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Abstract

We establish a biophysical model for the dynamics of lipid vesicles exposed to surfactants. The solubilization of the
lipid membrane due to the insertion of surfactant molecules induces a reduction of membrane surface area at almost
constant vesicle volume. This results in a rate-dependent increase of membrane tension and leads to the opening
of a micron-sized pore. We show that solubilization kinetics due to surfactants can determine the regimes of pore
dynamics: either the pores open and reseal within a second (short-lived pore), or the pore stays open up to a few
minutes (long-lived pore). First, we validate our model with previously published experimental measurements of pore
dynamics. Then, we investigate how the solubilization kinetics and membrane properties affect the dynamics of the
pore and construct a phase diagram for short and long-lived pores. Finally, we examine the dynamics of sequential pore
openings and show that cyclic short-lived pores occur at a period inversely proportional to the solubilization rate. By
deriving a theoretical expression for the cycle period, we provide an analytic tool to measure the solubilization rate of
lipid vesicles by surfactants. Our findings shed light on some fundamental biophysical mechanisms that allow simple
cell-like structures to sustain their integrity against environmental stresses, and have the potential to aid the design of
vesicle-based drug delivery systems.

Keywords: Lipid vesicles, Surfactants, Out-of-equilibrium lipid membranes, Vesicle dynamics, Pore dynamics,
Solubilization kinetics

1. Introduction

Surfactants, and more generally amphiphatic molecules, play important roles in many biological processes. For
instance, lung surfactants are required for the surface area change of alveoli during breathing [7, 51], while bile salts
facilitate fat absorption and interact with the bacteria flora in the small intestine and colon [45]. Biological surfac-
tants, such as saponins secreted by plants, serve as defense mechanisms because of their ability to permeabilize lipid
membranes and complex cholesterol [14, 46]. Certain microorganisms produce surfactants to control the biochemical
and biophysical properties of their surface, for example, by regulating the availability of water-insoluble molecules, or
by modulating their adhesion properties [46]. Antimicrobial peptides are amphiphatic molecules, whose actions are
often compared to surfactants due to their propensity to insert into and permeabilize lipid bilayers [22, 30], although
more specific mechanisms seem to be at play, such as the generation of negative Gaussian curvature [50]. Artificial and
natural surfactants are also largely used in medical and biotechnological applications for their antimicrobial properties
(see [19] and references within), for isolation of membrane proteins [31], and as permeabilizing agents to facilitate
transport of drugs or DNA across cell membranes [10, 42]. Thus, the interaction of surfactant molecules with lipid
bilayers is central to many processes across the plant and animal kingdom.

One of the fundamental features of surfactant-membrane interactions is that the surfactants can insert themselves
within the lipid bilayer and alter the surface area of the membrane through lipid solubilization (Fig. 1(a)). The classical
model describing the behavior of the surfactant-lipid systems as a function of the surfacant’s relative concentration is the
three-stage model proposed by Helenius and Simons [21]: first, at low surfactant concentration, the surfactant molecules
partition into the membrane; second, above a critical surfactant concentration, membrane solubilization occurs and
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Figure 1: Lipid vesicles exposed to surfactant exhibit two distinct behaviors – either a succession of short-lived pores, or one long-lived
pore followed by a series of short ones. (a) Schematic representation of the solubilization process of lipid vesicles by surfactants leading
to either a succession of short-lived pores or one long-lived pore. (b) Microscopy images of DOPC vesicles exposed to surfactant TX-100
exhibiting a sequence of short-lived pores (top), and one long-lived pore (bottom). Scale bars are 10µm. (Adapted from [16]). (c)
Schematic representation of the area reduction mechanism leading to pore opening. Initially, the membrane is in low tension (σ) and
the vesicle assumes a spherical shape of radius R (left). Upon loss of surface area, the shrinking of the vesicle to its resting radius R0

is frustrated by the encapsulated solution volume, leading to large membrane tension (middle). Once the rupture tension is reached, a
circular pore of radius r opens, releasing the membrane tension (right).

mixed micelles coexist with the lipid membrane, and finally, above a second critical surfactant concentration, only
micelles remain. It is important to note that this description is at equilibrium, and that in a lot of experimental settings,
the surfactant concentration is large enough to induce micelle formation before the first stage reaches equilibrium [32],
highlighting the need for out-of-equilibrium studies on membrane solubilization kinetics.

In this work, we focus on the effect of solubilization kinetics on the dynamic evolution of lipid vesicle morphology.
Nomura et al. [38] investigated the time evolution of lipid vesicles exposed to various surfactants and observed several
dynamic outcomes depending on the surfactant type and concentration: continuous shrinkage, cyclic shrinkage, minute-
long pore opening, or inside-out inversions. More recently, this list of outcomes was extended by Hamada et al. [15],
and explained using a conceptual model for the different vesicle dynamics. Interestingly, the main observed outcomes
were that spherical vesicles decrease in size and exhibit cyclic pore openings, with the first pore that was either short-
lived (∼ 1 second) or long-lived (∼ 1 minute) [15, 16] (see Fig. 1(a) and (b)). Although it has been observed that
surfactant concentration and vesicle size play a role in determining if the vesicle will exhibit a short or long-lived
first pore, a quantitative understanding of the membrane dynamics in the presence of surfactant is currently missing
[16, 25]. In particular, the influence of physical factors such as pore line tension, membrane stretch modulus, and
surfactant solubilization kinetics have not yet been fully investigated.

