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ABSTRACT  

Jumping to conclusions during probabilistic reasoning is a cognitive bias reliably observed in 

psychosis, and linked to delusion formation. Although the reasons for this cognitive bias are 

unknown, one suggestion is that psychosis patients may view sampling information as more costly. 

However, previous computational modelling has provided evidence that patients with chronic 

schizophrenia jump to conclusion because of noisy decision making. We developed a novel version 

of the classical beads-task, systematically manipulating the cost of information gathering in four 

blocks. For 31 individuals with early symptoms of psychosis and 31 healthy volunteers, we examined 

the numbers of ‘draws to decision’ when information sampling had no, a fixed, or an escalating cost. 

Computational modelling involved estimating a cost of information sampling parameter and a 

cognitive noise parameter. Overall patients sampled less information than controls. However, group 

differences in numbers of draws became less prominent at higher cost trials, where less information 

was sampled. The attenuation of group difference was not due to floor effects, as in the most costly 

block participants sampled more information than an ideal Bayesian agent. Computational modelling 

showed that, in the condition with no objective cost to information sampling, patients attributed 

higher costs to information sampling than controls (Mann-Whiney U=289, p=0.007), with marginal 

evidence of differences in noise parameter estimates (t=1.86 df=60, p=0.07). In patients, individual 

differences in severity of psychotic symptoms were statistically significantly associated with higher 

cost of information sampling (rho=0.6, p=0.001) but not with more cognitive noise (rho=0.27, 

p=0.14); in controls cognitive noise predicted aspects of schizotypy (preoccupation and distress 

associated with delusion-like ideation on the Peters Delusion Inventory). Using a psychological 

manipulation and computational modelling, we provide evidence that early psychosis patients jump 

to conclusions because of attributing higher costs to sampling information, not because of being 

primarily noisy decision makers. 
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INTRODUCTION 

 

A consistent psychological finding in schizophrenia research is that patients, especially those with 

delusions, gather less information before reaching a decision. This tendency to draw a conclusion on 

the basis of little evidence has been called a jumping to conclusions (JTC) bias (Garety & Freeman, 

2013). According to cognitive theories of psychosis, a JTC bias is a trait representing liability to 

delusions. People who jump to conclusions easily accept implausible ideas, discounting alternative 

explanations, thus ensuring the persistence of delusions (Garety & Freeman 1999; Garety et al. 

2007; Garety et al. 2013). Reviews and meta-analyses confirm the specificity, strength and reliability 

of the association of JTC bias and psychotic symptoms (Dudley, Taylor, Wickham, & Hutton, 2016; 

Fine, Gardner, Craigie, & Gold, 2007; P. A. Garety & Freeman, 2013; Ross, McKay, Coltheart, & 

Langdon, 2015; S. H. So, Garety, Peters, & Kapur, 2010; S. H. wai So, Siu, Wong, Chan, & Garety, 

2015).  

 

The JTC bias is commonly measured in psychosis research using variants of the “beads in the jar” 

task (Huq, Garety, & Hemsley, 1988). A person is presented with beads drawn one at time from one 

of two jars containing beads of two colours mixed in opposite ratios (P A Garety, Hemsley, & 

Wessely, 1991; Huq et al., 1988). Jumping to conclusions has been operationally defined in the 

‘beads’ tasks as making decisions after just one or two beads (Garety et al., 2005; Warman, Lysaker, 

Martin, Davis, & Haudenschield, 2007). The commonly used outcome in this task is the number of 

beads seen before choosing the jar, known as draws to decision (DTD). The task requires the 

participant to decide of how much information to sample before making a final decision. This 

behaviour can be compared to the behaviour of an ideal Bayesian reasoning agent (Huq et al., 1988). 

However, when people experience evidence seeking as costly, it is thought that gathering less 

information could be seen as optimal leading to monetary gains at the expense of accuracy (Furl & 

Averbeck, 2011).  

 

Although the JTC bias has been well replicated, the neurocognitive mechanisms underlying it, are 

unknown; many possible psychological explanations have been put forward, not all of which are 

mutually exclusive (Evans, Averbeck, & Furl, 2015). Motivational factors, such as intolerance of 

uncertainty (Bentall & Swarbrick, 2003; Broome et al., 2007), a “need for closure” (Colbert & Peters, 

2002), a cost to self-esteem of seeming to need more information (Bentall & Swarbrick, 2003) or an 

abnormal “hypersalience of evidence” (Esslinger et al., 2013; Menon, Mizrahi, & Kapur, 2008; 

Speechley, Whitman, & Woodward, 2010) have been posited as potentially underlying the JTC bias. 
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A common theme emerging from the intolerance of uncertainty, the need for closure, and the cost 

to self-esteem hypotheses is that patients experience an excessive cost of sampling information.  

 

Computational models allow researchers to consider important latent factors influencing decisions. 

The “costed Bayesian model” (Moutoussis, Bentall, El-Deredy, & Dayan, 2011) incorporates a 

Bayesian consideration of future outcomes with the subjective benefits or penalty (cost) for 

gathering additional information on each trial and the noise during the decision making; Moutoussis 

and colleagues (2011) applied this computational model to the information sampling behaviour of a 

sample of chronic schizophrenia patients undertaking the beads task. They found, contrary to their 

expectations, that a higher perceived cost of the information gathering did not underpin the JTC 

bias. Therefore, they concluded that differences in the ‘noise’ of decision making were more useful 

in explaining the differences between patients and controls than the perceived cost of the 

information sampling. However, here we reason that a rejection of the ‘increased cost of 

information sampling’ account of the JTC bias based on this finding is premature, as patients with 

chronic schizophrenia may not be representative of all psychosis patients, especially not for those at 

early stages of psychosis – a stage particularly relevant for understanding the formation of delusions. 

A variety of different cognitive factors may contribute to the JTC bias; the balance of contributory 

factors may differ in different patient populations, with noisy decision making relating to executive 

cognitive impairments predominating in chronic, but perhaps not in early stages of psychosis. 

Furthermore, Moutoussis and colleagues (2011) applied their model to an existing dataset (Corcoran 

et al., 2008) which used the classic beads task. In this task, no explicit value was assigned to getting 

an answer correct or incorrect, and no explicit cost was assigned to gathering information. The 

authors themselves concluded that their work required replication, including incorporation of 

experimental manipulation of rewards and penalties.  

 

The current study investigated the hypothesis that patients with early psychosis attribute higher 

costs to information sampling using a novel version of the traditional beads task and computational 

modelling. Focusing on patients at early stages of psychosis allowed us to investigate the JTC bias 

before the onset of a potential neuropsychological decline seen in some patients with chronic 

schizophrenia, and to study a largely unmedicated sample of psychosis patients. Specifically, we 

were interested in testing whether patients adapted their decision strategies when there is an 

explicit cost of information sampling. We, therefore, developed a variation of the beads task in 

which there were blocks with and without an explicit cost of information sampling, and we gave 

feedback for correct and incorrect answers. This manipulation allowed the comparison between 
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groups on different cost schedules. However, it would also allow us to test the competing 

hypothesis, which is that psychosis patients jump to conclusions because of primarily noisy decision 

making behaviour. Under this account, patients should be insensitive to a cost manipulation in the 

novel setup of the paradigm and apply random decision making.  

