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Abstract 

 

Frequency-related topological projections from the ventral division of the medial geniculate 

body (MGv) relay the tonotopic organization found in primary auditory cortex (A1). 

However, relaying circuits of the functional organization to higher-order, secondary auditory 

field (A2) have not been identified so far. Here, using tracing, we found that A2 receives 

dense topological projections from MGv in mice, and that tonotopy was established in A2 

even when primary fields including A1 were removed. These indicate that thalamic inputs to 

A2 are sufficient for generating its tonotopy. Moreover, neuronal responses in the 

thalamocortical recipient layer of A2 showed wider bandwidth and greater heterogeneity of 

the best frequency distribution than those of A1, which was attributed to larger divergence of 

thalamocortical projections from MGv to A2 than those from MGv to A1. The current study 

identifies that the functional organization in the auditory cortex can be determined by the 

structure of thalamocortical input. 

 

 

Keywords: secondary auditory field; ventral division of the medial geniculate body; dorsal 

division of the medial geniculate body; tonotopy; compartmentalization; mice 

 

 

Significant Statement: Although peripheral input patterns to the primary auditory cortex 

(A1) of the brain are well understood, how tonal information is relayed to higher-order 

regions such as the secondary auditory field (A2) remains unclear. This work revealed a new 

source of auditory information to A2; the tonal map in mouse A2 is primarily produced by 

orderly projections from the primary auditory thalamus. We also found that the complex 
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behaviour and organization of neurons in A2 is generated by divergent projections from the 

primary thalamus that converge on neurons in A2. Our findings indicate that thalamocortical 

projections constitute a major factor that determines the regional properties and functional 

organization of mouse A2. 
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Introduction 

 

The auditory cortex is composed of multiple regions that form a hierarchy of information 

processing; tonal information enters at the primary region and is then relayed to higher-order 

regions in streams of increasing complexity (Kaas and Hackett, 2000). Primary auditory 

cortex exhibits tonotopy that reflects information directly relayed from topologically 

connected lemniscal pathways that ascend from the periphery through the ventral division 

(MGv) of the medial geniculate body (MGB) (Saenz and Langers, 2014). In contrast, many 

believe that higher-order regions do not show tonotopy because their cortical input is 

secondarily, and because much of their input from the thalamus originates in the higher-order, 

non-lemniscal dorsal division (MGd) of MGB, which is not tonotopic. This parallel pathway 

model, in which one pathway connects MGv to primary regions and the other connects MGd 

to higher-order regions, has been a basic belief for the last two decades of auditory system 

research in several animal species, including monkeys (de la Mothe et al., 2012), cats 

(Huang and Winer, 2000), rats (Smith et al., 2012), and mice (Llano and Sherman, 2008). 

 The primary auditory cortex (A1) and secondary auditory field (A2) are regarded as 

representatives of primary and higher-order auditory regions respectively, and exemplify the 

auditory cortex hierarchy across species (Issa et al., 2014; Lee and Sherman, 2008, 2010; 

Lee and Winer, 2008). For mice in particular, A1 and A2 are thought to exhibit a cortical 

hierarchy that is reflected in different response latencies (Guo et al., 2012; Joachimsthaler et 

al., 2014) and also in different levels of tonotopic complexity in their respective layers 2/3 

(Issa et al., 2014). Recently, higher-order regions beyond A1 have been shown to reflect 

tonotopy in different mammalian species, and thus multiple tonotopic representations are 

now thought to exist within the auditory cortex (Bizley and King 2009; Harel et al., 2000; 

Higgins et al., 2010; Kalatsky et al., 2005; Nishimura et al., 2007; Petkov et al., 2006). 
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Mouse A2 also exhibits tonotopy (Issa et al., 2014; Kubota et al., 2008; Kato et al., 2015), 

which is presumed to incorporate information relayed from lemniscal regions. However, 

these theorized topological projections that determine tonotopy in mouse A2 have yet to be 

identified. 

 Recent developments in auditory thalamocortical research suggest that tonotopy in A2 

might reflect that in the lemniscal thalamus. In canonical theories, A1 and A2 have an 

intracortical hierarchical relationship in which tonotopy in A2 is derived from secondary 

connections originating in A1. Thus, mouse A2 should receive frequency-related projections 

from A1 that are topologically arranged, similar to how mouse primary visual cortex 

topologically projects to secondary visual cortices (Wang and Burkhalter, 2007; Glickfeld et 

al., 2013). Another possibility is that tonotopy in A2 is based on input from MGv that 

reflects its subcortical functional organization. Recent tracing studies suggest that the 

lemniscal thalamocortical pathway is actually composed of several different parallel 

pathways. Rather than being a single homogenous structure, MGv is composed of multiple 

compartments, each of which sends frequency-related topological projections to distinct 

cortical targets (Horie et al., 2013; Takemoto et al., 2014; Tsukano et al., 2015). At present, 

the thalamic origins of four cortical tonotopic regions (not including A2) have been 

identified in rostral and middle parts of MGv (Takemoto et al., 2014; Tsukano et al., 2015). 

However, the cortical target of neurons located in the caudal portion of MGv remains 

unknown. Although a detailed morphological study has reported that MGd terminates in A2 

of mice (Llano and Sherman, 2008), the authors did not investigate whether thalamocortical 

inputs to A2 also originate from MGv. Therefore, A2 might receive topologically arranged 

auditory input from the caudal compartment of the MGv. 