Here, we propose a quantitative mathematical model for the dynamics of a lipid vesicle that undergoes membrane
area reduction due to exposure to a surfactant. We account for membrane solubilization by a rate of lipid removal
through micelle formation. The resulting membrane area reduction produces an increase in intravesicular pressure,
leading to the opening of a pore that is micrometers in size (Fig. 1). This model captures both types of pore dynamics
– short-lived pores or a long-lived pore followed by short-lived ones. After validating our model by comparing its
predictions with published experimental data, we conduct a systematic exploration of the influence of the physical
parameters on the pore and vesicle dynamics. We show that the solubilization kinetics and the pore line tension are the
dominant parameters controlling the dynamics of the pore. Finally, we demonstrate that the cycle period depends on
the solubilization rate and derive an analytical expression that allows us to obtain this rate from experimental data.

2. Model development

2.1. Model formulation
First, we propose a governing equation that describes the evolution of the membrane area as a function of the

surfactant parameters. We assume that the primary phenomenon driving the vesicle area reduction is the production of
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mixed micelles due to the surfactant inserted in the membrane. This hypothesis is motivated by the fact that non-ionic
surfactants have very fast insertion and flip-flop rates (e.g. ∼100 ms for Triton-X 100 [2, 20, 55]) compared to the vesicle
dynamics (∼ minute [15, 16]), implying that surfactant saturation in the membrane occurs almost instantaneously.
Consequently, we assume that the solubilization rate k is determined by the micelle formation kinetics. Moreover, the
membrane properties and the solubilization rate are fixed for a given total surfactant concentration. It follows that the
time evolution of the reference, unstressed, membrane area A0 can be written as

dA0

dt
= −kA0. (1)

We consider the total lipid membrane, with surface area Am, to be elastic and define the membrane tension as

σ = κε = κ
Am −A0

A0
, (2)

where κ is the area stretch modulus and ε is the membrane strain. While the reference membrane area A0 decreases
due to surfactant (Eq. (1)), the actual membrane area Am is constrained by the volume enclosed in the vesicle (see
Fig. 1(c)). This results in an increase in strain ε and membrane tension σ, until the bilayer eventually ruptures.

The membrane area, Am, is constrained by its enclosed volume V , whose evolution is a function of the solvent
fluxes out of the vesicle. In the absence of osmotic differential, the change of vesicle volume is the sum of the flux
of solvent out the vesicle through the membrane, and through the pore dV/dt = Jm + Jp. First, the flux of solvent
permeating through the surface area of the lipid membrane Am is induced by the Laplace pressure due to membrane
tension ∆p(σ), such that Jm = −AmP∆p(σ); here P is a coefficient characterizing the permeability of the membrane to
water defined as P = Psνs/(kBTNA), where Ps is the permeability of the membrane to solute, νs is the molar volume
of the solvent, and kB , T , and NA the Boltzmann constant, the absolute temperature of the system, and the Avogadro’s
number respectively. Second, the flux of solvent through the surface area of the pore Ap is driven by a leak-out velocity
v(σ) induced by the membrane tension, leading to Jp = −Apv(σ). Therefore we can write the vesicle volume dynamics
as

dV

dt
= −[AmP∆p(σ) +Apv(σ)]. (3)

Finally, the dynamics of the pore circumference Lp can be modeled as an over-damped system as

ζ
dLp

dt
= F (σ, Lp), (4)

where ζ is the membrane drag coefficient, and F (σ, Lp) is a conservative force arising from the elastic energy and pore
energy. The membrane drag has two contributions ζ = α1ηm + α2ηs, one from membrane dissipation, proportional to
the lipid bilayer viscosity ηm, and one from the membrane friction with the solvent, proportional to the solution viscosity
ηs. Here α1 and α2 are geometric coefficients, of length dimensions, which we will specify later.

Equations (1), (3) and (4) are the three governing equations of the system. However, we have five geometric
variables (V , A0, Am, Ap, Lp). In order to reduce the number of variables, we assume the vesicle to be a sphere of
radius R, with a circular pore of radius r (see Fig. 1(c)). Additionally, we define the radius of the reference area as R0.
It follows that

V = 4/3πR3, A0 = 4πR2
0, Am = 4πR2 − πr2,

Ap = πr2, and Lp = 2πr.
(5)

Furthermore, the Laplace pressure in a spherical vesicle is ∆p(σ) = 2σ/R, and the flow through a circular pore at low
Reynolds number is v(σ) = ∆p(σ)r/(3πηs) = 2σr/(3πηsR) [17].

We can now write the conservative force as F (σ, r) = −∂V (σ, r)/∂r, where the membrane potential V (σ, r) =
Vs + Vp is the sum of the strain energy Vs = κ(Am − A0)2/(2A0) and the pore energy Vp = 2πrγ, where γ is the
line tension of the pore. Noting that σ = ∂Vs/∂A, the conservative force becomes F (σ, r) = 2πσr − 2πγ. Finally, the
geometric drag coefficient for a circular pore in a membrane of thickness h are [3, 47, 48] α1 = h and α2 = 2πr.

With these definitions, the three equations governing the vesicle dynamics take the form

2
dR0

dt
= −kR0, (6)

4πR2 dR

dt
= −2σ

R

(
AmP +

Apr

3πηs

)
, (7)

and
(ηmh+ 2πηsr)

dr

dt
= σr − γ. (8)
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Finally, we define the pore nucleation mechanism. Following the classical nucleation theory, the energetic cost to
open a pore of radius r in a tense membrane can be computed based on the membrane potential V (σ, r) − V (σ, 0).
The energetic cost to open a pore in a tense membrane presents a energy barrier at a critical pore radius rc(σ) that
depends on the membrane tension [8, 24, 29]. The higher the membrane tension, the lower the critical pore radius
and the corresponding energy barrier. It was shown that the stochastic nature of membrane thermal fluctuations helps
overcome the energy barrier for the formation of a pore in a load rate-dependent manner [8]: a membrane stretched
faster breaks at a higher tension on average [4, 5, 8, 11, 13]. Such a consideration is important if one wishes to capture
the long time dynamics of vesicle undergoing multiple swell burst cycles [8, 53]. In the present study, however, we focus
on the pore dynamics of the few first pores, where the rate dependence of the rupture tension only weakly influences
the system’s behavior. Therefore, for simplicity, we will assume here that pore nucleation occurs at a constant critical
tension. Accordingly, we prescribe a critical strain ε∗, at which an initial pore large enough to overcome the nucleation
barrier r0 = γ/(κε∗) is artificially created.

