap	starts	around	130	ms,	with	the	first	peak	at	

approximately	 160	ms	 (Fig.	 3C).	 In	 general,	 cross-classification	 accuracy	was	 higher	when	

training	on	imagery	than	when	training	on	perception	(Fig.	3C	vs.	Fig.	3A).	This	is	surprising,	

because	 training	on	high	 SNR	data	 (in	 our	 case,	 perception)	 is	 reported	 to	 lead	 to	higher	

classification	accuracy	than	training	on	low	SNR	data25	(imagery).	This	difference	may	reflect	

the	fact	that	the	perceptual	representation	contained	more	unique	features	than	the	imagery	

representation,	leading	to	a	lower	generalization	performance	when	training	on	perception.		
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Figure	3.	Generalization	between	perception	and	 imagery	over	 time.	 (A)	Decoding	accuracy	 from	classifiers	 trained	on	
perception	and	tested	during	imagery.	The	training	time	during	perception	is	shown	on	the	vertical	axis	and	the	testing	time	
during	 imagery	 is	 shown	on	 the	horizontal	 axis.	 (B)	Decoding	accuracies	 for	 classifiers	 trained	on	 the	 four	 stages	during	
perception.	(C)	Decoding	accuracy	from	classifiers	trained	on	imagery	and	tested	during	perception.	The	training	time	during	
imagery	is	shown	on	the	vertical	axis	and	the	testing	time	during	perception	is	shown	on	the	horizontal	axis.	(D)	Decoding	
accuracies	for	different	training	times	during	imagery.			
	

We	also	investigated	whether	the	representational	overlap	between	perception	and	imagery	

correlated	 with	 experienced	 imagery	 vividness.	 There	 were	 no	 significant	 correlations	

between	classifier	output	and	vividness	ratings	for	any	of	the	time	points	(see	Supplementary	

Figure	S2).		

	

Eye	movements	

Even	though	we	attempted	to	remove	eye	movements	from	our	data	as	well	as	possible	(see	

Materials	and	Methods),	it	is	theoretically	possible	that	eye	movements	which	systematically	

differed	between	the	conditions	caused	part	of	the	neural	signal	that	was	picked	up	by	the	

decoding	analyses28.	In	order	to	investigate	this	possibility,	we	tried	to	decode	the	stimulus	

category	from	the	X	and	Y	position	of	the	eyes	as	measured	with	an	eye	tracker.	The	results	

for	this	analysis	are	shown	in	Supplementary	Figure	S3.	During	imagery,	eye	tracker	decoding	

was	at	chance	level	for	all	time	points,	indicating	that	there	were	no	condition-specific	eye	

movements	during	imagery	(Fig	S3B).	However,	during	perception,	eye	tracker	decoding	was	

significant	 from	 316	ms	 onwards	 (Fig	 S3A),	 indicating	 that	 differences	 in	 eye	movements	

between	the	conditions	may	have	driven	(part	of)	the	brain	decoding.	If	this	were	the	case,	

there	would	be	a	high,	positive	correlation	between	eye	tracker	decoding	and	brain	decoding.	

Figure	S3C	however	shows	that	there	was	no	such	correlation,	suggesting	that	our	perception	

decoding	results	for	that	time	window	were	not	driven	by	eye	movements.		
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Discussion	
We	investigated	the	temporal	dynamics	of	category	representations	during	perception	and	

imagery,	as	well	as	the	overlap	between	the	two.	We	first	showed	that	whereas	perception	

is	characterized	by	high	temporal	specificity	and	distinct	processing	stages,	imagery	showed	

wide	 generalization	 and	 low	 temporal	 specificity	 from	 the	 onset.	 This	 indicates	 that	 the	

activity	pattern	picked	up	by	 the	classifiers	does	not	change	much	over	 the	course	of	 the	

imagery	period.	Furthermore,	cross-decoding	between	perception	and	 imagery	 revealed	a	

very	clear	temporal	overlap	profile	which	was	consistent	throughout	the	imagery	period.	We	

found	 clear	 overlap	 between	 imagery	 and	 perceptual	 processing	 starting	 around	 130	ms,	

decreasing	around	210	ms	and	increasing	again	from	300	ms	after	stimulus	onset.	This	pattern	

was	already	present	at	the	onset	of	imagery.	