 Differences in regional properties between A1 and A2 can be seen in tonotopic 

organization at the single neuron level, in which neighboring neurons are heterogeneously 
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tuned to dissimilar best frequencies (BFs) (Bandyopadhyay et al., 2010; Castro and Kandler, 

2010; Rothschild et al., 2010; Tao et al., 2017). Specifically, the extent of heterogeneous 

tuning within layer 2/3 follows a hierarchy, becoming larger in A2 than in A1 (Issa et al., 

2014). Although the origin of this region-specific functional organization is unclear, it is 

likely formed by a mechanism that depends on either exogenous input or intrinsic local 

circuits. However, observation of layer 2/3 neurons is hardly sufficient to evaluate these two 

possibilities. We hypothesized that the heterogeneity of neighboring BFs in 

thalamo-recipient layers is derived from exogenous input patterns that originate in the caudal 

part of MGv. If this is true, then it should reflect the degree of anatomical divergence in 

thalamocortical projections (Imaizumi and Lee, 2014; Storace et al., 2011), which leads to 

locally heterogeneous frequency inputs when high (Vasquez-Lopez et al., 2017). 

Investigating any parallel thalamocortical streams that target A1 and A2 will provide an 

experimental platform for evaluating this hypothesis. 

 In the current study, we show that the major thalamic origin of mouse A2 is the caudal 

part of MGv (Figure 8). A2 and caudal MGv are topologically connected, and tonotopy in 

A2 can be established via thalamic inputs in the absence of corticocortical inputs from A1. 

Thalamocortical projections from MGv to A2 diverge more than they do to A1, and the 

tonotopy of the thalamocortical recipient layer 3b/4 is thus more heterogeneous in A2 than in 

A1. 

 

 

Results 

 

Mouse A2 receives major inputs from the primary thalamic division, MGv 

We identified the precise location of right auditory cortical regions using flavoprotein 
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Figure 1. Injection of retrograde tracers along the tonotopic map in mouse A2. (A) A 
schematic drawing of the moue auditory cortex. AC, auditory cortex; Cb, cerebellum; MCA, 
medial cerebral artery; OB, olfactory bulb; rf, rhinal fissure; SC, somatosensory cortex; VC, 
visual cortex. (B) Typical images of tonal responses in the auditory cortex revealed using 
flavoprotein fluorescence imaging. Scale bar, 1 mm. (C) The tonotopic organization of A2. 
Peak fluorescence change in response to different frequencies is plotted. Significant shifts 
in response were observed from dorsal to ventral A2. Data were obtained from 9 mice and 
superimposed based on the pixel of an A1 5-kHz response peak. Scale bar, 100 mm. (D) 
Correlation between frequencies and distances. Tonotopy was arranged along the axis 
connecting the peak pixels for 5 kHz and 60 kHz tones. r = 0.66, ***p < 0.001, Spearman's 
test; n = 9 each. (E) Triple injection of Fast Blue (blue), CTB-488 (green), and CTB-555 (red) 
along the tonotopic gradient of A2. Tracer deposits on the brain surface ~30 min after 
injection are shown on the right. Scale bar, 1 mm. (F) Tracer deposits in A2 on a coronal 
slice. Scale bar, 200 mm. Data are shown in mean ± SEM.
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fluorescence imaging (Figure 1A). Tonal stimuli around 5 kHz are known to produce 

neuronal responses in three regions. Numerous studies of mouse auditory cortex consider the 

dorsal two regions as the anterior auditory field (AAF) and A1, and the ventral region as A2 

(Figure 1B) (Issa et al., 2014; Guo et al., 2012; Joachimsthaler et al., 2014; Kato et al., 2015; 

Tsukano et al., 2015; Stiebler et al., 1997; Tsukano et al., 2016). In addition to these three 

areas, the dorsomedial field (DM) was also activated (Figure 1B). Quantitative analysis of 

A2 using 5 kHz, 30 kHz, and 60 kHz tones indicated that the peak fluorescence change 

shifted from dorsal to ventral with increased tonal frequency (Figures 1C and 1D), as 

previously reported (Issa et al., 2014; Kubota et al., 2008; Kato et al., 2015). To investigate 

the origin of thalamic input to A2, we injected retrograde tracers into A2 after regional 

identification using optical imaging. We triple injected Fast Blue, CTB-488, and CTB-555 

(Takemoto et al., 2014) along the tonotopic axis of A2 (Figures 1E and 1F), prepared 

consecutive coronal sections, and then visualized fluorescence-positive thalamic neurons. 

 The boundary between MGv and MGd can be determined based on immunoreactivity 

(Lu et al., 2009). Here, we used SMI-32 immunolabeling that strongly stains MGv but not 

MGd (Figure 2A) (Horie et al., 2013; Tsukano et al., 2015), and calbindin immunolabeling 

that strongly stains MGd but not MGv (Takemoto et al., 2014; Lu et al., 2009). Although 

some fluorescence-positive neurons were located in MGd as reported previously (Llano and 

Sherman, 2008), more were found within MGv (Figure 2B). After injecting retrograde 

neuronal tracers into A2, 43 coronal slices were analyzed. Among the labeled neurons, 

63.7% (4,614/7,238 neurons) were found in MGv, 18.7% (1,351/7,238 neurons) in MGd, and 

17.6% (1,273/7,238 neurons) in the rest of the auditory thalamus. We next quantitatively 

analyzed the rostro-caudal distribution of projection neurons in MGv. Neurons projecting to 

A2 were primarily located between 3.3 and 3.6 mm posterior to the bregma (Figure 3A). 