2.2. Dimensionless system
We begin by defining the following dimensionless variables

R̄ ≡ R/Ri, R̄0 ≡ R0/Ri, r̄ ≡ r/Ri, (9)

where Ri is the initial GUV radius. We further define the dimensionless time with respect with the characteristic time
associated with the pore kinetics [6]

t̄ ≡ t/τ, with τ ≡ ηmh/κ. (10)

Introducing the above non-dimensional quantities in Eqs. (6), (7) and (8), the system takes the dimensionless form

dR̄0

dt̄
= −ΘR̄0, (11)

Λ
dR̄

dt̄
= − ε

R̄3

[
Φ(4πR̄2 − πr̄2) + r̄3] , (12)

and (
1 +

Λ

3
r̄

)
dr̄

dt̄
= εr̄ − Γ. (13)

Here, the non-dimensional parameters are defined as

Λ ≡ 6πηsRi

ηmh
=

effect of solution viscosity
effect of membrane viscosity

(14)

Φ ≡ 3ηs
Ri

Psνs
kBTNA

=
flux through the membrane

flux due to leakout
(15)

Γ ≡ γ

κRi
=

pore line tension
membrane surface tension

(16)

Θ ≡ ηmh

κ

k

2
=

pore time scale
solubilization time scale

(17)

Note that the analytic solution of Eq. (11) is
R̄0(t̄) = e−Θt̄. (18)

Therefore we only need to solve Eqs. (12) and (13) numerically with Eq. (18) as an input, and the pore nucleation
mechanism described in Section 2.1.

2.3. Numerical implementation
Numerical computations were carried using a custom code in MATLAB R©(Mathworks, Natick, MA) based on the

code developed in[8]. The dimensionless constitutive equations (12) and (13), coupled to Eq. (18), were solved using
the Euler method, with a non-dimensional time step of 1 (smaller time steps did not improve the accuracy of the results
significantly). All parameters values were as given in the figures, with initial dimensionless variables of R̄(t̄ = 0) = 1
and r̄(t̄ = 0) = 0. The pore nucleation mechanism was as follows: if the membrane area strain was greater or equal to
the critical strain and no pore was open (ε ≥ ε∗ ∧ r̄ = 0), a pore of radius r̄nuc = Γ/ε∗ was nucleated. MATLAB R© codes
are available upon request to the authors.
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Figure 2: Model predicts two regimes of pore dynamics in vesicles exposed to surfactants, in agreement with experimental obser-
vations: (a) Short-lived pores induced by low experimental concentration of surfactant, equivalent to slow solubilization kinetics in
simulations (k = 1.4 × 10−2 s−1). (b) Long-lived pore observed at high experimental concentration of surfactant, corresponding to
large solubilization kinetics in simulation (k = 4 × 10−2 s−1). Pore radii normalized by the vesicle reference radius as a function of
time. Solid lines are model predictions, grey circles are experimental measurements of DOPC vesicles subject to TX-100 surfactant,
corresponding to Fig. 1(b). Experimental data are adapted from [16], with the initial time adjusted to match the first pore opening.
Model parameters for this figure are reported in Table 1.

3. Results

3.1. Model validation of short and long-lived pore dynamics
We first evaluate the ability of this model to reproduce the two regimes of short and long-lived pore dynamics in

lipid vesicles exposed to surfactant. To do so, we use model parameters for POPC lipid membranes [8], and adjust the
value of three parameters to account for the presence of surfactant: the solubilization rate k [15, 16, 38], the pore line
tension γ [26, 38, 44], and the stretch modulus κ.

To adjust the value of these parameters, we choose the pore dynamics reported in the experimental study by Hamada
et al. [16], where DOPC vesicles were exposed to various concentrations of Triton X-100 (TX-100) surfactant. We solve
the two coupled equations for the vesicle radius (Eq. (12)) and pore radius (Eq. (13)) with the expression for the refer-
ence vesicle radius (Eq. (18)). Numerical results for pore radii of short and long-lived pores are presented in Fig. 2 for
the parameters shown in Table 1. The model predictions are in good agreement with the experimental measurements
from Hamada et al. [16]. Our results confirm that short-lived pores are obtained at low solubilization kinetics, corre-
sponding to small surfactant concentration, while long-lived pores occur at fast solubilization rates, equivalent to high
surfactant concentrations.

The semi-quantitative agreement between our model results and the experimental data confirms that: (i) the solubi-
lization rate k is larger with increased concentration of surfactant [15, 16, 38]; (ii) the pore line tension γ is decreased
from a typical value of 15 pN in the absence of surfactant [43], to 1.2 pN and 0.3 pN for low and high concentrations
of surfactant respectively, in agreement with experimental measurements of line tension in DOPC lipid vesicles exposed
to Tween 20 surfactant [26, 44]; (iii) the value of the stretch modulus κ = 0.2×10−4 N/m is one order of magnitude
lower than the one reported for bursting vesicles in the absence of surfactant [8, 53]. Although this value is significantly
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Physical parameters
Ri 10×10−6 m
κ 2×10−4 N/m
γ SLP: 1.2×10−12 N ; LLP: 3×10−13 N
k SLP: 1.4×10−2 1/s ; LLP: 4×10−2 1/s
h 7×10−9 m
ηm 5 Pa s
ηs 10−3 Pa s
ε∗ 0.1
Ps 2 ×10−5 m/s
νs 18.04×10−6 m3/mol
kB 1.38×10−23 J/K
NA 6.023×1023 1/mol
T 294 K
Dimensionless parameters
Λ 5.39
Φ 4.43×10−11