	 These	findings	cannot	be	explained	by	a	clear	cascading	of	activity	up	or	down	the	

visual	hierarchy	during	imagery.	If	there	was	a	clear	order	in	activation	of	different	areas,	we	

would	 not	 have	 observed	 such	 wide	 temporal	 generalization	 at	 the	 start	 of	 imagery	 but	

instead	a	more	diagonal	pattern,	as	during	the	start	of	perception25.	Furthermore,	we	found	

that	the	complete	overlap	with	perception	is	already	present	at	the	onset	of	imagery.		

	 One	 interpretation	 of	 our	 results	 is	 that	 during	 imagery	 the	 complete	 stimulus	

representation,	 including	 different	 levels	 of	 the	 hierarchy,	 is	 activated	 simultaneously.	

However,	 there	was	no	overlap	between	 imagery	and	perceptual	processing	until	 130	ms	

after	stimulus	onset,	when	the	feedforward	sweep	is	presumably	completed	and	high-level	

categorical	information	is	activated	for	the	first	time29–31.	Overlap	between	perception	and	

imagery	in	low-level	visual	cortex	depends	on	the	imagery	task	and	experienced	vividness	5,6,8.	

However,	we	did	not	observe	a	relationship	between	overlap	at	this	time	point	and	imagery	

vividness	(Fig.	S2).	This	absence	of	early	overlap	seems	to	imply	that,	even	though	early	visual	

cortex	has	been	implicated	in	visual	imagery,	there	is	no	consistent	overlap	between	imagery	

and	early	perceptual	processing.	One	explanation	for	this	discrepancy	is	that	representations	

in	 low-level	visual	areas	first	have	to	be	sharpened	by	feedback	connections31	before	they	

have	a	format	that	is	accessible	by	top-down	imagery.	Alternatively,	low-level	visual	activity	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 30, 2017. ; https://doi.org/10.1101/226217doi: bioRxiv preprint 

https://doi.org/10.1101/226217


during	imagery	may	be	more	brief	and	variable	over	time	than	high-level	activation,	leading	

to	a	cancelling	out	when	averaging	over	trials.	

	 In	line	with	this	idea,	an	alternative	explanation	for	our	findings	is	that,	in	contrast	to	

perception,	the	order	in	which	visual	features	are	activated	during	imagery	is	not	fixed.	This	

would	be	the	case	if,	for	example,	participants	sometimes	first	focused	on	the	shape	of	the	

stimulus	and	then	on	the	color,	and	sometimes	first	on	the	color	and	then	the	shape.	High-

level	 activations	 do	 show	 consistent	 activation	 during	 imagery,	 but	 perhaps	 the	 focus	 on	

specific	visual	features	is	more	transient.	Looking	at	time-locked	processes	will	then	cancel	

out	these	 low-level	activations,	which	does	not	happen	when	integrating	over	time	with	a	

method	such	as	 fMRI.	This	 idea	highlights	 the	cognitive	 flexibility	of	 imagery	compared	to	

perception.	It	would	also	explain	why	fMRI	studies	find	that	overlap	between	perception	and	

imagery	is	decreased	in	 low-level	visual	cortex	compared	to	high-level	visual	areas5.	 In	the	

current	 study,	 we	 cannot	 confidently	 dissociate	 the	 idea	 of	 a	 simultaneous	 onset	 of	 the	

complete	visual	representation	or	a	changing	spotlight	on	low-level	features	over	time.	More	

research	into	the	temporal	dynamics	of	imagery	is	needed	to	elucidate	this	issue.		

	 The	lack	of	generalization	between	imagery	and	perceptual	processing	around	210	ms	

after	stimulus	onset	was	unexpected.	This	time	window	also	showed	an	increase	in	temporal	

specificity	 during	 perception,	 indicating	 rapidly	 changing	 representations.	 One	 possible	

interpretation	is	that	around	this	time	feedback	from	higher	areas	arrives	in	low-level	visual	

cortex32,33.	 If	 low-level	 representations	 are	 indeed	more	 transient,	 this	would	 explain	 the	

decrease	 in	 consistent	 generalization.	 Another	 possibility	 is	 that	 processing	 at	 this	 time	

reflects	an	unstable	combination	of	feedback	and	feedforward	processes,	which	is	resolved	

around	300	ms	when	representations	become	more	generalized	and	again	start	to	generalize	

to	 imagery.	 In	 line	with	 this	 idea,	 processing	 from	 300	ms	 after	 stimulus	 onset	 has	 been	

associated	 with	 percept	 stabilization35–37.	 Future	 studies	 looking	 at	 changes	 in	 effective	

connectivity	over	time	are	needed	to	dissociate	these	interpretations.			