AAF and A1 are known to receive thalamic input from the middle part of MGv, around 2.9 
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Figure 2. Visualizing thalamic neurons that project to A2. (A) An example pair of Nissl 
staining and immunolabeling in slices ~3.0 mm posterior to the bregma. These images were 
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projections to low, middle, high frequency areas in A2. Scale bar, 200 mm.
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Rostrocaudal distribution of thalamic neurons projecting from MGv to A2. Averaged 
coordinates were 3.34 mm, 3.39 mm, and 3.43 mm posterior to the bregma for low, middle, 

-6 -35and high frequencies, respectively. 5 kHz vs. 30 kHz, p < 10 ; 5 kHz vs. 60 kHz, p < 10 ; 30 
-5 2kHz vs. 60 kHz, p < 10 , c  test after Bonferroni correction. (B) The caudal part of MGv as a 

thalamic origin of A2. Data in blue, green, and red indicate distribution of neurons projecting 
to AAF, A1, and A2, respectively. Averaged coordinates were 3.03 mm, 3.13 mm, and 3.93 

-35mm posterior to the bregma for AAF, A1, and A2, respectively. AAF vs. A1, p < 10 ; AAF vs. 
-35 -35 2A2, p < 10 ; A1 vs. A2, p < 10 , c  test after Bonferroni correction. To AAF, n = 1,314 cells 

obtained using fluorescent CTB (5 mice); to A1, n = 510 cells obtained using fluorescent CTB 
(5 mice); To A2, n = 2,718 cells used in (A) and (B). (C) Confirmation of caudal outputs to A2 
using horizontal slices. Neurons projecting to A2 (red) were located significantly caudally 

-34compared with those projecting to A1 (green) (**p < 0.0001; ***p < 10 , Mann–Whitney U-
test; n = 196 neurons projecting to A1; n = 198 neurons projecting to A2; from 3 mice). BIC, 
brachial nucleus of the inferior colliculus. Scale bar, 200 mm. Data are shown in mean ± 
SEM.
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to 3.2 mm posterior to the bregma (Horie et al., 2013; Takemoto et al., 2014; Tsukano et al., 

2017). We found that neurons projecting to A2 were clearly located caudal to those 

projecting to AAF/A1 (Figure 3B). We directly confirmed the rostrocaudal locations of 

thalamic neurons by preparing horizontal slices (Figure 3C). These results clearly indicated 

that mouse A2 receives lemniscal projections originating from the caudal part of the MGv. 

 Next, we investigated whether neurons projecting to A2 are arranged in a 

frequency-related fashion. Using coronal slices, we obtained the relative location of each 

fluorescence-positive neuron in reference to the MGv center (Figure 4A). MGv neurons 

projecting to the low, middle, and high frequency areas of A2 were topologically arranged in 

the ventrodorsal direction of caudal MGv (Figures 4B and 4C). Comparing plots between 

Figures 4B and 4C, we found that overall positions shifted ventrally in caudal slices; 

therefore, we evaluated frequency-related positional shifts using horizontal slices. We 

injected CTB-555 and CTB-488 into high and low frequency areas of A2. In the dorsal part 

of MGv, almost all neurons projected to high frequency areas (Figure 4D). Moving ventrally, 

neurons projecting to low frequency areas began to appear rostral to those projecting to high 

frequency areas (Figure 4E). Going more ventrally, neurons projecting to high and low 

frequency areas were evenly distributed (Figure 4F). In the ventral part, we found that 

neurons projecting to high frequency areas were shoved caudally (Figure 4G). These data 

suggest that the caudal compartment of MGv has a distinct frequency-related structure, and 

that the gradient is arranged largely along a ventrorostral to dorsocaudal axis, as shown in 

the parasagittal illustration in Figure 4H. This architecture is consistent with the findings 

obtained from the coronal slices, which showed that MGv neurons projecting to higher 

frequency areas of A2 tend to be located more caudally (Figure 3A). 

 

Frequency-related organization in higher-order auditory thalamus, MGd 
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Figure 4. Frequency-related gradient traveling ventrodorsally in caudal MGv. (A) 
Definition of the MGv center in each slice. (B) Average coordinates for projection neurons to 
A2 in slices 3.3–3.4 mm posterior to the bregma. The number of neurons was 901 for 5 kHz, 
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Although MGv turned out to be the major origin of thalamic projections to A2, almost 20% 

of projections originated in MGd. Triple tracer injection revealed that MGd neurons between 

3.0 and 3.4 mm posterior to the bregma projected to A2, and that, for tonal stimuli between 5 

and 60 kHz, the rostrocaudal distributions of neurons that project to each part of A2 did not 

differ (Figure S1A). After injecting retrograde tracers into A2, the number of labeled neurons 

in MGd was small and few slices exhibited neurons that were labeled by all three tracers; 

however, we did observe positional shifts of labeled neurons (Figure S1B). We quantitatively 

analyzed the locations of labeled neurons by determining the center of MGd as the origin 

(Figure S1C) and found that positions shifted from dorsomedial to ventrolateral MGd as the 

BFs of the target region in A2 shifted from high to low. To the best of our knowledge, this is 

the first study to demonstrate the existence of frequency-based organization in rodent MGd. 

 

Tonotopy of A2 is established via thalamic input 

A2 is a higher-order region that receives auditory information from A1. However, the results 

given above showed that A2 also receives distinct topological thalamic inputs. This 

suggested that tonotopic organization in A2 might exist even when it is isolated from 

primary cortical regions. To test this hypothesis, we prepared mice in which all auditory 

cortical regions except for A2 were removed by suction (Figure 5A). A2 in these mice still 

exhibited robust tonal responses (Figure 5B). While no tonal responses were detected from 

the removed regions, in A2 they remained even after suction, albeit they were half as intense 

(Figures 5C and 5D), suggesting that about half of each response was derived 

corticocortically and half thalamocortically. Importantly, the tonotopic structure of A2 

remained after destroying the surrounding cortical regions (Figures 5E and 5F). Moreover, 

we verified that functional organization in the auditory cortex and response amplitude 

elicited by amplitude-modulated pure tones was not affected by total removal of the 
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slices from the right hemisphere after suction of auditory cortex that excluded A2. Lesion 
sites are indicated by arrow heads. Scale bar, 1 mm. (B) Example tonal responses in A2 after 
suction. Areas enclosed by dotted lines were removed and the white matter on the 
hippocampus was exposed. Scale bar, 1 mm. (C and D) Temporal profiles of tonal responses 
before (C) and after suction (D). Data from regions other than A2 are average values from 
AAF, A1, and DM. Peak values were significantly larger than baseline values. *p < 0.05, 
Wilcoxon signed-rank test. Four profiles were obtained from the same animals (n = 5 mice). 
(E and F) Quantitative analysis of tonotopic shifts before (E) and after suction (F). 
Coordinates were averaged based on the peak pixels of 5 kHz areas. *p < 0.05, Wilcoxon 
signed-rank test. Four data were obtained from the same animals (n = 5 mice). Data are 
shown in mean ± SEM.
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contralateral auditory cortex (Figure S2). This might have resulted from callosal connections 

that help unify auditory space (Gazzaniga, 2000) and are not necessary for simple tonal 

processing. These data indicate that parallel topological thalamocortical pathways from MGv 

give rise to the different tonotopies seen in A2 and A1 (Figure 8). 