 

This study presents a novel investigation of the processes that lead to reduced information sampling 

in psychosis. We hypothesised that (1) psychosis patients would gather less information than 

controls when gathering information is cheap, and that (2) psychosis patients and control would 

adjust their information sampling according to experimental cost manipulations and that the 

adjustments would mitigate, but not abolish, the difference between the groups. Finally, we 

hypothesised that (3) the costed-Bayesian model applied to this paradigm and largely unmedicated 

early psychosis group would provide explanatory evidence for JTC bias in favour of less information 

sampling because of higher perceived costs rather than purely noisy decision making.  
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METHODS 

 

Study participants 

 

The study was approved by the Cambridgeshire 3 National Health Service research ethics 

committee. An early psychosis group (N=31) was recruited, consisting of individuals with first 

episode psychotic illness (N=14) or with At Risk Mental States (ARMS; N=17), from the Cambridge 

early intervention service in psychosis, CAMEO. Inclusion criteria were as follows: age 16–35 years, 

current psychotic symptoms meeting either ARMS or first episode of psychosis (FEP) criteria 

according to the Comprehensive Assessment of At-Risk Mental States (CAARMS) (Morrison et al., 

2012; Yung et al., 2005). FEP patients met ICD-10 diagnostic Patients with FEP were required to meet 

ICD- 10 criteria for a schizophrenia spectrum disorder (F20, F22, F23, F25, F28, F29) or affective 

psychosis (F30.2, F31.2, F32.3). Healthy volunteers (N=31) without a history of psychiatric illness or 

brain injury were recruited as control subjects. None of the participants had drug or alcohol 

dependence. Healthy volunteers have not reported any personal or family history of neurological or 

psychotic illnesses, and were matched with regard to age, gender, handedness, level of education, 

and maternal level of education. None of the patients with ARMS were taking antipsychotic 

medication, and four patients with FEP were on antipsychotic medication at the time of testing. All 

of the experiments were completed with the participant’s written informed consent. 

 

Behavioural “Jumping to Conclusions” Task 

This was a novel task (Figure 1), based on previously published tasks (Garety et al., 1991; Huq et al., 

1988) of reasoning bias in psychosis, but amended in the light of decision-making theory, according 

to which the amount of evidence sought is inversely proportional to the costs of information 

sampling. These costs include the high subjective cost of uncertainty, and the cost to self-esteem or 

other factors (Moutoussis et al., 2011). Participants were told that there are two lakes, each 

containing black and gold fish in two different ratios (60:40). The ratios were explicitly stated and 

displayed on the introductory slide. A series of fish was drawn from one of the lakes; all the 

previously ‘caught’ fish were visible, in order to reduce the working memory load. The participants 

were informed that fish were being ‘caught’ randomly from either of the two lakes and then allowed 

to ‘swim away’. We used a pseudorandomised order for each trial, which was the same for all 

participants. The lake where the fish were drawn from was also pseudorandomised. 
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Participants could ask for a maximum of 20 fish to be shown. After each fish shown they either 

indicated whether the fish came from Lake G (gold) or B (black), or asked to see another fish. The 

trial terminated when the subject chose the lake. There were four blocks, each with the 10 trials of 

the predetermined sequences, in order to increase reliability. Block 1 was similar to the classical 

beads task, and was included to provide a reference point. The only difference was that feedback 

(‘correct’ or ‘incorrect’) was provided after each trial. In Block 2, a win was assigned to a correct 

decision (100 points) and a loss (–100 points) to an incorrect decision. In Block 3, the cost of each 

extra fish after the first one was introduced (–5 points) and was subtracted from the possible win or 

loss of 100 points for making a correct or incorrect decision respectively. Block 4 was similar to Block 

3, but the information sampling cost was incrementally increased. The first fish would cost 0 points, 

the second –5 points, the third –10 points, etc.). Thus, the more fish would be sampled, the more 

points would be lost. Subjects performed the task at their own pace. Whether Lake G or B was 

correct was randomised. The task consisted of four blocks. Within each block there were 10 trials of 

predetermined sequences of fish, in order to increase reliability. All of the fish that were ‘caught’ 

during one trial were visible on the screen in order to minimise the working memory load. Block 

order was not randomised because the task increased in complexity.  

 

The main outcome variable was the number of fish sampled (draws to decision, DTD). Secondary 

outcomes were the accuracy of the decision, calculated according to Bayes’ theorem based on the 

probability of the chosen lake given the colour and number of fish seen (Everitt & Skrondal, 2010), 

and the dichotomous JTC variable, which is defined as making decision after 2 or less pieces of 

information.  

 

Partially observable Markov process decision-making  

 

We consider a belief-based model of decision-making, formally a partially observable Markovian 

decision process (POMDP) to model behaviour in this task.  The process is Markovian because we can 

concisely formulate the state that the people find themselves upon observing nd draws, so that the 

state contains all information that can be extracted from observations thus far. As beads are drawn 

from one jar only at each trial, this can be simply defined as the number of g fishes seen so far, and 

the total number seen:  � � ��� , ���. The agent is interested to infer upon the true state of the world, 

which is a B or G lake. This is not directly observable, but ‘partially observable’. The agent maintains a 

belief component of their state, P(G | s) . The Markov property still holds: future beliefs are 

independent of past beliefs given the current state (Fig. 2a). As we will see, belief-state transitions 
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can be calculated just by considering the evidence so far. Given the current belief state, the 

probability of the possible unfolding of the task into the future can be estimated, and hence the 

expected returns for each possible future decision (Fig. 2b). The value of the available choices can 

thus be estimated: choosing the B lake, DB, the G lake DG, or sampling another piece of information, 

DS. The agent chooses accordingly, and either terminates the trial or gathers a new datum and 

repeats the process (Fig. 2).     

 

Insert Figure 2 here 

 

 

We now formally specify the model. Let  �	
 � �� , ��� be the probability of the lake being gold, after 

drawing �� fish and seeing �� gold fish. Using Bayes' theorem, and assuming that a gold lake and a 

black lake are equally probable: 

�	
 � �� , ��� � �	�� , �� � 
��	
�
�	�� , �� � 
��	
�  �	�� , �� � ���	�� � �	�� , �� � 
�

�	�� , �� � 
�  �	�� , �� � �� 

�	�� , �� � 
� � ���
��� �	� � 
����1 � �	� � 
������� 

�	�� , �� � �� � ������ �	� � �����1 � �	� � �������� 

�	
 � �� , ��� � �	� � 
����1 � �	� � 
�������
�	� � 
����1 � �	� � 
�������  �	� � �����1 � �	� � ��������       Equa�on 1 

     

We then need to calculate the value of each action. For the ‘declare’ choices, the action value is the 

expected reward for correct answer, minus the expected cost for a wrong answer. For example, if 

���� ; �� , ��� is the action value of declaring the lake gold, after drawing �� fish and seeing �� gold 

fish, 

 

���� ; �� , ��� � ���� 
 �� �� , �� � � ���� � �� �� , �� �                                                         Equa�on 2 

 

Where �� is the reward for declaring the colour of the correct lake and ��  is the cost of declaring the 

colour of the wrong lake.  In our task, �� � �� , so: 

�	�� ; �� , ��� � ����	
 � �� , ��� � �	� � �� , ���� � ���2�	
 � �� , ��� � 1� 
Similarly: 

�	�� ; �� , ��� � ����	� � �� , ��� � �	
 � �� , ���� � ���1 � 2�	
 � �� , ���� 
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The action of sampling again is the expectation over the value of the next state, minus the cost of 

sampling �		���. If the value of the (possible) next state is �	���, the action value for sampling again 

is the sum over the new possible states, weighted by their probabilities. The latter depends, in turn, 

on the identity of the true underlying lake, L : 

�	�	; �� � ��	  ∑ �	� � �� ∑ �	����	�� � ��
����,��                                                      Equa�on 3a 