	 Surprisingly,	we	did	not	observe	any	influences	of	experienced	imagery	vividness	on	

the	overlap	between	perception	and	imagery	over	time	(Fig.	S2).	One	explanation	for	this	is	

that	we	used	whole-brain	signals	for	decoding	whereas	the	relationship	between	overlap	and	

vividness	 has	 only	 been	 found	 for	 a	 specific	 set	 of	 brain	 regions5,10.	 Furthermore,	 the	

variability	 of	 low-level	 feature	 activations	 during	 imagery	 could	 prevent	 a	 consistent	
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correlation	between	neural	 representations	at	 specific	 times	and	 imagery	vividness.	More	

studies	on	imagery	vividness	using	MEG	are	necessary	to	explore	this	matter	further.		

		 In	conclusion,	our	findings	show	that	imagery	is	characterized	by	a	different	temporal	

profile	than	perception.	Whereas	perception	showed	high	temporal	specificity	and	distinct	

processing	stages,	 imagery	was	characterized	by	a	stable	representational	profile	from	the	

onset	onwards.	Furthermore,	imagery	showed	consistent	overlap	with	perceptual	processing	

around	160	ms	and	from	300	ms	onwards;	times	that	are	associated	with	the	completion	of	

the	feedforward	sweep	and	perceptual	stabilization,	respectively.	This	indicates	that	during	

imagery	either	 the	complete	visual	 representation	gets	activated	simultaneously	and	does	

not	 include	low-level	visual	areas,	or	the	order	 in	which	visual	feature	representations	are	

activated	is	less	fixed	than	during	perception.	It	does	not	support	the	idea	of	a	clear	order	of	

activation	of	the	visual	hierarchy	during	imagery,	either	bottom-up	or	top-down.	Together,	

these	findings	reveal	 important	new	insights	 into	the	temporal	dynamics	of	visual	 imagery	

and	its	relation	to	perception.		

	

	

Materials	and	methods	
Participants.	 Thirty	 human	 volunteers	 with	 normal	 or	 corrected-to-normal	 vision	 gave	

written	informed	consent	and	participated	in	the	study.	Five	participants	were	excluded:	two	

because	of	movement	 in	 the	scanner	 (movement	exceeded	15	mm),	 two	due	to	 incorrect	

execution	of	the	task	(less	than	50%	correct	on	the	catch	trials,	as	described	below)	and	one	

due	to	technical	problems.	25	participants	(mean	age	28.6,	SD	=	7.62)	remained	for	the	final	

analysis.	The	study	was	approved	by	the	local	ethics	committee	and	conducted	according	to	

the	corresponding	ethical	guidelines	(CMO	Arnhem-Nijmegen).	

	

Procedure	and	experimental	design.	Prior	to	scanning,	participants	were	asked	to	fill	in	the	

Vividness	 of	 Visual	 Imagery	 Questionnaire	 (VVIQ):	 a	 16-item	 questionnaire	 in	 which	

participants	indicate	their	imagery	vividness	for	a	number	of	scenarios	on	a	5-point	scale27.	

The	VVIQ	has	been	used	in	many	imagery	studies	and	is	a	well-validated	measure	of	general	

imagery	ability5,6,10,38.	The	score	was	summarized	 in	a	total	between	16	and	80	(low	score	

indicates	high	vividness).	Subsequently,	the	participants	practiced	the	experimental	task	for	
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ten	trials	outside	the	scanner,	after	which	they	were	given	the	opportunity	to	ask	clarification	

questions	about	the	task	paradigm.	If	they	had	difficulty	with	the	task,	they	could	practice	a	

second	time	with	ten	different	trials.		