Γ SLP: 6 ×10−4 ; LLP: 1.50×10−4

Θ SLP: 1.23×10−6 ; LLP: 3.50×10−6

Table 1: Values of the physical and corresponding dimensionless parameters used to compute the pore dynamics shown in Fig. 2. SLP:
Short-lived pore, LLP: Long-lived pore.

lower than the elastic stretch modulus of lipid membranes (∼ 0.2 N/m [12]), in this modeling approach κ should be
regarded as an effective stretch modulus that accounts for the elastic membrane response as well as the unfolding of
submicroscopic wrinkles produced by the sudden pore opening [8]. The value of this effective modulus has been re-
ported in the absence of surfactant to be 2×10−3 N/m in the case of pure POPC vesicles [8], and 6×10−3 N/m in the
case of POPC/SM/Ch ternary lipid mixture [53]. Here, our results suggest that the presence of surfactant lowers κ an
order of magnitude independently of the surfactant concentration.

For completeness, we also report the dynamics of the vesicle radius in short and long-lived pores regimes in
Figure S1, showing qualitative agreement with the stepwise and continuous shrinkage described in the literature
[15, 16, 38].

3.2. Influence of dimensionless parameters on the pore dynamics
Next, we aim to identify the relevant physical processes leading to a short or long-lived pore. Based on our simula-

tions of the pore dynamics, we asked how does the presence of surfactant affect (i) the pore life time, (ii) the maximum
pore radius, (iii) the observed (average) pore radius, and (iv) the pore closure dynamics. To answer these questions,
we defined four pore metrics represented in Fig. 3(a, b). The most intuitive metrics are the pore life time ∆t̄p, and
the maximum pore radius r̄max. Our preliminary results of pore dynamics suggest that the pore closure can typically be
divided into three distinct phases (Fig. 3(a, b)): (i) a short and fast quasi-linear decrease of radius, (ii) a slower and
possibly longer closure phase in the case of long-lived pores, and (ii) the final closure. Based on this observation, we
defined the observed radius r̄obs as the mean radius during phase (ii) of the pore closure. Finally, to characterize the pore
closure dynamics, we defined αs as the ratio between the slopes of the slow closing phase (ii) and fast closing phase (i)
(see Fig. 3(a, b)). All theses parameters were computed automatically following the algorithm given in Section S1 of
the Supplementary Material.

The most critical effects of surfactant on lipid membrane are the lost of surface area by solubilization, and the
lowering of the pore line tension. Therefore, we first study the effect of the dimensionless parameters Θ and Γ on the
pore dynamics. Based on the characteristic parameters from Fig. 2, we set Λ = 5.4, Φ = 4.4× 10−11, and choose three
values for Γ = 1.5 × 10−4, 4 × 10−4, and 6 × 10−4. The resulting pore life time, maximum pore radius, observed pore
radius, and slope ratio are shown in Fig. 3(c-e) for values of Θ ranging from 5×10−8 to 10−5. Short and long-lived pore
regimes are clearly identified from the pore lifetime: for small values of Θ corresponding to a slow solubilization rate,
the first pore to open has a short life time, while large values of Θ lead to long first pore life time (Fig. 3(c)). Surprisingly,
we observe a sharp transition between the two regimes of short and long-lived pores, as seen from a sudden increase
of about two orders of magnitude in pore life time. This transition from short to long-lived pore can also be seen from
the drop of observed pore radius (Fig. 3(d)) and slope difference (Fig. 3(e)). However, the maximum pore radius is
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Figure 3: Long-lived pores are facilitated by high solubilization rates and low values of Γ. (a, b) Definition of four metrics for short
(a) and long-lived pores (b): the pore life time ∆t̄p, the maximum pore radius r̄max, the observed pore radius r̄obs, and the slope
ratio αs between the slow phase and the fast closing phases (more details on the definitions of the metrics are given in the text and
in Section S1 of the Supplementary Material). (c-e) Influence of Θ and Γ on the pore life time (c), maximum and observed radii (d),
and slope ratio (e) for other parameters kept constant. Black arrows indicate decreasing values of Γ. Color arrows indicates the ranges
of Θ were the vesicle exhibit a short-lived pore (SLP), or a long-lived pore (LLP). The transition between short and long-lived pores is
abrupt, as seen from the discontinuity in the pore life time, observed radius, and slope ratio.

not affected by Θ nor Γ (Figs. 3(d) and S3). The value of the slope ratio αs is close to one in the short-lived pore
regime, and drops two order of magnitude in the long-lived pore regime (Fig. 3(e)). Then for increasing values of Θ,
the slope ratio progressively increases by one order of magnitude. Note that the plateau shown by αs at large Θ values
and Γ = 1.5× 10−4 corresponds to limitations in the fitting procedure to determine the slopes of the two closure phases
due to the extreme values of the model parameters (see Fig. S2 for the influence of Θ on the fitting performance of
various pore dynamics).

While the pore lifetimes of short-lived pores are weakly dependent on Θ, all pore lifetimes are longer for smaller
values of Γ, or equivalently, for smaller line tensions. Importantly, decreasing Γ induces long-lived pores to occur for
slower solubilization rates, as seen in the shift of the transition from short to long-lived pores toward lower values of Θ
(see also Fig. S3 for the influence of Γ on the pore metrics).

