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ABSTRACT  
 
Lipoprotein(a), Lp(a), is a modified low-density lipoprotein particle where apolipoprotein(a) 
(protein product of the LPA gene) is covalently attached to apolipoprotein B. Lp(a) is a highly 
heritable, causal risk factor for cardiovascular diseases and varies in concentrations across 
ancestries. To comprehensively delineate the inherited basis for plasma Lp(a), we performed 
deep-coverage whole genome sequencing in 8,392 individuals of European and African 
American ancestries. Through whole genome variant discovery and direct genotyping of all 
structural variants overlapping LPA, we quantified the 5.5kb kringle IV-2 copy number (KIV2-
CN), a known LPA structural polymorphism, and developed a model for its imputation. Through 
common variant analysis, we discovered a novel locus (SORT1) associated with Lp(a)-
cholesterol, and also genetic modifiers of KIV2-CN. Furthermore, in contrast to previous GWAS 
studies, we explain most of the heritability of Lp(a), observing Lp(a) to be 85% heritable among 
African Americans and 75% among Europeans, yet with notable inter-ethnic heterogeneity. 
Through analyses of aggregates of rare coding and non-coding variants with Lp(a)-cholesterol, 
we found the only genome-wide significant signal to be at a non-coding SLC22A3 intronic 
window also previously described to be associated with Lp(a); however, this association was 
mitigated by adjustment with KIV2-CN. Finally, using an additional imputation dataset 
(N=27,344), we performed Mendelian randomization of LPA variant classes, finding that 
genetically regulated Lp(a) is more strongly associated with incident cardiovascular diseases 
than directly measured Lp(a), and is significantly associated with measures of subclinical 
atherosclerosis in African Americans. 
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MAIN TEXT  
 
Lipoprotein(a), Lp(a), is a circulating lipoprotein comprised of a modified low-density 
lipoprotein (LDL) particle covalently bonded to apolipoprotein(a), apo(a)1-3. The apo(a) protein 
contains an inactive protease domain, kringle V domain, and ten kringle IV domains, including 
an extremely polymorphic kringle IV 2 copy number (KIV2-CN)3, a large region spanning 5.5kb 
which consists of a pair of exons repeating between 5 to over 40 times per chromosome4. 
Increased KIV2-CN results in increased apo(a) size which is inversely associated with plasma 
Lp(a) levels due to altered protein folding, transport, and secretion5. Twin studies have suggested 
that Lp(a) is highly heritable, with up to 90% heritability in both African and European 
populations6-10. However, the most recent genome-wide association studies have only explained 
approximately half of the genetic heritability11. Epidemiologic studies and genetic analyses in 
European and Asian populations have causally linked Lp(a) concentrations with atherosclerotic 
cardiovascular disease, independent of other plasma lipids including LDL cholesterol12-15. As a 
result, Lp(a) has emerged as a promising therapeutic target for atherosclerotic cardiovascular 
diseases.  
 
Plasma Lp(a) distributions vary significantly among ethnicities but these differences are not 
explained by known differential KIV2-CN distributions between the ethnicities and are posited 
to be related to primary sequence16. Additionally, studies suggest that apo(a) isoform and Lp(a) 
concentration may have differential effects on coronary heart disease (CHD) odds14; however, 
distinguishing isoform-independent genetic effects on Lp(a) has required separate genotyping 
strategies, typically qPCR17, in addition to genotyping single nucleotide polymorphisms (SNPs). 
Deep-coverage (>20X) whole genome sequencing (WGS) provides the opportunity to determine 
the full range of genomic variation that influences Lp(a) concentration and isoform size, across 
the allele frequency spectrum and variant type among diverse individuals.  
 
Here, we used deep-coverage WGS in 2,284 Estonians, 2,690 Finnish individuals, and 3,418 
African Americans to ascertain SNPs and indels across the genome, and structural variants at 
LPA, including KIV2-CN. We performed: 1) structural variant association analyses; 2) common 
variant association; 3) rare variant association in coding and non-coding sequence; and 4) 
Mendelian randomization analyses. Our goals were three-fold: 1) to understand the full spectrum 
of genetic variation influencing Lp(a) and Lp(a)-cholesterol (Lp(a)-C); 2) to compare genetic 
differences between Europeans and African Americans; and 3) to determine the phenotypic 
consequences of LPA variant classes on incident clinical events and subclinical measures (Fig. 
1).  
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Whole genome sequencing and baseline characteristics 
 
A total of 8,392 participants underwent deep-coverage (mean attained 33X coverage) WGS: 
3,418 African Americans from the Jackson Heart Study (JHS) as part of the NIH/NHLBI Trans-
Omics for Precision Medicine (TOPMed) program, 2,284 Europeans from the Estonian Biobank 
(EST), and 2,690 Europeans from the Finland FINRISK study (FIN) (Supplementary Fig. 1). 
FIN WGS and whole exome sequences were used to impute into 27,344 Finnish array data for 
analyses. Following quality control (Supplementary Table 1), a total of 119.4M SNPs and 
7.2M indels were discovered across EST WGS, JHS WGS, and FIN imputation datasets 
analyzed (Supplementary Fig. 2-3, Supplementary Table 2).  
 