	 The	experimental	task	 is	depicted	 in	Figure	1.	We	adapted	a	retro-cue	paradigm	in	

which	the	cue	was	orthogonalized	with	respect	to	the	stimulus	identity39.	Participants	were	

shown	two	images	after	each	other,	a	face	and	a	house,	or	a	house	and	a	face,	followed	by	a	

retro-cue	 indicating	which	of	 the	 images	had	 to	be	 imagined.	After	 the	 cue,	 a	 frame	was	

shown	in	which	the	participants	had	to	imagine	the	cued	stimulus	as	vividly	as	possible.	After	

this,	they	had	to	indicate	their	experienced	imagery	vividness	by	moving	a	bar	on	a	continuous	

scale.	The	size	of	the	scale	together	with	the	screen	resolution	led	to	discretized	vividness	

values	between	-150	and	+150.	To	prevent	preparation	of	a	motor	response	during	imagery,	

which	side	(left	or	right)	indicated	high	vividness,	was	pseudo-randomized	over	trials.		

	 The	face	stimuli	were	adapted	from	the	multiracial	face	database	(courtesy	of	Michael	

J.	 Tarr,	 Center	 for	 the	Neural	 Basis	 of	 Cognition	 and	Department	 of	 Psychology,	 Carnegie	

Mellon	University,	http://www.tarrlab.org.	Funding	provided	by	NSF	award	0339122).	The	

house	 stimuli	 were	 adapted	 from	 the	 Pasedena	 houses	 database	 collected	 by	 Helle	 and	

Perona	(California	Institute	of	Technology).	We	chose	faces	and	houses	because	these	two	

categories	elicit	very	different	neural	responses	throughout	the	visual	hierarchy,	during	both	

perception	and	imagery3,40,41,	and	are	therefore	expected	to	allow	for	high-fidelity	tracking	of	

their	corresponding	neural	representations.		

To	ensure	that	participants	were	imagining	the	stimuli	with	great	visual	detail,	both	

categories	contained	eight	exemplars,	and	on	7%	of	the	trials	the	participants	had	to	indicate	

which	of	four	exemplars	they	imagined	(Fig.	1,	Catch	trial).	The	exemplars	were	chosen	to	be	

highly	similar	in	terms	of	low-level	features	to	minimize	within-class	variability	and	increase	

between-class	classification	performance.	We	 instructed	participants	 to	 focus	on	vividness	

and	 not	 on	 correctness	 of	 the	 stimulus,	 to	 motivate	 them	 to	 generate	 a	 mental	 image	

including	all	visual	features	of	the	stimulus.	The	stimuli	encompassed	2.7	x	2.7	visual	degrees.	

A	fixation	bull’s-eye	with	a	diameter	of	0.1	visual	degree	was	on	screen	throughout	the	trial,	

except	during	the	vividness	rating.	In	total,	there	were	240	trials,	120	per	category,	divided	in	

ten	blocks	of	24	trials,	lasting	about	5	minutes	each.	After	every	block,	the	participant	had	the	

possibility	to	take	a	break.	
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MEG	recording	and	preprocessing.	Data	were	recorded	at	1200	Hz	using	a	275-channel	MEG	

system	with	 axial	 gradiometers	 (VSM/CTF	 Systems,	 Coquitlam,	 BC,	 Canada).	 For	 technical	

reasons,	data	from	five	sensors	(MRF66,	MLC11,	MLC32,	MLF62,	MLO33)	were	not	recorded.	

Subjects	were	seated	upright	in	a	magnetically	shielded	room.	Head	position	was	measured	

using	three	coils:	one	in	each	ear	and	one	on	the	nasion.	Throughout	the	experiment	head	

motion	 was	 monitored	 using	 a	 real-time	 head	 localizer42.	 If	 necessary,	 the	 experimenter	

instructed	the	participant	back	to	the	initial	head	position	during	the	breaks.	This	way,	head	

movement	was	 kept	 below	8	mm	 in	most	 participants.	 Furthermore,	 both	horizontal	 and	

vertical	electro-oculograms	(EOGs),	as	well	as	an	electrocardiogram	(ECG)	were	recorded	for	

subsequent	offline	 removal	of	eye-	and	heart-related	artifacts.	Eye	position	and	pupil	 size	

were	also	measured	for	control	analyses	using	an	Eye	Link	1000	Eye	tracker	(SR	Research).	