 

Heterogeneous tonotopy of A2 reflects divergent thalamocortical projections 

Previous tracing studies have shown clear topological projections from MGv to A1 that have 

little spatial overlap between the two middle MGv neuronal populations that project to high 

and low frequency areas of A1 (Horie et al., 2013; Takemoto et al., 2014). In contrast, caudal 

MGv neurons that project to A2 exhibited seemingly overlapping distributions, although 

they also showed a ventrodorsal tonotopic gradient at the macroscopic level (Figure 2). To 

quantify and compare the degree of spatial overlap in the MGv neuronal populations, we 

dual-injected CTB-555 and CTB-488 into high and low frequency areas of A1 and A2, 

respectively (Figure 6A). An analysis of spatial spread in four directions showed that 

neurons projecting to A2 were distributed more widely than those projecting to A1 in the 

dorsoventral direction, which corresponds to the tonotopic axis (Figure 6B). As a result, the 

separation index along the dorsoventral axis was significantly smaller for neurons projecting 

to A2 than those projecting to A1 (Figure 6C). These data suggest that neurons in the middle 

part of MGv and neurons in the thalamocortical recipient layer of A1 are connected with a 

strictly topological relationship. In contrast, neurons in the caudal part of MGv project to a 

broader area of A2 with a looser topological relationship (Figure 6D). 

 Studies have suggested that BF spatial distribution becomes more heterogeneous the 

further a region is along in the hierarchy away from primary cortex (Issa et al., 2014; 

Winkowski and Kanold, 2013). We expected that neurons in the thalamocortical recipient 

layer of A2 might receive a wide range of information from broad areas in MGv because of 
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Figure 6. Divergence of thalamocortical projections from MGv to A2. (A) Examples of 
MGv neurons projecting A1 or A2. Scale bar, 200 mm. Green, CTB-488 that was injected into 
a cortical low frequency area of 5 kHz. Red, CTB-555 that was injected into a cortical high 
frequency area of 60 kHz. The right image was modified in brightness. Scale bar, 200 mm. (B) 
Standard deviations (SD) of the distribution of CTB-positive neurons in four orientations. SD 
was compensated by width and length of MGv. n = 8 slices from 4 mice. *p < 0.05, 
Mann–Whitney U-test. (C) The separation index (SI) that evaluates extent of how 
intermingled CTB 488-positive and CTB 555-positive neurons are. SI ranges from 0 to 1, 
with one meaning total separation (see Methods). Data were obtained from four slices for 
each region. *p < 0.05, Mann–Whitney U-test. (D) Summary illustration of Figure 6. Data are 
shown in mean ± SEM.
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Figure 7. Complex responses of neurons in the thalamocortical recipient layer of A2. 
(A) An example plane of two-photon imaging. Cal-520-positive neurons and SR-101-positive 
astrocytes are shown in green and red, respectively. Scale bar, 50 mm. (B) Responses of a 
low, middle, or high frequency-responsive neuron in A1 (top), and those of a low, middle, or 
high frequency-responsive neuron in A2 (bottom). Vertical bar, 10%; horizontal bar, 3 s. (C) 

- 1 0Cumula t i ve d is t r ibu t ion o f neurona l bandwid th in A1 and A2. * * *p < 10 , 
Kolmogorov–Smirnov test. (D and E) Distribution of best frequencies (BF) in A1. A significant 
relationship was found between distance and best frequencies (BFs) (n = 62 neurons from 
two mice; r = 0.61, p < 0.0001, Spearman's test). Scale bar, 50 mm. (F) Relationship between 
differences in BF and distance (1891 pairs, r = 0.43, p < 0.0001, Spearman's test). (G and H) 
Distribution of BFs in A2. A significant relationship was observed between distance and BF 
(n = 109 neurons from two mice; r = 0.30, p < 0.01, Spearman's test). R-values between data 
in (E) and (H) were significantly different (p < 0.05, see Experimental Procedures). Scale 
bar, 50  m. (I) Relationship between differences in BF and distance (5,886 pairs, r = 0.15, p 
< 0.0001, Spearman's test). R-values between data in (F) and (I) were significantly different 

-35(p < 10 , see Methods).
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the divergence in thalamocortical projections from MGv. We evaluated this effect by looking 

at bandwidth and heterogeneity of the BF spatial distribution in the thalamocortical recipient 

layer using two-photon calcium imaging. Thalamocortical recipient layers in the auditory 

cortex are a deeper part of layer 3 and layer 4 (Huang and Winer, 2000). They are equivalent 

to layers 3b/4 in mice, which are located ~300–450 mm beneath the cortical surface 

(Winkowski and Kanold, 2013; Oviedo et al., 2010; Zhou et al., 2014). We observed tonal 

responses of neuronal cell bodies 377 ± 41 µm (mean ± SD) beneath the cortical surface 