Next, we study how Λ, the ratio between the viscous dissipation of the solution and membrane, affects the pore
dynamics. Fig. 4 shows the four metrics of the first pore for Λ = 1, 5.4 and 10 as a function of Θ, with other parameters
fixed to Γ = 6× 10−4 and Φ = 4.4× 10−11. We observe that increasing the value of Λ shifts the value of Θ at which the
pore transitions from short to long-lived pores. Furthermore, the higher the value of Λ, the longer is the pore lifetime.
This effect should be considered with caution as the membrane viscosity appear both in Λ and the characteristic time
τ . Finally, and in contrast to the effect of Γ, the maximum pore radius increases with Λ, to approach a maximum value
around r̄max = 0.55 (see also Fig. S4 for the influence of Γ on the pore metrics).
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Figure 4: Higher values of Λ lead to long-lived pores and smaller maximum pore radii. Influence of Θ and Λ on the pore life time (a),
maximum and observed radii (b), and slope ratio (c) for other parameters kept constant. Black arrows indicate increasing values of Λ.
Color arrows indicates the ranges of Θ were the vesicle exhibit a short-lived pore (SLP), or a long-lived pore (LLP).

Finally, we investigate the influence of Φ on the pore dynamics. We find that the overall vesicle and pore dynamics
are not affected by values of Φ below 10−6. Larger values correspond to unphysical membrane permeability values
(results not shown). Characteristic values of Φ are at least six orders of magnitude smaller than the other dimensionless
parameters, suggesting that solvent permeation through the membrane has a negligible effect on the dynamics of lipid
vesicles exposed to surfactants.

3.3. Phase diagram of short and long-lived pore dynamics
The results above emphasize that the three critical dimensionless parameters determining the first pore dynamics

are Θ, Γ, and Λ. This motivates a systematic exploration of how the combinations of these parameters lead to short or
long-lived pores.

The results presented in Figures 3 and 4 suggest that the two most relevant metrics allowing to characterize short
and long-lived pores are the pore lifetime ∆t̄p and the slope ratio αs. Therefore we investigate the values of these
characteristics for physical range of Θ, Γ, and Λ in terms of short or long-lived pore. Figure 5(a) shows isocontours of
the pore lifetime in the (Θ,Γ,Λ) parameter space. These results confirm our previous observations that the pore life
time is either above 105 for long-live pores, or below 104 for short-lived pores, with a sharp transition from one regime
to the other (very few values of ∆t̄p between 104 and 105). Longer pore lifetimes ∆t̄p ≥ 105 are obtained for large
values of Θ and Λ, and small values of Γ. The transition from short to long-lived pore corresponds to a plane in the
logarithmic parameter space. This can be further seen in Figures 5(b-g) where the pore life time within the parameter
planes represented by dashed lines in Figure 5(a) are shown along with the isocontours. In addition, circular symbols
indicate that the slope ratio αs is above the value 0.1, characteristic of LLP, while triangular symbols indicate αs < 0.1.
For most values of the parameters investigated, the agreement between color scheme (pore life time) and symbol (slope
ratio above or below 0.1) suggests that the value of αs is a good indicator of the pore dynamic regime, and allows us to
discriminate between short and long-lived pore regimes. It should be noted that for high values of Θ, our methodology
measures α < 0.1 despite long pore lifetimes. This actually arises from the limitations of the fitting procedure. Examples
are presented in Fig. S2.

3.4. The cycle period between short-lived pores is an inverse function of the solubilization rate
Finally, we characterize how the solubilization kinetics influences the sequence of pore formation. We define the

dimensionless cycle period ∆t̄c = ∆tc/τ as the dimensionless time between two successive pore closings, starting at the
end of the first pore opening.

First, we approximate analytically the cycle periods based on Eqs. (12) and (11). The detailed derivation is presented
in Section S2 of the Supplementary Material, resulting in the following expression for the cycle period

∆t̄c =
ε∗

ε∗ + 1

1

2Θ
, (19)
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Figure 5: The transition between short and long-lived pores is a plane in the (Θ,Γ,Λ) parameter space. (a) Isocontours of the
pore lifetime in the (Θ,Γ,Λ) parameter space. (b-g) Pore lifetime are indicated by colors and isolines in different parameter planes
represented by dashed lines in panel (a). Symbol are triangles if αs is less than 0.1 or circles otherwise. The correspondence between
the change of symbol type and the color indicates that αs being less or greater than 0.1 is a good criteria for determining if the pore is
short or long-lived respectively.

where ε∗ is the observed lytic area strain [8]. Remarkably, the cycle period is independent of Γ and Λ. The cycle period
decreases with the solubilization kinetic parameter, in agrement with previously reported experimental observations
[16]. The analytic cycle period (Eq. (19)) is plotted in Fig. 6(a) assuming ε∗ = 0.1 [8], together with computed values
of ∆t̄c from numerical simulations with various parameters. The theoretical expression for the cycle period is in excellent
agreement with all numerical results, confirming the independence of ∆t̄c on Γ and Λ.
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Figure 6: The cycle period is an inverse function of Θ, and is independent of Γ and Θ. (a) Dimensionless cycle period as a function of
Θ. The theoretical expression (Eq. 19) is in excelent agreement with simulations (averages and standard deviations of the first three
cycle periods, error bars are smaller than symbols). In all simulations Φ = 4.4 × 10−11. (b) The theoretical expression of dimensional
cycle period fits experimental measures of DOPC vesicles exposed to TX-100 surfactant (data from [16]) for the solubilization rate
defined as k = k0c/(K + c) with c the TX-100 volumic concentration, k0 = 5.39 × 10−3 s−1 and K = 12.6%.