	 	Data	 were	 analyzed	 with	 MATLAB	 version	 R2017a	 and	 FieldTrip43	 (RRID:	

SCR_004849).	Per	trial,	three	events	were	defined.	The	first	event	was	defined	as	200	ms	prior	

to	onset	of	the	first	image	until	200	ms	after	the	offset	of	the	first	image.	The	second	event	

was	defined	similarly	for	the	second	image.	Further	analyses	focused	only	on	the	first	event,	

because	the	neural	response	to	the	second	image	is	contaminated	by	the	neural	response	to	

the	first	image.	Finally,	the	third	event	was	defined	as	200	ms	prior	to	the	onset	of	the	retro-

cue	until	500	ms	after	 the	offset	of	 the	 imagery	 frame.	As	a	baseline	correction,	 for	each	

event,	 the	 activity	 during	 300	 ms	 from	 the	 onset	 of	 the	 initial	 fixation	 of	 that	 trial	 was	

averaged	per	channel	and	subtracted	from	the	corresponding	signals.		

	 The	data	were	down-sampled	to	300	Hz	to	reduce	memory	and	CPU	load.	Line	noise	

at	50Hz	was	removed	from	the	data	using	a	DFT	notch	filter.	To	identify	artifacts,	the	variance	

of	each	trial	was	calculated.	Trials	with	high	variance	were	visually	inspected	and	removed	if	

they	contained	excessive	artifacts.	After	artifact	rejection,	on	average	108	perception	face	

trials	 (±11),	 107	 perception	 house	 trials	 (±12)	 and	 105	 imagery	 face	 trials	 (±16)	 and	 106	

imagery	house	trials	(±13)	remained	for	analysis.	To	remove	eye	movement	and	heart	rate	

artifacts,	independent	components	of	the	MEG	data	were	calculated	and	correlated	with	the	

EOG	and	ECG	signals.	Components	with	high	correlations	were	manually	 inspected	before	

removal.	The	eye	tracker	data	was	cleaned	separately	by	inspecting	trials	with	high	variance	

and	removing	them	if	they	contained	blinks	or	other	excessive	artifacts.	
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Decoding	analyses.	To	track	the	neural	representations	within	perception	and	imagery,	we	

decoded	the	stimulus	category	from	the	preprocessed	MEG	signals	during	the	first	stimulus	

and	after	the	retro-cue	for	every	time	point.	To	 improve	the	signal-to-noise	ratio,	prior	to	

classification,	the	data	were	averaged	over	a	window	of	30	ms	centered	on	the	time	point	of	

interest.	We	used	a	linear	discriminant	analysis	(LDA)	classifier	with	the	activity	from	the	270	

MEG	sensors	as	features	(see	ref.	44	for	more	details).	A	5-fold	cross-validation	procedure	

was	implemented	where	for	each	fold	the	classifier	was	trained	on	80%	of	the	trials	and	tested	

on	the	other	20%.	To	prevent	a	potential	bias	in	the	classifier,	the	number	of	trials	per	class	

was	balanced	per	fold	by	randomly	removing	trials	from	the	class	with	the	most	trials	until	

the	trial	numbers	were	equal	between	the	classes.		

	

Generalization	across	time	and	conditions.	By	training	a	classifier	on	one	time	point	and	then	

testing	 it	 on	 other	 time	 points,	 we	 were	 able	 to	 investigate	 the	 stability	 of	 neural	

representations	over	time.	The	resulting	temporal	generalization	pattern	gives	information	

about	the	underlying	processing	dynamics.	For	instance,	a	mostly	diagonal	pattern	reflects	

sequential	processing	of	specific	representations,	whereas	generalization	from	one	time	point	

towards	another	reflects	recurrent	or	sustained	activity	of	a	particular	process25.	Here,	we	

performed	 temporal	 generalization	 analyses	 during	 perception	 and	 during	 imagery	 to	

investigate	the	dynamics	of	the	neural	representations.	Furthermore,	to	quantify	the	extent	

to	which	the	representation	at	a	given	time	point	t	was	specific	to	that	time	point,	we	tested	

whether	a	classifier	trained	at	time	t	and	tested	at	time	t	(i.e.	diagonal	decoding)	had	a	higher	

accuracy	than	a	classifier	trained	at	time	t’	and	tested	at	time	t	(i.e.	generalization).	This	shows	

whether	there	is	more	information	at	time	t	than	can	be	extracted	by	the	decoder	t’26,45.	We	

subsequently	 calculated,	 for	 each	 time	 point,	 the	 proportion	 of	 time	 points	 that	 were	

significantly	lower	than	the	diagonal	decoding,	giving	a	measure	of	specificity	for	each	time	

point.	To	avoid	overestimating	the	specificity,	we	only	considered	the	time	window	during	

which	the	diagonal	classifiers	were	significantly	above	chance.			