The possible outcomes for sampling again, and getting a black fish (going from 	�� , ���  to 

	��  1, ���) and getting a gold fish (going from 	�� , ��� to 	��  1, ��  1�) 

 

�	�	; �� , ��� � ��		���
�	
 � �� , ���  !�	��  1, ��  1��	� � 
�  �	��  1, ����	" � 
�#

�� � �� �� , �� �  $����  1, ��  1��	 � �� � �  ����  1, ����	 " � � �% 
 

Equation 3b  

Agents will tend to prefer actions with the greatest value. An ideal, reward-maximizing agent,  

will always chose the action with the maximum value and will thus endow the corresponding state 

with this value. Denoting q as the vector of action values,  

���� � ���	�; �� , ��, ��	�; �� , ��, ��	�; �� , ��� �   ���� , �� � max������ 

Equation 4a  

Real agents will choose probabilistically as a function of action-values, so: 

�	�� � & '
(	) | +	���
����,�,��

                                                                                          Equa�on 4b 

Agents cannot fill in the action values for sampling starting from their current state, as the next state 

value is not known. However, they can fill in all values by backward inference. At the very end,  

�� � 20 , sampling is not an option, and the action values can be calculated directly from Eq. 2 and 

the state value from Eq. 4. Once all possible state values for �� � 20 have been calculated, Eqs. 3, 2 

and 4 are used to calculate action and state values for �� � 19, and downwards to  �� � 1. 

 

We now turn to the ideal, deterministically maximizing agent against which we can compare human 

performance. When given the same sequence of fish as human participants, on average the ideal 

Bayesian agent samples 20, 20, 3.5 and 1 fish in each of the four blocks, respectively, achieving total 

winnings of 1070 points (Table 3). For no cost (Block 1 and 2), an ideal Bayesian agent samples all the 

fish and has p=0.835 of being correct (100% if we had infinite fish). For constant cost (5 points, Block 

3), it samples until the difference between black and gold fish (Nb-Ng) is 2, with p=0.692 probability 

of being correct. For increasing cost (Block 4), it guesses after the first fish, so there is 0.6 probability 
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of being correct. To model real agents, the probabilistic action choice in Eq. 4b took the softmax 

form: 

  ln (	) |'	��� �  +�/T + z          Equation 5 

with z a normalizing constant same for all the actions at a specific state; and T a decision 

temperature parameter described below (Moutoussis et al., 2011). 

 

Thus there are two parameters that shape a participant’s behaviour: 

• CS: the cost of sampling, i.e. the subjective cost of each additional piece of information, 

compared to the final reward. It may be greater or smaller than the costs imposed by the 

experimenter, but is here taken to be constant (in a given block). High values of CS mean 

that decisions are made early.  

• T: the noise parameter. As this value increases, the probability of the participant following 

the ideal behaviour (for their given value of CS) decreases, and their actions become more 

uniformly random. 

 

Model parameter estimation  

 

Here, we were interested in the most accurate possible estimates of the means and variances 

characterizing the psychosis and control groups. We, therefore, used what is known as a hierarchical 

model, a variant of the random effects approach. Here, a participant’s model parameters are drawn 

from a group, or population, distribution. This procedure estimates the mean and variance for CS 

and for T for the whole group. For a group of, for example, 30 participants with 10 data points each, 

we use 300 data points to estimate 4 values (i.e. mean and variance for each of the two parameter 

distributions), rather than 2 different parameters for each of the 30 participants (i.e. 60 parameters 

in total). We assumed both parameters to be positive, and a priori uncorrelated, and therefore 

appropriately modelled by independent gamma distributions. The standard ways that 

mathematicians parameterise gamma distributions are in terms of a 'shape' and ‘scale’ or 'rate'. 

However, these do not map intuitively to the quantities we are usually interested in clinical research; 

that is, a measure of centre and a measure of spread. Thus, we follow Moutoussis et al. (2011) in 

describing our parameters by mean and variance. We used the technique expectation-maximization 

(EM, see Appendix; Dayan and Abbott, 2001; Moutoussis et al. ,2011). In brief, EM proceeds by first 

assuming uninformative distributions at the group level; using these as uninformative priors, it 

derives probability distributions for the parameters of each participant based on each one’s data. 

This is ‘expectation’. Then, it re-estimates the group-level distributions to maximise the likelihood of 

the (temporarily fixed) lower level. This is ‘maximization’. The group-level distributions then form 

empirical priors that are used in place of the uninformative ones. The process is repeated until all 

estimates are stable; we ran between 25 and 30 iterations of the expectation maximisation 
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algorithm (see Appendix). Runs took about 30s per iteration per participant on a single core of an 

Intel Core2 Duo CPU and 4GB of RAM. 

 

Once the maximum likelihood parameters for a given group are estimated, they can be interpreted 

using the integrated Bayesian Information Criterion (iBIC (Huys et al., 2012, 2015)), which uses the 

likelihood values of best-fit parameters for two different models to decide which model best 

represents the data. In the case of the ordinary BIC, to assess model fit we calculate the maximum-

likelihood of the data of each participant given a particular model, and we penalise this in proportion 

to the number of parameters in the model. The underlying assumption is that a greater number of 

parameters represents a proportionate reduction of prior belief that the participant belongs to a 

given region of the parameter space, and that all parameters are on the same footing for each 

participant. The volume of this parameter space scales to the power of its dimensionality, i.e. the 

number of parameters, so the log of this, used in the BIC, is proportional to this number of 

parameters. Redundant parameters, which would result in over-fitting, are thus penalised. However, 

this approximation can be refined. The study sample itself gives information about the prior 

probability that a particular parameter obtains at the micro-level, of the individual. This is the 

'empirical prior', which, in our case, is calculated by expectation-maximization (Dayan and Abbot 

2001). Now, the complexity penalty at the level of the individual is calculated by forming a mean, or 

integrated, likelihood weighed by this prior. This allows for the data to speak to some parameters 

being 'more equal than others' in penalizing complexity. We can now account well for the penalty 

due to the prior at the level of the individual, but we have not considered the level of the group. 

Should we assume that, say, patient participants should be fitted with different empirical priors than 

healthy controls, or the same? To compare separate-fit and common-fit statistical models, we turn 

to the BIC approximation of complexity proportional to the number of parameters, but now at the 

level of the groups. Thus, the 'integrated BIC', which is 'integrated' in the sense that it contains 

weighted-mean likelihoods rather than maximum-likelihoods, also contains a penalty term for 

models in proportion to the number of empirical priors, or groups, used. Therefore, it can be used 

for hypothesis testing: if one model has all participant parameters coming from one distribution (4 

parameters), and a second model separates the control and unhealthy groups (8 parameters), a 

comparison of iBIC values can be used to decide if splitting the sample is justified. The interested 

reader is referred to Dayan and Abbot 2001, and Huys et al., 2012, 2015 for mathematical details. 

 

In addition, we conducted analyses based on individual participant’s estimated model parameters. A 

reliable test of the hypothesis that the groups differ in the cost (or noise) parameters can be created 

by forcing the model to treat all participants as coming from one group, with a single group mean 

and variance, then using the model’s estimates of the single subject parameters to conduct a test of 
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whether there are differences according to diagnostic group. This approach is over-conservative, but 

serves a purpose in subjecting the test of group differences to a stern challenge.  