In order to compare the cycle periods with experimental data, we assume that the solubilization rate is dependent
on the surfactant concentration c such as k = k0c/(K + c), where k0 and K are the surfactant specific parameters to
be determined. This dependence assumes a saturation of the effects of the surfactant on the solubilization rate at high
concentrations, as expected. We can now write the dimensional cycle period as a function of the surfactant concentration
such as

∆tc =
ε∗

ε∗ + 1

K + c

k0c
. (20)

In order to determine the surfactant parameters k0 and K, we fit Eq. 20 to the experimental measures of cycle periods of
DOPC vesicles exposed to various concentration of TX-100 surfactant reported in [16]. The result, presented in Fig. 6(b),
yields k0 = 5.39× 10−3 s−1 and K = 12.6% (goodness of fit R2 = 0.78), showing a good agreement between Eq. (20)
and the experimental cycle periods.

4. Discussion

Although equilibrium shapes of membrane systems are relatively well understood [9, 18, 23, 28, 33, 34, 52], the
description of their out-of-equilibrium behavior remains a major challenge. In this article, we propose a quantitative
physical model for the out-of-equilibrium dynamics of lipid vesicle induced by surfactant. We show how the dynamics
of the first microscopic pore can be either short or long-lived, depending on the surfactant and membrane properties.
The driving mechanism for this behavior is the solubilization of the lipid bilayer, which induces an area reduction of
the vesicle at almost constant volume. The progressive reduction of the area to volume ratio produces an increase
in membrane tension, eventually leading to membrane rupture, and the opening of a large micrometer-sized pore.
Interestingly, two possible scenarios occur at this point (Fig. 1(a)): either the pore closes in about a second after
opening (short-lived pore), or the pore stays open for a long time, typically between ten seconds and a minute, before
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closing (long-lived pore). Then, as area reduction of the vesicle continues, subsequent series of short-lived pores occur
independently of the first pore dynamics, until total solubilization of the lipid vesicle is completed.

We propose a model for pore and vesicle dynamics that recapitulates the two first pore regimes as well as the
subsequent cycle dynamics. The key component of the model is the solubilization rate k, which determines how fast the
membrane tension σ builds up by reducing the reference membrane area A0 (see Fig. 1(c) and Eq. (2)). Indeed, the
pore opening and closing is determined by the balance between membrane tension, which tends to open the pore, and
pore line tension γ, which tends to close the pore. At slow solubilization rates, the membrane tension induced by area
reduction does not build fast enough to prevent the pore from closing by line tension. However, a high solubilization
rate increases membrane tension fast enough to prevent the pore closing, leading to a long-lived pore. For a vesicle
with an open pore, membrane tension is released by the leak-out through the open pore, driven by the Laplace pressure.
Since Laplace pressure is an inverse function of the vesicle radius, the leak-out rate is faster for small vesicles, and allows
a faster reduction of the membrane tension as the vesicle decreases in size. As a result, vesicles exhibiting long-lived
pores eventually reseal as their size decreases, and show only subsequent short-lived pores [16].

Although short and long-lived pores in lipid vesicles exposed to surfactant have been observed experimentally [15,
16, 38, 54], the physical understanding of this phenomena has been limited [16, 25]. Here we propose a model that can
semi-quantitatively reproduce the pore dynamics reported in experimental studies, allowing us to investigate the effect
of the lipid bilayer properties and surfactant solution on the vesicle and pore dynamics.

In order to quantitatively study the first pore dynamics as a function of the system parameters, we defined four
pore metrics (Fig. 3(a, b)). Surprisingly, we find that, as we increase the solubilization kinetics, the system transitions
abruptly from short to long-lived pore regime. Furthermore, we show that this transition can be modulated by two
dimensionless numbers. First, we discuss the role of Γ (defined in Eq. (16)), which represents the ratio between pore
line tension and the membrane stretch modulus. We show that small values of Γ – corresponding to small line tension
and high membrane tension – facilitates the occurrence of long-lived pores (Fig. 3(c-e)). Second, we discuss the role of Λ
(defined in Eq. (14)), which represents the ratio between solution and membrane viscosity. We find that long-lived pores
are favored by large values of Λ (Fig. 4), i.e. by solutions of high viscosity that slow down the leak-out and therefore
membrane tension relaxation. By systematically computing the pore metrics for a large number of combinations of the
relevant dimensionless parameters, we show that the regimes of short and long-lived pores are separated by a plane in
the (Θ,Γ,Λ) logarithmic parameter space. Finally, we turn our attention to the dynamics of the subsequent short-lived
pores. We show, both numerically and theoretically, that the cycle period depends only on the solubilization rate and
the membrane lytic strain (Fig. 6(a)). Our theoretical expression of the cycle period is in excellent agreement with
experimental data reported in the literature (Fig. 6(b)).

It should be noted that, the reason why our model predictions are compared with experimental data from DOPC/TX-
100 lipid/surfactant systems only, is because, to our knowledge, no other quantitative measurement of pore dynamics
in lipid vesicles exposed to surfactant are available in the literature [15, 16]. However, a large number of experi-
mental studies report qualitative observation of cyclic pore opening in lipid vesicles based on various combinations
of POPC, DOPC, DMPC, PG, DMPG, PA, DMPA, DMDAP and DMTAP, exposed to different concentrations of TX-100,
Tween 20, sodium cholate, octyl glucoside, polyoxyethylene 8 lauryl ether, CHAPS hydrate, Sulfobetaine 3-14, hex-
adecyl pyridinium chloride, hexadecyl trimethyl ammonium bromide, ethanol, DL-pyrrolidonecarboxylic acid salt, and
polyoxethylene (caprylate/caprate) glycerides [15, 16, 38, 54]. Thus, the theoretical framework proposed here provides
a foundation for quantitative studies of lipid vesicle solubilization dynamics.