(Figure 7A). Neurons in A1 tended to respond to a specific tonal stimulus. In contrast, 

neurons in A2 had a tendency to respond to a wider frequency range (Figure 7B). Analysis 

showed that neuronal bandwidth was significantly larger in A2 than in A1 (Figure 7C), 

which suggests that A2 neurons are more broadly tuned than A1 neurons because of 

convergent input from caudal MGv (Figure 6D). Next, we investigated differences in BF 

spatial distribution between A1 and A2. Although a study has suggested that local BF spatial 

distribution in the recipient layer of A1 was totally homogeneous (Winkowski and Kanold, 

2013), here we found that it was somewhat heterogeneously arranged (Figure 7D). Even so, 

the BF and distance along the tonotopic axis were significantly correlated in A1 (r = 0.61; 

Figure 7E), as were the difference in BFs and the distance between pairs of neurons (r = 

0.43; Figure 7F). In contrast, the spatial distribution of BFs was coarse in A2. Although the 

BF and distance along the tonotopic axis were significantly correlated (r = 0.30; Figures 7G 

and 7H), the correlation was much weaker than what we observed for A1. Similarly, 

although we found a significant correlation between the difference in BFs and the distance 

between pairs of neurons, the correlation coefficient (r = 0.05) was clearly smaller than that 

for A1 (Figure 7I). Taken together, these data suggest that the anatomical divergence of 

thalamocortical projections from MGv is reflected in the functional organization of the 

thalamocortical recipient layer in the auditory cortex. 
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Figure 8. Illustration of a new thalamocortical parallel processing model in the mouse 
auditory system. The left illustration shows the classical two streams being fed into A1 and 
A2. These streams correspond to lemniscal and non-lemniscal pathways. The right 
illustration shows the new scheme revealed in the current study, in which the parallel 
lemniscal inputs feed into A1 and A2 in mice. Three points have not been clarified; whether 
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compartment; DCIC, dorsal cortex of IC.   
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Discussion 

 

Mouse A2 is a higher-order auditory field, but a lemniscal region 

In the classical view, the auditory cortex is composed of the core and belt regions (Kaas and 

Hackett, 2000). By definition, the core comprises the primary regions such as A1/AAF that 

are centrally localized and have tonotopy that reflects thalamic input from MGv. The belt 

comprises non-tonotopic, higher-order regions that receive non-lemniscal thalamic inputs 

from MGd. Mouse A2 has been considered as part of the belt because electrophysiological 

mapping indicated no clear tonotopic arrangement (Stiebler et al., 1997). However, more 

recent studies have shown that mouse A2 does indeed have distinct tonotopy (Issa et al., 

2014; Kubota et al., 2008), and the current study shows that the tonotopy in A2 also reflects 

topological thalamic input derived from MGv (Figure 4). This suggests that mouse A2 may 

belong to the core rather than the belt. To date, we know of four tonotopic regions in the 

auditory cortex—AAF, A1 A2, and DM (Tsukano et al., 2015)—and one tonotopic region in 

the insular cortex—the insular auditory field (IAF) (Takemoto et al., 2014). All of these 

regions receive dense projections from MGv (Tsukano et al., 2017). Such multiple tonotopic 

fields have been found in rats as well (Storace et al., 2010, 2012), and therefore might be 

ubiquitous in the rodent auditory system. 

 The presence of multiple tonotopic regions that receive lemniscal input does not mean 

that the hierarchy between auditory regions does not exist. Although a study which 

stimulated sliced auditory cortex suggested bidirectional processing between A1 and A2 

(Covic and Sherman, 2011), several in vivo studies suggest that compared with A1, mouse 

A2 has higher-order properties. For example, latencies for tonal presentation are longer in 
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A2 than in A1 (Guo et al., 2012; Kubota et al., 2008). Additionally, the distribution of BFs 

for neighboring neurons in layer 2/3 (Issa et al., 2014) and layer 3b/4 (Figure 7) is more 

mixed in A2 than in A1. Furthermore, as shown here, A2 receives lemniscal thalamocortical 

projections that are more divergent than those sent to A1 (Figure 6). These findings imply 

that the nature of A2 is more complex than the primary regions (Joachimsthaler et al., 2014). 

Moreover, other studies have shown that auditory information propagates unidirectionally 

even between canonical cores (AAF and A1) (Kubota et al., 2008; Zhang et al., 2017), 

suggesting that the intracortical serial information processing along a hierarchical stream 

exists in the auditory cortex. Overall, A2 should still be considered a higher-order region in 

the mouse auditory cortex, and thus the mouse auditory cortex serves as a good model for 

investigating serial information processing in the mammalian auditory system. 

 

Caudal MGv is a thalamic origin of exogenous inputs to A2 

The auditory pathway is composed of two major and mutually exclusive canonical parallel 

streams: the lemniscal and non-lemniscal pathways. The lemniscal pathway conveys 

auditory information that retains the tonotopic structure that is generated in the ear, and 

enters AAF/A1 via MGv The non-lemniscal pathway, whose origin is not clear, possibly 

conveys multi-modal information to A2 via MGd. The current results show that more than 

half of thalamic projections to A2 originate in MGv, while less than a quarter of them 

originate in MGd (Figure 3). These data suggest that more information is fed into A2 from 

MGv than from MGd. Past studies in mice (Llano and Sherman, 2008) and cats (Lee and 

Winer, 2008) suggested that MGd was the origin of the thalamic inputs to A2. The present 

results confirm that A2 does receive non-lemniscal thalamic inputs from MGd, but clearly, 

the region does not have a single source of thalamic input from MGd. 

 The new scheme of thalamic inputs to A2 found in the present study is compatible with 
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serial information transfer to A2 through the auditory cortical hierarchy. Generally, sensory 

information transfer to secondary fields is thought to be realized by corticocortical 

connections. Direct projections from A1 to A2 have been found in mice (Covic and Sherman, 

2011) and cats (Lee and Winer, 2008), which are similar to those between primary and 

secondary fields in the visual (Glickfeld et al., 2013) and somatosensory (Chen et al., 2013) 

systems. Additionally, auditory information might be conveyed from A1 to A2 indirectly 

through corticothalamocortical loops, which compose A1-MGd-A2 projections (Lee, 2015). 