To	investigate	the	overlap	in	neural	representations	between	perception	and	imagery,	

a	similar	approach	can	be	used.	Here,	we	trained	a	classifier	on	different	time	points	during	

perception	and	tested	it	on	different	time	points	during	imagery	and	vice	versa.	This	analysis	

shows	 when	 neural	 activity	 during	 perception	 contains	 information	 that	 can	 be	 used	 to	
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dissociate	mental	representations	during	imagery	and	vice	versa	-	i.e.	which	time	points	show	

representational	overlap.		

	 It	has	been	shown	that	representational	overlap	between	imagery	and	perception,	as	

measured	by	fMRI,	is	related	to	experienced	imagery	vividness5,6,10.	To	investigate	this	in	the	

current	study,	we	related	trial-by-trial	vividness	scores	with	classifier	output	over	time	as	in	

ref.	46.	An	LDA	classifier	calculates	for	every	trial	the	distance	from	a	decision	boundary	that	

optimally	 discriminates	 the	 two	 classes.	 For	 classification,	 distances	 are	 subsequently	

transformed	to	a	predicted	class	using	a	cut-off.	This	prediction	is	then	used	to	calculate	the	

percentage	of	correctly	classified	trials,	i.e.	the	decoding	accuracy44.	However,	the	distance	

measure	can	be	interpreted	as	the	amount	of	evidence	for	a	certain	class,	such	that	trials	with	

more	evidence	for	the	correct	class	can	be	seen	as	having	less	ambiguous	representations46,47.	

In	the	current	context,	the	distance	that	is	calculated	by	a	classifier	trained	on	perception	can	

be	 interpreted	 as	 the	 degree	 of	 representational	 overlap	 with	 perception	 for	 that	 trial.	

Correlating	these	distances	during	imagery	with	experienced	imagery	vividness	per	time	point	

reveals	if,	and	at	which	points	in	time,	overlap	between	perception	and	imagery	relates	to	

experienced	vividness.		

	 	

Statistical	 testing.	Decoding	 accuracy	was	 tested	 against	 chance	 using	 two-tailed	 cluster-

based	permutation	testing	with	1000	permutations48.	In	the	first	step	of	each	permutation,	

clusters	were	defined	by	adjacent	points	that	crossed	a	threshold	of	p	<	0.05.	The	t-values	

were	summed	within	each	cluster,	but	separately	for	positive	and	negative	clusters,	and	the	

largest	of	these	were	included	in	the	permutation	distributions.	A	cluster	in	the	true	data	was	

considered	 significant	 if	 its	 p-value	 was	 less	 than	 0.05	 based	 on	 the	 permutations.	

Correlations	 with	 vividness	 were	 tested	 against	 zero	 on	 the	 group	 level	 using	 the	 same	

procedure.	

	

Source	 localization.	 In	order	 to	 identify	 the	brain	 areas	 that	were	 involved	 in	making	 the	

dissociation	between	faces	and	houses	during	perception	and	imagery,	we	performed	source	

reconstruction.	 In	 the	 case	 of	 LDA	 classifiers,	 the	 spatial	 pattern	 that	 underlies	 the	

classification	reduces	to	the	difference	in	magnetic	fields	between	the	two	conditions	(see	

ref.	49).	Therefore,	to	infer	the	contributing	brain	areas,	we	performed	source	analysis	on	the	

difference	ERF	between	the	two	conditions.		
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For	this	purpose,	T1-weighted	structural	MRI	images	were	acquired	using	a	Siemens	

3T	whole	body	scanner.	Vitamin	E	markers	in	both	ears	indicated	the	locations	of	the	head	

coils	during	the	MEG	measurements.	The	location	of	the	fiducial	at	the	nasion	was	estimated	

based	on	the	anatomy	of	the	ridge	of	the	nose.	The	volume	conduction	model	was	created	

based	on	a	single	shell	model	of	the	inner	surface	of	the	skull.	The	source	model	was	based	

on	 a	 reconstruction	of	 the	 cortical	 surface	 created	 for	 each	participant	using	 FreeSurfer’s	

anatomical	 volumetric	 processing	 pipeline	 (RRID:	 SCR_001847).	MNE-suite	 (Version	 2.7.0;	

RRID:	SCR_005972)	was	subsequently	used	to	infer	the	subject-specific	source	locations	from	

the	surface	reconstruction.	The	resulting	head	model	and	source	locations	were	co-registered	

to	the	MEG	sensors.		