Despite showing semi-quantitative agreement with reported experimental data, and giving insight on the pore dy-
namics regime as a function of the membrane and surfactant parameters, our model does have its limitations. Vesicle
area reduction by surfactant, although the most frequent outcome [15, 26, 27, 38, 54], is not the only response of lipid
vesicles exposed to surfactants. Depending on the combination of surfactant and membrane composition, the vesicle can
exhibit complex topological changes leading to invaginations, fission, formation of multilamellar structures, or complete
bursting [15, 38, 54]. This variability is attributed to various parameters such as the surfactant-membrane affinity, the
spontaneous curvature and flip-flop kinetics of the surfactant, the fluidity of the membrane, as well as its compositional
heterogeneity [15, 36, 38, 54]. Further theoretical work and systematic experimental characterization are needed to
quantify the respective importance of theses factors on the vesicles fate.

For most surfactants/lipid bilayer combinations, the initial stage of solubilization is characterized by a destabilization
of the vesicle shape with possible invaginations [15, 16]. It is then in a second stage that area reduction occurs, leading
to increased tension, flattening of the membrane fluctuations, and recovery of a spherical shape, eventually followed
by cyclic pore opening [15]. Our model focuses on this second stage, where the vesicle is well approximated by an
elastic sphere. It should also be noted that our model does not account for the final stage where the radius of the vesicle
reaches the micrometer size and less. Discrete numerical models such as coarse grain modeling are more suited to study
solubilization at such scales [37].
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And finally, the dynamics of the system we modeled comes from the time evolution of the vesicle geometry. It
is possible that the solubilization kinetics affects the physical parameters of the lipid membrane in a time-dependent
manner. How fast the pore line tension, membrane viscosity, or stretch modulus are going to be affected by the increase
of surfactant surface concentration in the membrane will influence the observed vesicle dynamics. Two limiting cases
can be considered: (i) the surfactant insertion limited regime, where micelle formation is much faster than surfactant
insertion. In that case the concentration of surfactant in the membrane increases with time at almost constant membrane
surface area, leading to dynamic variations of the membrane properties. (ii) The solubilization limited regime (or
slow solubilization regime [32]), where the formation of micelles is much slower than the surfactant insertion in the
membrane. In that case all the solubilization process occurs when the membrane is saturated in surfactant, allowing
for the assumption that the membrane properties are constant. Based on the observations that lipid vesicles exposed
to surfactant first exhibit shape destabilization before undergoing area reduction, it is possible that lipid solubilization
occurs at a threshold membrane surfactant concentration, triggering the transition from the first to the second regime.
While our model lies in the solubilization limited regime, including time-dependent membrane parameters is straight
forward, allowing us to represent an intermediate regime where the surfactant insertion and micelle formation occurs
on a similar time scale. Yet, few estimates of the solubilization kinetics are available, pointing out the need for more
experimental studies on surfactant kinetics [32]. We believe that the model presented in the present study can be used
as a framework to help characterizing solubilization kinetics of lipid membrane.

Cyclic pore openings in lipid vesicles is not exclusively induced by surfactants. In fact, similar vesicle dynamics
have been observed for a variety of external stressors. Swell-burst cycles were first predicted theoretically for small
unilamellar vesicles in hypotonic conditions [29], and later observed in artificial giant unilamellar vesicles of various
lipid composition [8, 23, 39, 40, 53]. In that case, the increase in membrane tension is driven by the osmotic influx
of water through the membrane, which produces a cyclic series of swelling and bursting of the vesicle. Likewise,
lipid vesicles undergoing photooxidation have shown to exhibit series of pore openings very similar to those observed
with surfactant, except that swelling phases occur in-between bursting events [26, 49]. This behavior is attributed to
both area reduction and osmotic imbalance due to the release of photo-oxidative products [35, 41]. Such behavior
was also reported in light activated polymerosomes [1, 35, 41]. Taken together, these observations suggest that cyclic
opening of large pores is a general mechanism allowing cell-sized vesicle to maintain their integrity against a variety
of environmental attacks. By proposing a quantitative biophysical model of pore dynamics in lipid vesicles exposed
to surfactant, we undertake an essential step toward a better understanding of the fundamental mechanisms allowing
cells to endure constantly changing environments, and provide an important theoretical tool to aid the design of vesicle
based drug delivery systems.
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interaction of phosphatidylcholine liposomes with Triton X-100. Biochimica et Biophysica Acta (BBA) - Biomembranes 902,
237–246. doi:10.1016/0005-2736(87)90301-4.

[3] Aubin, C.A., Ryham, R.J., 2016. Stokes flow for a shrinking pore. Journal of Fluid Mechanics 788, 228–245.
doi:10.1017/jfm.2015.699.

[4] Bicout, D.J., Kats, E., 2012. Rupture of a biomembrane under dynamic surface tension. Physical Review E 85, 031905.
doi:10.1103/PhysRevE.85.031905.

[5] Boucher, P.A., Joós, B., Zuckermann, M.J., Fournier, L., 2007. Pore Formation in a Lipid Bilayer under a Tension Ramp: Modeling
the Distribution of Rupture Tensions. Biophysical Journal 92, 4344–4355. doi:10.1529/biophysj.106.092023.