The latter possibility is supported by the presence of projections from A1 to MGd and from 

MGd to A2 in cats (Huang and Winer, 2000; Winer et al., 1999) and mice (Llano and 

Sherman, 2008). Our results also confirmed the MGd to A2 pathway in mice (Figure S1). 

Our current results identified a third and previously unknown pathway that conveys a large 

amount of tonal information directly from MGv to A2 without passing through A1. Such 

parallel pathways from the primary thalamus to higher-order auditory fields have been found 

in rats (Storace et al., 2011; Shiramatsu et al., 2016), where cortical regional properties 

inherit properties of terminating thalamocortical axons (Storace et al., 2012). Integration of 

these three types of input in A2 is thought to be critical for realizing higher-order auditory 

function. 

 The compartmentalization of rodent MGv has been verified by recent studies as well as 

the current one. In cats, the lemniscal thalamocortical streams that connect MGv and 

auditory cortex are parallel because few MGv neurons project to both AAF and A1, even 

though the two neuronal groups projecting to AAF and A1 are not spatially segregated (Lee 

et al., 2004; Lee and Sherman, 2010). Recent studies have suggested that mice have much 

clearer localization and compartmentalization of neuronal groups within MGv that are based 

on cortical target. Neurons projecting to DM, AAF, or A1 are localized in the rostral, 

medio-medial, and medio-lateral compartments of MGv, all of which have frequency-related 
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topography (Horie et al., 2013; Tsukano et al., 2015, 2017a, 2017b). IAF in the insular cortex 

also receives topological projections from the ventro-medial part of middle MGv (Takemoto 

et al., 2014). Finally, the current work revealed that A2 receives topological projections from 

neurons in the caudal part of MGv. These facts suggest that the five topological 

thalamocortical pathways convey some specific sound information whose cortical target is 

selected by gating in MGv (Blundon and Zakharenko, 2013). 

 Identifying the thalamic origins of A2 makes homologizing regions between animals 

easier. In mice, A2 sits the most ventrally in the auditory cortex (Figure 1), its neurons have 

the longest response latency (Guo et al., 2012; Kubota et al., 2008), and MGv neurons 

projecting to A2 are localized caudally (Figure 3). A similar fine-grained map and 

thalamocortical connections have been shown in rats (Storace et al., 2010; Polley et al., 

2007). In rats, the suprarhinal auditory field (SRAF) is equivalent to mouse A2, being the 

most ventral tonotopic region with long response latency, and thalamic neurons projecting to 

SRAF are localized caudally in MGv (Storace et al., 2012). These common features between 

mouse A2 and rat SRAF indicate that they are homologous. Considering the presence of 

parallel thalamocortical inputs in cats, a common processing principle for mammalian 

audition might involve neuronal computations that integrate distinct thalamocortical and 

corticocortical inputs. 

 

Thalamocortical projection-dependent mechanisms for differentiating frequency 

organization in the auditory system 

Two-photon imaging studies indicate that increased heterogeneity in BF distribution and 

broader tuning curves follow along the hierarchical streams in the auditory cortex (Issa et al., 

2014; Winkowski and Kanold, 2013). Increased tonotopic heterogeneity can be explained by 

the large divergence we found in projections from MGv to A2, which could lead to the 
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recently found heterogeneous BF distribution in presynaptic thalamocortical buttons 

(Vasquez-Lopez et al., 2017). The consistency between the large MGv-A2 divergence and 

the wide tuning curves in A2 can be explained by the fact that tuning curves in the auditory 

cortex are generally determined by thalamic inputs over intracortical circuits (Liu et al., 

2007). Additionally, the relatively ordered tonotopy in the thalamocortical input layer of A1 

can be explained by the small divergence in MGv-A1 projections. Overall, the current results 

demonstrate the presence of a complexity generator in inputs to A2, which exemplifies the 

concept of thalamocortical transformation of functional organization due to divergence in 

thalamocortical projections (Imaizumi and Lee, 2014). Moreover, A2 receives about twice as 

many thalamic projections from MGd as does A1 (Figure 3A) (Takemoto et al., 2014), and 

they synapse in the same layer that receives input from MGv (Llano and Sherman, 2008). 

MGd neurons exhibit complex response patterns such as bursting in response to tones (He 

and Hu, 2002) and broad bandwidth (Calford, 1983), therefore summation of divergent 

inputs from MGv and inputs with complex responses from MGd likely leads to more 

complex output from neurons in thalamocortical recipient layer of A2. Again, transformation 

of the local functional organization according to the hierarchy is not spontaneous but can be 

realized by an anatomical mechanism in the thalamocortical ascending pathways. Such a 

structure-based, complexity generator might be the foundation for realizing higher-order 

functions in A2 beyond tonotopy such as recognizing biological values of a given sound 

(Geissler et al., 2016). 

 

 

Materials and methods 

 

Animals 
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This study was conducted in accordance with the approved protocols and guidelines of the 

Committee for Animal Care in Niigata University. We used 6–7-week old male C57BL/6N 

mice (Charles River Japan, Kanagawa, Japan). Mice were housed in cages under a 12 hours 

light/dark cycle with ad libitum access to food pellets and water. 