 

 

Rating scales and questionnaires 

 

The participants underwent a general psychiatric interview and assessment (Tables 1 and 2) using 

the Comprehensive Assessment of At Risk Mental States (CAARMS) (Morrison et al., 2012; Yung et 

al., 2005), the Positive and Negative Symptom Scale (PANSS) (Kay, Fiszbein, & Opler, 1987), the Scale 

for the Assessment of Negative Symptoms (SANS) (Andreasen, 1989) and the Global Assessment of 

Functioning (GAF) (Hall, 1995). The Beck Depression Inventory (BDI) (Beck, Steer, & Brown, 1996) 

was used to assess depressive symptoms during the last 2 weeks. IQ was estimated using the Culture 

Fair Intelligence Test (Cattell & Cattell, 1973). Schizotypy was measured with the 21-item Peters et 

al. Delusions Inventory (PDI-21) (Peters, Joseph, Day, & Garety, 2004). 

 

Statistical analysis of the behavioural data 

 

The effect of manipulations of wins, losses and costs on the DTD and accuracy was assessed by 

repeated-measures analysis of variance (ANOVA) using SPSS 23 (IBM Corp.). Although DTD was not 

normally distributed, repeated-measures ANOVA is robust to violations of normality, and was 

therefore an appropriate test to run. IQ and depressive symptoms scores were initially included as 

covariates and dropped from the subsequent analysis where non-significant. We report two-tailed p-

values, which were significant at p<0.05. When the assumption of sphericity was violated we applied 

Greenhouse–Geisser corrections. We also examined whether DTD was correlated with the severity 

of psychotic symptoms in the patient group (CAARMS positive symptoms) and with schizotypy scores 

on the PDI in controls using Spearman’s correlation coefficients. The intra-class correlation 

coefficients (ICCs) were used to estimate the consistency of decision making. We calculated the ICCs 

of the mean number of choices in each block separately for patients and controls.  

 

For completeness and to help relate our study to prior literature (or for future meta-analyses), we 

report data on the dichotomous variable JTC, defined as making a decision after receiving one or two 

pieces of information, and we compare the FEP and ARMS patient groups separately to controls on 

Block 1 DTD and estimated model parameters. 
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RESULTS 

 

Demographical characteristics of the participants 

 

In Tables 1 and 2 the socio-demographic and cognitive parameters as well as clinical measures of the 

participants are presented. Although healthy volunteers had higher IQ, compared to the psychosis 

group, the difference was not significant, and the groups were matched with regard to level of 

maternal education and number of years of education. The control and patient group did not differ 

with regard to gender or age. There were significantly more smokers in the patient group compared 

to the control group, and some subjects of the patient group used more recreational drugs. For all of 

the other measures (e.g. alcohol or cannabis) there were no significant group differences. As 

expected there are significant differences between the healthy volunteers and the patients in all 

subscales of CAARMS (Table 2), on the self-reported depression questionnaire (BDI) and self-

reported schizotypy scores (PDI). In the patient group only, we performed additional clinical 

assessments. The mean (±SD) score for PANSS positive symptoms was 13.68 (±3.99); for PANSS 

negative symptoms 9.87 (±4.88); SANS 0.35 (±0.75) and GAF 55.00 (±18.54). 

 

Group differences in the number of DTD and points  

 

Inspection of Figure 3A reveals that in all of the blocks, the controls took more draws to decision 

than the patients. Mauchly’s test indicated that the assumption of sphericity was not violated 

(W(5)=0.211, p<0.001). On mixed-model ANOVA, there were significant main effects of block 

(F(3)=94.49 , p<0.001 and of group (F(1)=5.99, p=0.017) on the number of DTD. The interaction 

between the group and the block was also significant (F(3)=4.32, p=0.006). This indicates that, 

depending on the group, block change had different effects on DTD. Group differences were 

statistically significant in the first two blocks (Block 1: p=0.007; Block 2: p=0.028), whereas in Block 3 

and 4 there were the group differences were increasingly attenuated, as the cost of decision-making 

became increasingly high (Block 3: p=0.059; Block 4: p=0.419). Controls behaviour was more similar 

to the ideal Bayesian agent than patients on the first three blocks but not Block 4 (Table 3). Group 

differences in the probability of being correct were very similar to the results in the number of DTD 

(Figure 3B).  

 

Analysing the points won/lost in Block 2-4 (Figure 4), we identified four outliers in each group that 

significantly exceeded ±2SD threshold. After excluding these subjects, the mixed-model ANOVA 
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revealed a significant effect for block (F(2)=93.73, p<0.001), a marginally significant interaction 

between block x group (F(2)=2.52, p=0.086) and a significant groups effect (F(1)=4.14, p=0.047). 

Patients won significantly fewer points in Block 2 (F(2)=4.65, p=0.035), but did not differ from 

controls in Block 3 and 4 (both p>0.3). 

 

Percentage and count of people displaying a JTC reasoning style are presented in Table 4. 

 

Intra-class correlations of DTD and SD of the mean DTD 

 

Intra-class correlation coefficients (ICCs) of the mean number of DTD within each block were 

calculated separately for patients and controls. Within all blocks in both groups the correlations 

were very high, indicating that behaviour was consistent within each block (ICC values: Block 1: 

patients 0.965, controls 0.943; Block 2: patients 0.982, controls 0.973; Block 3: patients 0.972, 

controls 0.976; and Block 4: patients 0.973, controls 0.978).  

 

Correlation of symptoms and IQ with DTD  

 

We calculated two-tailed Spearman’s correlations with positive psychotic symptoms in patients and 

with PDI scores in controls. In the patient group, we used a summary score of the three CAARMS 

subscales that quantify positive psychotic symptoms, namely Unusual Thought Content, Non-Bizarre 

Ideas (mainly persecutory ideas) and Perceptual Aberrations. An additional advantage of the 

summary measure is that it provides one measure to reduce the number of correlations that need to 

be performed. We also ran correlations BDI scores because the groups differed on this measure.  In 

the group with psychotic symptoms the correlations with the overall CAARMS score were significant 

in the first three blocks (Block 1: rho=–0.515, p=0.003; Block 2: rho= –0.489, p=0.005; Block 3: rho= –

0.491, p=0.005). There were no correlations in the psychotic symptoms group between DTD and BDI 

score (for all p>0.1).  

 

In controls, we found significant correlations of DTD in Block 1 with the Distress (rho=-394, p=0.035) 

and Preoccupation (rho=–0.462, p=0.012) subscales of the PDI. DTD in Block 2 correlated with the 

Preoccupation subscale of PDI (rho=–0.387, p=0.038). There were no significant correlations with 

BDI scores (e.g. for Block 1 rho=-0.023, p=0.905). 
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In the patients, we furthermore found a positive correlation between IQ and the first three blocks 

(Block 1: rho=–0.481, ρ=0.006; Block 2: rho=–0.362, p=0.045; Block 3: rho=–0.364, p=0.044). There 

was no such correlation in the controls. 

 

Group differences in the probability of being correct (accuracy). 

 

Mauchly’s test indicated that the assumption of sphericity has not been violated (W(5)=0.667, 

p<0.001). There was a significant main effect of block on the probability of being correct 

(F(3)=53.502, p<0.001) and a significant effect of group (F(1)=5.514, p=0.022). There was a significant 

interaction between the group and the block (F(1)=2.791, p=0.042), indicating that as the cost of 

decision making increased, the group differences became attenuated.  

 

Additional analyses having excluded participants on medication or to make groups more closely 

matched on IQ 

 

In order to demonstrate that the findings were unaffected by antipsychotic medication, we 

conducted repeat analyses having excluded the four patients taking antipsychotic medication. The 

results were similar to in the full sample. As before, on mixed-model ANOVA, there were significant 

main effects of block (F(3)=88.59 , p<0.001 and of group (F(1)=5.21, p=0.026) on the number of DTD. 