[6] Brochard-Wyart, F., de Gennes, P.G., Sandre, O., 2000. Transient pores in stretched vesicles: Role of leak-out. Physica A:
Statistical Mechanics and its Applications 278, 32–51. doi:10.1016/S0378-4371(99)00559-2.
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S1. Characterization of the pore dynamics

All parameters are evaluated during the first pore opening, defined as r̄ > 0.01. The pore life time is defined as
∆t̄p = t̄close − t̄open, and we define r̄max = max(r̄). We then fit the following equation to the radius between r̄max and the
last inflection point of the pore radius:

y = (a0 + a1x0) +
a1 + a2

2
(x− x0) +

a2 − a1

2
(x− x0)

x− x0

| x− x0 |
. (S1.1)

This equation is one of two lines intersecting at x0 such that y(x ≤ x0) = a0+a1x and y(x ≥ x0) = a0+(a1−a2)x0+a2x
(see Fig. 3(a, b)). The fitted value of x0 gives us the transition time between the fast closure phase and the slow closure
phase. We further define the observed radius as the mean radius of the slow closure phase r̄obs = 〈r̄〉, and the slope ratio
as αs = a2/a1. Pore dynamics and corresponding fits are shown in Fig. S2.

S2. Analytical expression for the cycle period

Here we derive an analytical expression for the time between two successive short-lived pores in lipid vesicles in the
presence of surfactant.

The areal membrane strain of a spherical vesicle without pore is given by

ε =

(
R̄

R̄0

)2

− 1. (S2.1)

It follows that the dimensionless strain rate is

dε

dt̄
=

2R̄

R̄2
0

(
dR̄

dt̄
− R̄

R̄0

dR̄0

dt̄

)
. (S2.2)

Introducing Eqs. (12) (for a closed pore r̄ = 0) and (11) into Eq. (S2.2), we have

dε

dt̄
=

2R̄

R̄2
0

(
−Φ

Λ

4πε

R̄
+ R̄Θ

)
. (S2.3)

During the cyclic regime of short-lived pores, the cycle period is approximately equal to the time the vesicle needs to
reach the lytic strain. Therefore we can write

∆t̄c = ε∗
(
dε

dt̄

)−1

, (S2.4)

where ε∗ is the observed critical strain. It follows that

∆t̄c =
R̄2

0

R̄2

ε∗

2Θ

(
− Φ

ΛΘ

4πε∗

R̄2
+ 1

)−1

. (S2.5)

Examining the order of magnitude of the first term in the parentheses, we have

Φ

ΛΘ

4πε∗

R̄2
∼ 10−6 − 10−4 � 1, (S2.6)

allowing us to express the cycle period as

∆t̄c =
R̄2

0

R̄2

ε∗

2Θ
. (S2.7)
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By noting that when ε = ε∗, (R̄/R̄0)2 = ε∗ + 1, we obtain that

∆t̄c =
ε∗

ε∗ + 1

1

2Θ
. (S2.8)

Remarkably, this expression of the cycle period is independent of Γ and Λ. The dimensional form of the cycle period is

∆tc =
ε∗

ε∗ + 1

1

k
. (S2.9)

Thus we show that cycle period decreases with the solubilization kinetic parameter, in agreement with previously re-
ported experimental observations [16].

The dimensionless cycle period (Eq. (S2.8)) is plotted in Fig. 6(a) for ε∗ = 0.1 [8], yielding an excellent agreement
with numerical results. In order to compare the cycle periods with experimental measurements, we assume that the
solubilization rate is dependent on the surfactant concentration c such as k = k0c/(K + c), where k0 and K are the
surfactant specific coefficients to be determined. To do so, we fit the resulting dimensional equation

∆tc =
ε∗

ε∗ + 1

K + c

k0c
, (S2.10)

with ε∗ = 0.1 to the experimental measurements of cycle period of DOPC vesicles exposed to various concentrations
of TX-100 surfactant presented in [16]. A plot of Eq. (S2.10) is shown in Fig. 6(b) for the obtained values of k0 =
5.39× 10−3 s−1 and K = 12.6%.

S3. Supplementary figures

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2018. ; https://doi.org/10.1101/225946doi: bioRxiv preprint 

https://doi.org/10.1101/225946
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 1 2 3 4 5
t/ 105

0

0.2

0.4

r/R
i

0 1 2 3 4 5
t/ 105

0.8

0.85

0.9

0.95

1

R
/R

i

0 1 2 3 4 5
t/ 105

0

0.2

0.4

r/R
i

0 1 2 3 4 5
t/ 105

0.6

0.7

0.8

0.9

1

R
/R

i

a b

c d

=5.4 ⇤

=1.5x10-4 �

�=4.4x10-11  

=1x10-6 ⇥

=3x10-7 ⇥

Short-lived pores

Long-lived pore followed by short-lived pores

Figure S1: Typical pore and vesicle dynamics in short-lived (a, b) and long-lived (c, d) regimes. Dimensionless pore radii (a, c) and
vesicle radii (b, d) as a function of dimensionless time. Black dashed lines in panels (b, d) represent the dimensionless reference radius
R0/Ri. (a, b) Θ = 3 × 10−7. (c, d) Θ = 1 × 10−6. Other parameters are constant in all panels: Γ = 1.5 × 10−4, Λ = 5.4, and
Φ = 3 × 10−7.
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Figure S2: Typical pore dynamics and corresponding fit for increasing values of Θ. The overall fitting procedures yields excellent
results, except for higher values of Θ where the pore closure dynamics progressively deviates from two intersecting straight lines.
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Figure S3: Pore metrics as a function of Γ for various values of Θ and Λ. (a-c) Λ = 1. (d-f) Λ = 5.4. (g-i) Λ = 10. Large values of
Γ promote short-lived pores, while large values of Θ and Λ promote long-lived pores. In all cases, Φ = 4.4 × 10−11. Pore metrics are
defined in Fig. 3(a, b).
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Figure S4: Pore metrics as a function of Λ for various values of Θ and Γ. (a-c) Γ = 1.5×10−4. (d-f) Γ = 4×10−4. (g-i) Γ = 6×10−4

The maximum pore radius is only influenced by the value of Λ. In all cases, Φ = 4.4 × 10−11. Pore metrics are defined in Fig. 3(a, b).
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