 

Flavoprotein fluorescence imaging 

Flavoprotein fluorescence imaging was performed according to methods in our previous 

studies (Horie et al., 2013; Tsukano et al., 2015). Mice were anesthetized with urethane (1.65 

g/kg, i.p.) and rectal temperature was kept at ~37.0 °C. After subcutaneous injection of 

bupivacaine, the skin and temporal muscle were removed. A piece of metal was attached to 

the skull with dental resin, and the head was fixed by screwing the metal piece onto a 

manipulator. Unless otherwise noticed, a ~3 × 3-mm craniotomy was performed over the 

right auditory cortex. For transcranial imaging (Figure 1), the skull over the right auditory 

cortex was intact and kept transparent using liquid paraffin. Cortical images (128 × 168 

pixels after binning) of endogenous green fluorescence (λ = 500–550 nm) in blue light 

(λ = 470–490 nm) were recorded at 9 Hz using a cooled charge-coupled device (CCD) 

camera system (AQUACOSMOS with ORCA-R2 camera; Hamamatsu Photonics, Shizuoka, 

Japan) that was attached to an epifluorescence microscope (M651; Leica, Wetzlar, Germany). 

Images were averaged over 20 trials. Fluorescence responses were normalized as ∆F/F0, 

where F0 represents the average of five images (~500 ms) before stimulus onset. 

 

Neural tracer injections 

We used Fast Blue (Funakoshi, Tokyo, Japan), Alexa Fluor-488, and Alexa Fluor-555 

conjugated CTB (Invitrogen, Thermo Fisher Scientific, Boston, MA) as a retrograde neural 

tracer. We performed triple injections of Fast Blue, CTB-488, and CTB-555, or dual 
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injections of CTB-488 and CTB-555. Before injection, precise locations of auditory regions 

were identified using flavoprotein fluorescence imaging. A glass pipette (tip: 20–30 μm) 

filled with a tracer was inserted ~400 µm down into an identified area. One of the tracers 

was then injected iontophoretically with a 5-μA anodal currents (5 s on, 5 s off) having ~100 

pulses. After the injection, the glass pipette was slowly withdrawn and the skin was sutured. 

Mice were placed in a warm place for recovery, and after awaking they were reared in their 

home cages. 

 

Tracer observation 

Three days after injection, mice were anesthetized with an overdose of pentobarbital (0.3 

g/kg), and cardiac perfusion was performed using 4% paraformaldehyde. After sequential 

immersion into a 20% and 30% sucrose solution, coronal or horizontal brain slices were 

prepared at 40-µm intervals according to our previous studies (Horie et al., 2013, 2015). 

Every fourth slice was mounted on glass slides and cover-slipped using Fluoromount 

(Cosmo Bio, Tokyo, Japan). Sections were observed using a light microscope (Eclipse Ni, 

Nikon, Tokyo, Japan) and a CCD camera (DP-80; Olympus, Tokyo, Japan). After observing 

fluorescent tracers, sections were Nissl-stained as described in Horie et al. 2013, and 

cover-slipped using Bioleit (Okenshoji, Tokyo, Japan). 

 

Suction injury 

After identifying the locations of auditory cortices using optical imaging, we lesioned the 

auditory cortex by slowly sucking all layers using a glass pipette (tip diameter: ~70 µm) 

connected to a vacuum pump. Suction was stopped at the depth where the parenchyma 

turned whitish in color, which indicated the white matter beneath the auditory cortex had 

been reached. After completing the suction, the hole was covered with 2% agarose (1-B, 
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Sigma-Aldrich, MO) and a thin cover glass (thickness <0.15 mm, Matsunami, Osaka, Japan), 

which was fixed to the skull with dental cement (Sunmedical, Siga, Japan). 

 

Partition of the MGB subdivisions 

The borders of the medial geniculate body (MGB) subdivisions were drawn according to the 

mouse brain atlas (Paxinos and Franklin, 2012) and SMI-32 immunolabeling patterns, which 

recognize a non-phosphorylated epitope on the 168- and 200-kDa subunits of neurofilament 

proteins (Horie et al., 2013, 2015; LeDoux et al., 1985, 1987; Honma et al., 2013). SMI-32 

immunolabeling was performed in adjacent sections. Sections were rinsed and incubated in 

PBST containing 3% hydrogen peroxide. After rinsing in 20 mM PBS, the sections were 

incubated overnight at room temperature with the monoclonal antibody SMI-32 (1:2000, 

Covance Research Products, Berkeley, CA), diluted with 20 mM PBS containing 0.5% skim 

milk. Sections were then incubated with horseradish peroxidase (HRP)-labeled anti-mouse 

IgG (1:100, MBL, Nagoya, Japan) at room temperature for 2 h. The sections were then 

rinsed in 20 mM PBS, and the immunoreactions was visualized in a Tris-HCl buffer 

containing 0.05% diaminobenzidine tetrahydrochloride and 0.003% hydrogen peroxide for 

4–5 minutes. In some slices, we conducted calbindin immunolabeling because MGd exhibits 

strong immunoreactivity to calbindin (Takemoto et al., 2014; Lu et al., 2009). We used 

anti-calbindin primary antibody (Abcam, Cambridge, UK) and HRP-labeled anti-Rabbit IgG 

as a secondary antibody (Invitrogen Life Technologies, Boston, MA). The remaining 

protocols were the same as those used to visualize SMI-32.  

 

Separation Index 

To quantify and compare the degree of spatial overlap between two neuronal populations, we 

used the absolute value of Cliff’s delta (Cliff, 1993) as a Separation Index (SI). Cliff’s delta 
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is a non-parametric metric of an effect size described in the following formula, 

𝛿 =  
#(𝑥1 > 𝑥2) −  #(𝑥1 < 𝑥2)  

𝑛1𝑛2
 

where 𝑛𝑖 is the size of group 𝑖 (𝑖 = 1, 2) and #�𝑥𝑖 > 𝑥𝑗� is an operator that counts the 

number of all possible combinations such that an item of group 1 is greater than that of 

group 2. It follows that Cliff’s delta ranges from -1 to 1 and the three extreme conditions are 

𝛿 =  �
+1   𝑖𝑓 𝐺𝑟𝑜𝑢𝑝1𝑖 > 𝐺𝑟𝑜𝑢𝑝2𝑗 ,∀𝑖 ,∀𝑗
0      𝑖𝑓 𝐺𝑟𝑜𝑢𝑝1 = 𝐺𝑟𝑜𝑢𝑝2               
−1   𝑖𝑓 𝐺𝑟𝑜𝑢𝑝1𝑖 < 𝐺𝑟𝑜𝑢𝑝2𝑗 ,∀𝑖 ,∀𝑗

� 

Because we did not need to discriminate the direction of difference in our analysis, we 

defined the absolute value of Cliff’s delta as SI. The value ranges from 0 to 1, with 0 

indicating that the locations of the two groups completely overlap and 1 indicating that they 

are completely separate without any overlap. 