The interaction between the group and the block was also significant (F(3)=4.54, p=0.004). Group 

differences were statistically significant in the first two blocks (Block 1: p=0.013; Block 2: p=0.023), 

but reduced in Block 3 and 4 (Block 3: p=0.098; Block 4: p=0.55).  

 

When we excluded the three highest IQ controls and two lowest IQ patients in order to make groups 

more similar in IQ (resulting in control mean IQ 107 and patient mean 105), the results were similar: 

on mixed-model ANOVA, there were significant main effects of block (F(3)=90.2 , p<0.001 and of 

group (F(1)=5.25, p=0.026) on the number of DTD. The interaction between the group and the block 

was also significant (F(3)=3.50, p=0.017). Group differences were statistically significant in the first 

two blocks (Block 1: p=0.013; Block 2: p=0.039), but reduced in Block 3 and 4 (Block 3: p=0.062; 

Block 4: p=0.45).  

 

Computational Modelling Results: analysis of group estimates of model parameters 

 

In our computational analysis of Block 1-3, we found that patients with early psychosis assigned a 

higher cost to sampling more data than healthy controls (Table 5). For example, in Block 1, where 

there was no explicit cost, the modelled mean cost of sampling in the controls was very low 1.9⨉10-
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3 compared to that of patients, 1.7. The modelled variance was also higher for the patient group (13) 

compared to the controls (2.0X10-6). The estimated noise parameters were similar in both groups. 

For example, in Blocks 1 and 2, the respective group estimated mean noise parameters were 3.4 and 

3.6 in controls, and 4.2 and 2.9 in patients.  

 

In Block 3, where an explicit cost of 5 points per fish sampled was assigned, the model shows that 

patients very slightly overestimated the cost of sampling compared to the assigned cost (estimated 

mean cost of sample for patients 5.2), whereas the controls underestimated it (estimated mean cost 

of sample 1.6).  

 

In Block 4, we explicitly told participants that the cost for additional information is not fixed, but 

increases with amount of information requested. We did not fit the computational model to Block 4 

because the model does not take into account the increasing cost structure set up.  

 

To test the null hypothesis that both groups are drawn from the same distribution of behaviour 

parameters, we used iBIC. Table 6 shows the results of that calculation, where the null hypothesis 

can be rejected with strong evidence. For example, in Block 1, despite the fact the iBIC penalises the 

use of extra parameters substantially, when fitting CSm, CSv, Tm and Tv, separately for each group 

iBIC was 3450.2, compared to an iBIC of 3489.7 for fitting them as one combined group.  Taken 

together, the iBIC can be used to compare the hypothesis about the two models of interest. In our 

case those are the following two: 1) unhealthy and healthy groups have independent CS and T 

parameter distributions, characterised by 8 numbers (mean and variance for CS and for T, for each 

group); and 2) all participants come from the same pool of noise and cost parameters, characterised 

by 4 numbers. The iBIC suggests that hypothesis 1 is better explained by the separate model in 

Blocks 1 and 2, and by the combined model in Block 3. 

 

Model fits were not changed substantially after exclusion for medication (Table 6). 

 

Computational Modelling Results: analysis of individual participant level cost and noise 

parameters 

 

A very strong test of the hypothesis that the groups differ in the cost (or noise) parameters can be 

created by forcing the model to treat all participants as coming from one group, with a single group 

mean and variance, then using the model’s estimates of the single subject parameters to conduct a 

test of whether there are differences according to diagnostic group. Although we found (see above) 
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that in blocks 1 and 2 this assumption did not fit the data as well as modelling the groups separately, 

so the approach is over-conservative, this procedure serves a purpose in subjecting the test of group 

differences to a stern challenge. The groups differed significantly on estimated cost parameters in 

this procedure (block 1 controls mean=-0.24, median=-0.04, interquartile range=0.07, psychosis 

mean=-1.1, median=-0.1 interquartile range 1.2, Mann-Whiney U=289, p=0.007; block 2 controls 

mean=-0.8, median=-0.04, interquartile range=0.08; psychosis mean=-2.2, median=-0.14, 

interquartile range=4.9, U=363, p=0.038; block 3 controls mean=-2.0, median=-0.17, interquartile 

range=2.3, psychosis mean=-4.2; median=-0.48, interquartile range=8.62, U=338, p=0.045), but 

generally were similar on estimated noise parameters (block 1, controls mean=2.96, SD=2.08, 

patients mean 4.14 sd=2.86, t=1.86 df=60, p=0.07; block 2 controls mean=2.27, SD=1.61, patients 

mean =2.81, SD=1.95,  t=1.2, p=0.23; block 3 controls mean= 4.1, SD=0.74, patients mean=4.31, 

SD=0.41,  t=1.2 p=0.23).  

 

The results were similar after exclusions for medication (Block 1 Cost group difference Mann-Whiney 

U=248, p=0.008; Noise group difference t=1.79 p=0.08), or to equalise IQ (Block 1 Cost group 

difference U=246, p=0.01; Noise group difference t=1.5, p=0.13).  

 

Individually estimated greater cost parameters predicted higher psychotic symptom severity in 

patients (rho=0.58, p=0.001). There was no significant association between estimated noise 

parameters and psychotic symptom severity (rho=0.27, p=0.14). In controls, cost was associated 

with PDI preoccupation (rho = 0.41, p =0.03), and marginally with distress (rho 0.35, p =0.06), and 

noise was associated with overall PDI score (rho = 0.34, p =0.07), distress (rho = 0.42, p =0.02) and 

preoccupation (rho = 0.45, p = 0.01). 

 

Cost parameter estimates were highly correlated across blocks: blocks 1 and 2 correlation co-

efficient rho=0.9; blocks 1 and 3 rho=0.6, and blocks 2 and 3 rho=0.7. Noise parameters were also 

correlated across blocks: noise on the first two blocks correlation co-efficient rho=0.8; noise on 

blocks 1 and 3 rho=0.3; noise on blocks 2 and 3 rho=0.4. However, in spite of associations across 

blocks, there were significant effects of block on both cost and noise. Repeated measures ANOVA 

effect of block on cost F=14, df=2,122; p=0.000003; effect of block on noise: F=22, df=2,122; p=5x10-

9. Cost and noise parameters were related to each other (e.g. on block 1 rho=0.7), and, to a lesser 

extent, to IQ on some blocks (e.g. IQ versus block 1 cost rho=0.3, block 3 rho=0.3, block 1 noise rho= 

0.2, block 3 noise rho=0). 

 

Subgroup analysis  

On Block 1 DTD, controls (mean DTD 12.1 SD 5.4) gathered more evidence than FEP (mean 6.7, SD 

6.0; one-tailed t=3.0, df=44, p=0.002), and ARMS (mean 9.2, SD=5.9; one-tailed t=1.7, df=47, 
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p=0.045). On Block 1 cost parameter, controls (median 0.04, interquartile range 0.07) had lower 

values than FEP (median 2.5, interquartile range 4.1; Mann-Whitney U=106, one-tailed p=0.003) and 

ARMS (median=0.06, interquartile range 0.7, Mann-Whitney U=183, one-tailed p=0.04). On Block 1 

noise parameter, controls (mean 3.0, SD=2.1) had lower values than ARMS (mean 4.2, SD 3.1; t=1.7, 

df=45, one-tailed T=0.045) and, marginally, than FEP (mean 4.0, SD 2.7; t=1.5, df=44, one tailed 

p=0.075) 
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DISCUSSION 

 

Our study shows that early psychosis patients generally gather less information before coming to a 

conclusion compared to healthy controls. Both groups slightly increased their DTD when rewarded 

for a correct answer (Block 2), and significantly decreased their DTD when there was an explicit cost 

for the sampling of information (Block 3 and 4). The decrease was strongest in Block 4 including the 

incremental cost increase for each ‘extra fish.’ These effects were especially strong in controls, as 

they gathered significantly more information during Block 1 and 2 compared to patients. Thus, 

patients had a lower “baseline” against which to exhibit a change in DTD with increasing cost. 