The	lead	fields	were	rank	reduced	for	each	grid	point	by	removing	the	sensitivity	to	

the	direction	perpendicular	to	the	surface	of	the	volume	conduction	model.	Source	activity	

was	obtained	by	estimating	linearly	constrained	minimum	variance	(LCMV)	spatial	filters50.	

The	data	covariance	was	calculated	over	the	interval	of	50	ms	to	1	s	after	stimulus	onset	for	

perception	and	over	the	entire	segment	for	imagery.	The	data	covariance	was	subsequently	

regularized	using	shrinkage	with	a	regularization	parameter	of	0.01	(as	described	in	ref.	52).	

These	filters	were	then	applied	to	the	axial	gradiometer	data,	resulting	in	an	estimated	two-

dimensional	dipole	moment	for	each	grid	point	over	time.	For	imagery,	the	data	were	low-

pass	filtered	at	30	Hz	prior	to	source	analysis	to	increase	signal	to	noise	ratio.	

	 To	facilitate	interpretation	and	visualization,	we	reduced	the	two-dimensional	dipole	

moments	to	a	scalar	value	by	taking	the	norm	of	the	vector.	This	value	reflects	the	degree	to	

which	a	given	source	location	contributes	to	activity	measured	at	the	sensor	level.	However,	

the	norm	is	always	a	positive	value	and	will	therefore,	due	to	noise,	suffer	from	a	positivity	

bias.	To	counter	this	bias,	a	permutation	procedure	was	employed	in	which	the	noise	was	

estimated	and	subtracted	from	the	true	data.	Afterwards,	the	data	were	also	divided	by	the	

noise	estimates	in	order	to	counter	the	depth	bias	(for	full	details,	see	ref	52).			

For	each	subject,	the	surface-based	source	points	were	divided	into	74	atlas	regions	

as	extracted	by	FreeSurfer	on	the	basis	of	the	subject-specific	anatomy53.	To	enable	group-

level	 estimates,	 the	 activation	 per	 atlas	 region	 was	 averaged	 over	 grid	 points	 for	 each	

participant.	 Group-level	 activations	 were	 then	 calculated	 by	 averaging	 the	 activity	 over	

participants	per	atlas	region54.		
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Supplementary	material		
Imagery	decoding	

	
Figure	S1.	Decoding	results	throughout	the	entire	imagery	period.	(A)	Temporal	generalization	matrix.	Training	time	is	
shown	on	the	vertical	axis	and	testing	time	on	the	horizontal	axis.	(B)	Decoding	accuracy	from	a	classifier	that	was	trained	
and	tested	on	the	same	time	points	during	imagery.	(C)	For	each	testing	point,	the	proportion	of	time	points	that	resulted	
in	significantly	lower	accuracy	than	the	diagonal	decoding	at	that	time	point,	i.e.	the	temporal	specificity	of	the	
representations	over	time.						

	
Vividness	

	
Figure	S2.	Correlation	between	vividness	
and	classifier	predictions.	The	calculated	
distances	per	trial	during	imagery	of	
classifiers	trained	on	perception	were	
correlated	with	vividness	ratings	for	every	
time	point.	Group	averaged	correlations	
were	subsequently	tested	against	zero	using	
cluster	based	permutation	testing.	No	
significant	clusters	were	found.		
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Eye	movements		

	
Figure	S3.	Decoding	on	eye	tracker	data.	(A)	Decoding	accuracy	over	time	on	eye	tracker	data	during	perception.	Filled	
areas	and	thick	lines	indicate	significant	above	chance	decoding	(cluster	corrected,	p	<	0.05).	The	shaded	area	represents	
the	standard	error	of	the	mean.	The	dotted	line	indicates	chance	level.	(B)	Decoding	accuracy	over	time	on	eye	tracker	
data	during	imagery.	(C)	Correlation	over	participants	between	eye	tracker	decoding	accuracy	and	brain	decoding	accuracy,	
averaged	over	the	period	during	which	eye	tracker	decoding	was	significant.		
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