 

In vivo two-photon calcium imaging 

After inducing anesthesia with urethane (1.9 g/kg, i.p.) and craniotomy of the right auditory 

cortex, the locations of A1 and A2 were identified using flavoprotein fluorescence imaging. 

Calcium imaging was performed using a two-photon microscope (TCS SP5 MP, Leica 

Microsystems, Wetzlar, Germany) with a hybrid detector (HyD, Leica Microsystems) and a 

Ti-Sapphire mode-locked femtosecond laser (Chameleon Vision, Coherent, Santa Clara, CA). 

Images were obtained via a ×20 water-immersion objective lens (numerical aperture 1.0, 

HCX PL APO; Leica Microsystems). We used Cal-520 as a calcium indicator because it 

exhibits high S/N ratio and its event-related fluorescence change is strongly correlated with 

spike number (Li et al., 2017; Tada et al., 2014). Cal-520 AM (Invitrogen, Thermo Fisher 

Scientific) was dissolved in 10% (w/v) Pluronic F-127 in DMSO and diluted with Ringer 

solution containing sulforhodamine 101 (SR-101, Invitrogen, Thermo Fisher Scientific). The 
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Cal-520 solution was pressure injected (5–20 kPa) for 5–10 min into layer 3b/4 using glass 

pipettes (tip diameter: 2–4 µm). Astrocytes were distinguished from neurons using SR-101. 

After injection, the pipette was withdrawn and the craniotomy was covered with 2% agarose 

(1-B, Sigma-Aldrich) and a thin cover glass (thickness <0.15 mm, Matsunami), which was 

fixed to the skull with dental cement (Sunmedical). Excitation wavelength for Cal-520 was 

900 nm and that for SR-101 was 940–950 nm. Cal-520 fluorescence was observed between 

500 and 550 nm. Images (256 × 256 pixels) were recorded at 3.7 Hz in a 246 × 246-µm 

region. Rectal temperature of mice was kept at ~37.0 °C. 

 Data were realigned using AQUACOSMOS and custom-written MATLAB code 

(Mathworks, St. Louise, MO). Data from 5–6 repeated trials of the same stimulation were 

averaged. Size-matched ROIs were chosen. Data were calculated as ΔF/F0, where ΔF = F − 

F0, and F0 (the baseline intensity) was obtained by averaging the intensity values during the 

pre-stimulus period (about 3 s) across the repeated trials. The response of each neuron was 

evaluated in poststimulus observation windows (about 5 s). The BF of a neuron was defined 

as the frequency to which the neuron had the greatest response. We examined the correlation 

between BF and location and computed a regression line. The direction of frequency 

organization was defined so as to make the correlation coefficient the largest. Bandwidth of 

the tuning curves was defined as the logarithmic ratio of minimum and maximum 

frequencies that resulted in a response >75% of the peak amplitude. 

 

Auditory stimuli 

Tones were generated by a computer using a custom-written LabVIEW code (National 

Instruments, Austin, TX). The sampling rate was 500 kHz. Sounds were low-pass filtered at 

150 kHz (3624, NF, Kanagawa, Japan). Pure tones at frequencies of 5–80 kHz were 

amplitude modulated by a 20-Hz sine wave. A speaker for 5–40-kHz (SRS-3050A, Stax, 
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Saitama, Japan) or 50–80-kHz (ES105A, Murata, Kyoto, Japan) tones was set 10 cm in front 

of the mice. Sound intensity was calibrated using a microphone (Type 4135 and Type 2669, 

Brüel & Kjær, Nærum, Denmark) and a sound-level meter (Type 2610, Brüel & Kjær). The 

sound intensity was set to 60 dB SPL, and the duration was 500 ms with a rise/fall time of 10 

ms. The desired sound spectrum was confirmed using a digital spectrum analyzer (R9211A, 

Advantest, Tokyo, Japan) or a custom-written LabVIEW program. 

 

Statistics 

Statistical analyses were conducted using MATLAB programs, and SPSS (IBM Corp, 

Armonk, NY) if necessary. The Mann–Whitney U-test or the Wilcoxon signed-rank test was 

used to evaluate differences between two paired or unpaired two groups, respectively. The χ2 

test was used to evaluate differences in proportions of neurons. Correlation was evaluated 

using Spearman’s test. The Kormogorv–Smirnov test was used to evaluate the differences 

between two cumulative distributions. When multiple comparisons were needed, we used 

Bonferroni correction. We evaluated the differences between two correlation coefficients 

according to Howell, 2012. Briefly, two r values were z-transformed by the function 

𝑧 = 𝑎𝑡𝑎𝑛ℎ(𝑟) and the Z test statistic was calculated as 

𝑍 =  �� 
𝑧1 − 𝑧2

� 1
𝑛1 − 3 + 1

𝑛2 − 3

 �� 

P-values were obtained by the formula, 

𝑝 =  2 × �1 − 𝐹(𝑍)�, 

where 𝐹(𝑍) is the normal cumulative distribution function of 𝑍.  

 If MATLAB provided p-values of zero in any statistical analysis, we replaced them 

with p < 10-35, because null hypotheses cannot be rejected with a probability of 100%. 
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