However, we emphasise that an ideal Bayesian decision agent would still sample fewer information 

in than the average control or patient in Block 3 and 4 (in Block 4 the ideal Bayesian agent decides 

after the first fish, whereas our human participants sampled more). This indicates that potential 

floor effects may not be responsible for the decreased reduction of DTD in patients compared to 

controls. Together with our modelling results, this finding rather supports the hypothesis that 

independent of the objective cost-value of information, patients with early psychosis experience 

information sampling as more costly than controls.  

 

In this novel version of the beads task using blocks with explicit costs, jumping to conclusions can be 

an advantageous strategy, because sampling a large amount of very costly information would cancel 

out the potential gain due to correctly identifying the lake. Consistent with this, group differences 

were especially strong in the first two blocks, where information sampling was free. In Block 3, when 

there was only a small cost of information, both groups responded to that change by lowering the 

number fish sampled. The difference between the groups was marginally significant on Block 3, 

where patients still applied fewer DTD (p=0.06). However, further increasing the information 

sampling cost completely abolished the group differences. Our data furthermore show that patients 

were significantly worse in overall accuracy (i.e. probability of being correct at the time of making 

the decision) and total points won indicating the application of an unsuccessful strategy. In general, 

these results show that healthy controls were more flexible in adapting their information sampling 

to the changed task blocks. Controls increased the number of fish sampled when there was a reward 

for the correct decision, and decreased it when information sampling had a cost. Patients also 

decreased the number of DTD when information sampling became more costly, but not as much as 

the controls, suggesting that the patients view information sampling generally as costly, somewhat 

independent of the actual value and the feedback. The results on Block 1 and 2, furthermore, 

indicate that psychosis patients have difficulties integrating feedback appropriately to update their 
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future decisions. This is similar to results we reported in a recent study on the win-stay/lose-shift 

behaviour in a partially overlapping early psychosis group (Ermakova et al., 2018).  

 

The variance in DTD across the two groups was similar and the ICCs were all greater than 0.94, 

indicating consistent decision making behaviour across the 10 trials in each block and within each 

group. If patients were acting more randomly, they would apply noisier and more variable decision 

making behaviour, but we did not observe this, which is in contrast to Moutoussis et al. (2011). 

Concluding from their Bayesian modelling data, they proposed that patients had more noise in their 

responses, leading to the reduced number of DTD. When modelling our data in a similar way, we 

found a difference between the groups in the perceived cost of information sampling, but less 

evidence in differences in the noise of decision behaviour. We suggest that the contrast between our 

findings and Moutoussis et al. (2011) may be due to the differences in the patient groups used in the 

two studies. Whereas Moutoussis et al. (2011) used chronic, mainly schizophrenia, patients with a 

potential neuropsychological decline and a lower IQ (of 92), our study used patients at early stages 

of psychosis with preserved cognitive functioning (IQ 102). Severity of psychotic symptoms was 

related to DTD and cost parameters in our sample; however, as all our participants were in the early 

stages of illness, we were not able to explore relationship with chronicity statistically. We did 

however, conduct secondary analyses to examine subgroup differences within our patient sample. 

On block 1 DTD and cost parameters, the patients with confirmed psychotic illness (first episode 

psychosis, FEP) had the most pronounced differences from controls, whereas regarding the noise 

parameter, there was little difference between the patient groups and indeed the ARMS group, with 

milder symptoms, had slightly higher noise parameters. Differences in task design may also 

contribute to differences in the results from Moutoussis et al (2011). Block 1 was most similar to that 

previous study: It differed in the type of test (computerised fishing emulation test versus the classic 

test using actual beads and actual jars), and in providing feedback (i.e. ‘correct’ or ‘incorrect’) after 

each decision, as well as in showing the sequence of fish drawn in each trial. These changes in our 

task potentially assisted patients (e.g. if some patients had memory deficits), which might also 

contribute to why we did not observe robust differences in the noise parameter in Block 1. When 

analysing the objective cost of information sampling in Block 3, we found that patients slightly 

overestimated the cost, while the controls underestimated it. Furthermore, key contributors to the 

best fit parameters may be those who jump to conclusions most: participants who consistently made 

a decision after viewing only one fish. The proportion of those individuals was significantly higher 

among the patients.  
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The percentage of people with psychosis who demonstrated JTC reasoning style in our study was 

relatively low, at 26%, compared to previous studies that report 40% of individuals (Dudley et al., 

2011) or, half to two-thirds of the individuals with delusions (S. H. So et al., 2010). Likewise, our 

objective DTD values were slightly higher than that in most other studies. This might be due to the 

use of early stage psychosis patients and presence of feedback in our task compared to previous 

studies. Feedback has been shown to increase information sampling and accuracy both in patients 

with delusions and in controls (Lincoln, Ziegler, Mehl, & Rief, 2010).  

 

Additionally, we found a correlation between IQ and DTD in the first three blocks in the patient 

group, so we cannot completely exclude the contribution of intelligence to the information-

gathering bias. Some argue that impaired executive functions or working memory deficits contribute 

to the JTC bias (Falcone et al., 2015; P. Garety et al., 2013). A low IQ could lead to a low tolerance for 

uncertainty and an equivalent high cost of the information sampling, as well as the inability to 

integrate feedback in order to update future decisions. If more information is unpleasant, because it 

exceeds one’s capacity to utilise it, it could be viewed as costly. However, the fact that the 

correlation between IQ and DTD does not appear in controls argues against this. The groups were 

well matched on maternal education level (a proxy for premorbid or potential IQ) but the patient 

group had lower current IQ than controls (as expected given the that schizophrenia spectrum 

disorders are robustly associated with reduced current IQ compared to the general population). 

When we excluded the three controls with the highest IQ, and the two patients with the lowest IQ, 

the DTD results were broadly unchanged. Computational modelling in block 1 was not changed by 

these exclusions, although in block 2 there were some differences. After the exclusions, in block 2, 

the BIC values did not suggest evidence that the participants from different diagnostic groups are 

drawn from different populations. However, when we examined the individual level modelled 

parameters, even after the exclusions there was evidence that patients had higher estimated 

sampling costs compared to controls. Taken together, the findings indicate that lower IQ associated 

with psychosis is likely to contribute to the JTC bias, but is unlikely to solely explain its existence in 

psychosis. The results of the study were unchanged when we excluded four patients taking 

antipsychotic (dopamine receptor antagonist) medication, which is consistent with two prior studies 

in healthy volunteers suggesting that dopaminergic manipulations do not have a large effect on 

information sampling (Andreou et al 2013, Ermakova et al 2014). 
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When comparing our results to those of Moutoussis et al (2011), the use of the same computational 

model, implemented in the same way, is advantageous. However, we note that there are limitations 

in the approach. For example, the use of a gamma distribution may not be optimal in the case of 

values near zero (Moutoussis et al 2011). It could be hypothesised that the degree of cognitive noise 

should be a constant per individual, and that thus it would be more parsimonious to apply the same 

noise parameters for a given subject across blocks. Our data suggest this is not the case. Noise is 

highly correlated across blocks, just as cost is. However, the experimental manipulation of block had 

a highly significant effect on both cost (as intended by our paradigm design) and noise (an incidental 

effect). Noise parameters were reduced in block 2, where a correct decision is explicitly rewarded, 

compared to block 1, where it is not (indicating that information sampling is not immutable but can 

be adaptively altered by psychological manipulation). Noise parameters were greater in block 3 than 

block 2, presumably because the decision is more difficult in block 3 (where participants need to 

balance the stated benefits and costs of sampling). When decisions reach a certain level of difficulty, 

participants may appear more random in their decision making because they can no longer 

effectively utilise the information available. 

 

 

Rather than focusing on ICD-10 or DSM-V schizophrenia patients, we studied a group of patients 

early in their course of psychosis. All patients in our study suffered from current psychotic 

symptoms. Psychosis is often viewed as an upper part of the continuum, ranging from rare 

occurrences of delusions or hallucinations at one end, through individuals with regular ‘schizotypal’ 

traits (van Os, Linscott, Myin-Germeys, Delespaul, & Krabbendam, 2009).  Consistent with this 

approach, and with the theory that a jumping to conclusions style cognitive bias contributes to 

psychotic symptom formation (Huq et al 1988), we found that patients with more severe  positive 

symptoms sampled less information and had higher estimated sampling cost parameters. To 

investigate the idea of the psychosis continuum further, we looked at the correlations between 

information sampling and schizotypy characteristics in healthy volunteers. In this group, we found a 

negative correlation between the number of DTD and the scores on the distress and preoccupation 

subscales of the PDI, indicating that less information sampling is associated with higher scores. This 

is consistent with studies by Colbert and Peters (2002) and Lee et al. (2011), as well as the recent 

meta-analysis by Ross et al. (2015), in keeping with a continuum model of psychosis.  Regarding 

modelled parameters in controls, estimated noise and was associated with total PDI score, PDI 

distress and PDI preoccupation, and estimated sampling costs were associated with PDI 

preoccupation, and marginally, with distress. This hints at the intriguing possibility that hasty 
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decision making due cognitive noise may be a more important contributory factor to delusion-like 

thinking in the healthy population than it is to psychotic symptoms in psychotic illness, where hasty 

decision making due to higher information sampling costs appear to be more important. 

 

 

Summary 

 

In summary, we found that early psychosis patients demonstrate a hasty decision-making style 

compared with healthy volunteers, sampling significantly less information. This decision-making 

style was correlated with delusion severity, consistent with the possibility that it may be a cognitive 

mechanism contributing to delusion formation. Our data are not consistent with the account that 

patients sample less information because they are in general more noisy decision makers. Rather, 

our data suggest that patients with psychosis sample less information before making a decision 

because they attribute a higher cost to information sampling. Although psychosis patients were less 

able to adapt to the changing demands of the task, they did alter their decision making style in 

response to the changing explicit costs of information, indicating that an impulsive decision making 

style is not completely fixed in psychosis. This finding is consistent with the possibility that 

information sampling may be a treatment target, e.g. for psychotherapy (Moritz et al., 2014), and 

that patients with psychosis may benefit in this neuropsychological domain, as they have in other 

domains, from cognitive scaffolding approaches exemplified in  cognitive remediation therapy (Cella 

and Wykes 2017).  
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Figure Captions 

 

 

 

Figure 1: Experimental design of a single trial. In 50% of the trials fish were coming from the black 

lake, and in 50% they were coming from the gold lake. The order was pseudorandomised, so that the 

same sequences were used for all participants. Feedback, depending on the block, was either the 

words ‘Correct’ or ‘Incorrect’ in Block 1 or the number of points won or lost)during the trial in all 

subsequent blocks. 
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a.                                                                                                        b. 

Figure 2.  

a. Markovian transitions in this task. Top: belief (probabilistic) component of states; middle: 

observable part of the state (data/feedback). Down arrows: actions (sample, declare). Bottom: true 

state. For example, let the cost of sampling be very high. Then b0  may be ‘equiprobable lakes’, action 

1 ‘sample’, s1 ‘B’, b1 ‘60% B’, action 2 ‘declare B’, and s1 ‘Wrong’. 

 b. In this example, sampling cost is very low. A person has drawn 15 fishes, 7 of them g. The visible 

states corresponding to all possible future draws are shown. Looking ahead (example: grey arrow), 

the agent finds the ‘sampling’ action more valuable, in that the current preference for the B lake is 

likely to be strengthened at very low cost.   
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Figure 3 

A) Mean number of draws to decision in the four blocks of the task. On mixed-model ANOVA, there 

were significant main effects of block (F(3)=94.49 , p<0.001 and of group (F(1)=5.99, p=0.017). and 

an interaction between group and block (F(3)=4.32, p=0.006), with groups differences in block 1 

(p=0.007) and block 2 (p=0.03).  

B) Probability of being correct (Accuracy) at the time of making the decision in four task blocks. Here 

there was an effect for block (F(2)=93.73, p<0.001), a marginally significant interaction between 

block x group (F(2)=2.52, p=0.086) and a significant groups effect (F(1)=4.14, p=0.047).  
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Figure 4: Mean number of point won or lost in Block 2-3 across all 10 trials. Patients won 

significantly fewer points in Block 2 (F(2)=4.65, p=0.035), but did not differ from controls in Block 3 

and 4 (both p>0.3). 
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Tables 

Table 1: Sample characteristics for healthy controls and people with psychotic symptoms. 

Variable Controls (n=31) 
Early psychosis 

(n=31) 
Statistics 

 Mean SD Mean SD 
Value (df),  

Significance p<0.05 

Age (years) 21.58 2.41 22.52 4.66 t(60)=0.993, p=0.325 

Gender (male/female) 18/13 18/13 χ(1)=0.0, p=1 

IQ 110.52 15.79 102.26 17.91 t(60)=–1.926, p=0.059 

Level of education 2.35 0.79 2.00 1.17 U(2)=373.5, p=0.117 

Mother’s level of education 2.19 0.91 2.11 1.37 U(2)=440.0, p=0.884 

Smoking (yes/no)* 6/25 18/13 χ(1)=9.79, p=0.004 

Alcohol 2.42 0.85 1.78 1.37 U(2)=419.5, p=0.368 

Cannabis 0.90 0.79 1.26 1.23 U(2)=430.0, p=0.459 

Other drugs* 0.49 1.02 1.11 1.36 U(2)=355.5 , p=0.039 

PDI-21* 4.45 2.34 7.83 4.58 t(45)=3.359, p=0.002 

Distress* 9.52 6.94 24.00 15.32 t(45)=4.430, p<0.001 

Preoccupation* 10.28 6.48 24.78 16.11 t(45)=4.341, p<0.001 

Conviction* 13.31 8.13 26.56 17.11 t(45)=3.58, p=0.001 

BDI* 3.40 3.90 25.34 14.12 t(57)=8.197, p<0.001 

CAARMS Summary Score* 0.52 1.15 18.00 7.53 t(60)=12.776 , p<0.001 

Intelligence was measured with a Culture Fair Intelligence Test. Smoking: 0=non-smoker, 1=smoker. 

Substance use was measured on a 5-point scale (from 0=never used to 5=daily user). Other drugs: 

hallucinogens, stimulants or sedatives. PDI, Peters Delusion Inventory. BDI, Beck Depression 

Inventory, CAARMS, Comprehensive Assessment of At Risk Mental States summary score is a 

summary score of Unusual Thought Content, Non-Bizarre Ideas and Perceptual Abnormalities 

intensity and frequency subscales (for individual subscales of CAARMS, and other clinical assessment 

measures see Table 2). χ, Pearson’s chi-square; t, t-test, SD, standard deviation. U, Mann–Whitney 

test. *Significant differences. 
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Table 2. Clinical assessment measures for 31 patients 

with psychosis 

 Mean SD 

UTC 2.44 2.19 

UTC frequency 2.33 2.01 

NBI 3.41 1.67 

NBI frequency 3.52 1.48 

PA 3.33 2.06 

PA frequency 2.52 1.89 

DS 0.59 1.28 

DS frequency 0.96 1.99 

ADB 1.81 1.82 

ADB frequency 2.15 1.92 

SS 1.59 1.48 

SS frequency 1.30 1.44 

GAF score 55.00 18.54 

SANS score 0.35 0.75 

PANSS positive 13.68 3.99 

PANSS negative 9.87 4.88 

BDI, Beck Depression Inventory; GAF, Global 

Assessment of Functioning. Comprehensive 

Assessment of At Risk Mental States (CAARMS) 

subscales: Unusual Thought Content (UTC), Non-Bizarre 

Ideas (NBI), Perceptual Abnormalities (PA), 

Disorganised Speech (DA), Aggression/Dangerous 

Behaviour (ADB), Suicidality and Self-Harm (SS). SANS, 

Scale for Assessment of Negative Symptoms 
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Table 3. Information sampling in controls, patients 

and an ideal Bayesian agent. 

Group Control 

n=31 

Psychosis 

n=31 

Ideal 

Bayesian 

Agent 

 Mean (SD) Mean (SD)  

DTD 1 
12.01 

(5.42) 

8.14 (6.16) 20 

DTD 2 
12.69 

(5.67) 

9.15 (6.31) 20 

DTD 3 5.80 (4.23) 4.14 (2.64) Nb-Ng=+-2 

DTD 4 3.71 (3.12) 3.03 (2.09) 1 

P corr 1 0.72 (0.10) 0.66 (0.10) 0.835 

P corr 2 0.75 (0.09) 0.69 (0.11) 0.835 

P corr 3 0.65 (0.07) 0.62 (0.08) 0.692 

P corr 4 0.62 (0.09) 0.59 (0.08) 0.6 

DTD, draws to decision (i.e. number of fish seen by 

the participant before reaching a decision); P corr, 

probability of being correct in Blocks 1 to 4; SD, 

standard deviation. Nb (number of black). Ng 

(number of gold).  
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Table 4. Percentage and count of people who displayed JTC reasoning style. 

Group Control n=31 Psychosis n=31 

JTC Count % Count % 

No JTC 18 58.1% 15 48.4% 

JTC Blocks 1/2 0 0.0% 1 3.2% 

JTC Blocks 3/4 11 35.5% 7 22.6% 

JTC all Blocks 2 6.5% 8 25.8% 

JTC (jumping to conclusions) is defined as reaching a decision after being given just one or two 

pieces of information. 
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Table 5: Best-fit distribution parameters for all groups in all experiments.  

Group CSM CSV TM TV LL 

Block 1: No cost 

Control 1.9⨉10-3 2.0⨉10-6 3.4 13 -943.747 

Psychosis 1.7 13 4.2 13 -762.993 

Combined 0.7 2.2 3.6 13 -1735.65 

Block 2: No cost, but win or loss (±100) 

Control 5.0 ⨉10-3 1.3⨉10-5  3.6 21 -841.202 

Psychosis 3.0 44  2.9 7.5 -690.567 

Combined 1.5 13 2.5 7.0 -1549.28 

Block 3: Fixed cost, plus win or loss (±100) 

Control 1.6 9.9 4.1 2.2 -707.604 

Psychosis 5.2 100 4.4 2.2 -545.704 

Combined 3.1 38 4.2 1.0 -1260.45 

Best fit parameters were calculated for each participant group separately, and for the group 

formed by combining both participant groups. CSM is the mean cost per sample for a particular 

group. CSV is the variance of cost per sample within a particular group. TM is the mean noise 

parameter for a particular group. Tv is the variance of the noise parameter within a particular 

group. LL is the log likelihood of the data given the parameters 
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Table 6: Integrated Bayesian Information Criterion (iBIC) values for the model where all participants 

are drawn from the same distribution, co pared to the model where the healthy and unhealthy 

groups differ in their distributions. iBIC values and differences are presented for analyses with all 

participants. iBIC differences are also shown for repeat analyses after exclusions for antipsychotic 

medication or closer IQ matching. Positive iBIC differences indicate the preference for separate 

groups, negative for a single combined group.  

Block 
iBIC 

combined  
iBIC separate iBIC Difference 

iBIC 

difference 

after 

medication 

exclusions 

iBIC 

difference 

after 

closer IQ 

matching 

1 (no cost) 3489.7 3450.2 
39.5  

(Very strong) 

43.9 36.1 

2 (no cost, win or 

loss ±100) 
3116.9 3100.3 

16.7  

(Very strong) 

16.6 -12.9 

3 (fixed cost, plus 

win or loss ±100) 
2539.3 2543.4 

-4.1 

(Preference for 

combined 

model) 

-6.2 -4.1 
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Appendix: Expectation-Maximization 

Expectation-Maximization adjusts the participant-level parameter estimates and the group-level 

parameter estimates to make them maximally consistent with the data (E) and with each other (M). 

The group level distributions are gamma-shaped. For the purposes of algebraic manipulation, it is 

convenient to parameterise these in terms of a so-called shape parameter κ and a scale parameter 

θ, but can also they can be equivalently described by their mean m=κθ and variance σ2 = κθ2. We 

report values for mean and variance as we believe they are more intuitively understandable by 

clinical researchers but use the shape-scale notation in this appendix for algebraic clarity. The prior 

probability for each participant’s parameters under the group parameters in our generative 

statistical model G (not to be confused with G for ‘gold’) is:  

 

����, �; �	 
 ����; �� , ���	���; � , ��	                                                                               Equation A1  

 

At the participant level, we denote the (empirical) posterior beliefs about the parameters of each 

participant j , furnishing data dj as Q[T, CS; dj]. Again Q here not to be confused with action values. 

We write υ={T,CS} and the probability that the participant made all the decisions they did under 

equation 5 as P[dj | υ; G]. Now, we seek to maximise the aforementioned consistency by minimizing 

the free energy of the entire model, given the data: 

 

 

Equation A2 

Substituting Eq. 1a gives 

      

 

Equation A3 

In the maximisation phase, we keep the form of all Q[T, CS; dj]  fixed and differentiate Eq. A3 w.r.t. 

G, that is,   �� , ��� , � , ��. We can derive: 
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Equation A4 

Where Ψ0 is the digamma function. In an analogous fashion, 

 

 

Equation A5 

Setting Eq. A5 equal to zero and using integrals instead of sums, as the parameters are continuous, 

gives for the group mean Tm :  

 

 

Equation A6 

We evaluated this expectation numerically and used it to express   � 
  ��/ ��   . We then set Eq. 

A4 equal to zero and obtained: 

 

 

Equation A7 

Again, I2 is integrated numerically and Eq. A7 solved for �  by refining its standard approximate 

algebraic solution numerically.  

 

The Expectation step can proceed much more straightforwardly, in terms of algebra, as Bayes 

theorem gives: 

 

Equation A8  

In this low-dimensional parameter space the denominator was numerically tractable using Monte-

Carlo integration, but for high dimensional models algebraic approximations would be needed.  

 

Once EM has converged, equation A8 gives the probability distributions for individual participants, 

which can themselves be expressed in terms of shape and scale, or mean and variance. 
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