We obtained both Lp(a) and Lp(a)-C where available. 4,767 individuals from EST and JHS 
WGS with Lp(a)-C available and 9,272 individuals from the JHS WGS and FIN imputation 
dataset with Lp(a) available were included in analyses requiring these phenotypes. Lp(a)-C 
values were quantified using the Vertical Autoprofile (VAP) method, which measures 
cholesterol concentration via densitometry18,19. Lp(a) values were quantified using an 
immunoassay-based method sensitive to the entire mass of the Lp(a) particle. Median Lp(a) 
levels in JHS (median (IQR) 46 (24-79) mg/dL) were nearly ten times higher than in FIN (5 (2-
10) mg/dL), while the Lp(a)-C distribution was similar between EST (7 (5-9) mg/dL) and JHS (7 
(5-11) mg/dL) (Supplementary Table 3, Supplementary Fig. 4a,b). We note that we are 
particularly well powered to detect genetic differences between individuals of African and 
European ancestry since Finnish individuals are known to have the lowest Lp(a) concentration 
amongst different European populations20, thus explaining why we have a 10-fold difference 
between JHS and FIN Lp(a) concentrations as opposed to the 2-3 fold differences typically 
described between European and African populations16. Among JHS individuals with both Lp(a) 
and Lp(a)-C available, the concentrations between these phenotypes were highly correlated 
(Spearman correlation (Rs) = 0.46, P = 2.4x10-143) (Supplementary Fig. 5). 
 
Structural variant analyses: discovery and imputation of KIV2-CN from sequence reads 
 
Structural variants, notably KIV2-CN, at LPA have been previously shown to influence apo(a) 
size and Lp(a) concentration17. From the WGS data, we used GenomeSTRiP21 to identify and 
genotype 9 structural variants at the LPA locus (Fig. 2a, Supplementary Table 4), all rare 
except the KIV2-CN repeat. We mapped the reported 6 KIV2 repeats present in the hg19 
reference genome22, finding that the KIV2-CN repeat occurs between positions chr6:161032565-
161067901 with each repeat copy containing 5,534 – 5,546 base pairs and two coding exons 
(Supplementary Fig. 6a). The KIV2-CN (quantified as the sum of the KIV2 allelic copy 
number across both chromosomes) distribution is slightly different between African American 
(mean 38.5 (SD 7.4)) and European (mean 43.7 (SD 6.2)) ethnicities, ranging between 12.0-84.6 
copies (Supplementary Fig. 6b, Supplementary Table 5). In earlier work, we validated 
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Genome STRiP copy number estimates using ddPCR23, which establishes general accuracy for 
the quantified absolute copy number. To evaluate the precision of our KIV2-CN estimates, we 
utilized 123 pairs of siblings from JHS that were confidently identical-by-descent at both LPA 
1Mb window haplotypes (genotype concordance > 99%), and found a robust correlation between 
sibling pair KIV2 copy number estimates (r2=0.989) (Supplementary Fig. 7a-d).  
 
LPA locus variants, namely rs3798220 and rs10455872, have been previously associated with 
KIV2-CN14,15. In the FIN WGS, these two SNPs account for 12% of the variance of directly 
genotyped KIV2-CN. To improve KIV2-CN estimation from SNPs, we developed an imputation 
model using 2,215 FIN with WGS and applied it to impute KIV2-CN in the 27,344 FIN with 
array-derived genotypes. In the FIN WGS, we applied the least absolute shrinkage and selection 
operator (LASSO) across high-quality (imputation quality > 0.8) variants with minor allele 
frequency (MAF) > 0.1% available in the FIN imputation dataset in a 4MB window around LPA, 
which yielded a 61-variant model to impute KIV2-CN (Supplemental Fig. 8a). To understand 
the relative importance of each of these 61 variants, a random forest model was applied (Fig. 2b, 
Supplementary Fig. 8b). Our model ascribed greatest importance to rs10455872, a previously 
described SNP associated with KIV2-CN14,15. The full 61-variant model in our validation dataset 
explained 60% of variation in genotyped KIV2-CN (Supplemental Table 5, Supplemental Fig. 
6c, Fig. 3b). While low frequency loss-of-function variants have been observed by us and 
others24,25 within LPA, removal of these carriers did not significantly alter the relationship 
between KIV2-CN and Lp(a) across all individuals (P=0.48). 
 
We confirmed that both directly genotyped and imputed KIV2-CN were negatively associated 
with Lp(a)-C (-0.05 SD/CN, P < 1x10-61) and Lp(a) (-0.07 to -0.08 SD/CN, P < 1x10-190), across 
African American and European ethnicities (Fig. 3c). KIV2-CN alone explained 18% 
(Europeans) to 26% (African Americans) of variation in Lp(a), and for Lp(a)-C explained 14% 
of variation in both ethnicities. Introduction of 1/KIV2-CN to the multivariable model did not 
improve model fit for the relationship between KIV2-CN and Lp(a) (P=0.16). 
 
We sought to also determine whether combinations of summed KIV2-CN alleles equivalent to 
the same total had the same relationship with KIV2-CN. We observed that the relationship of 
homozygous KIV2-CN alleles (from 59 FIN individuals 95% homozygous-by-descent at the 
LPA locus) to Lp(a) was similar to the remaining association observed across all others (P = 
0.21).  
 
Common variant association: Single variant analyses 
 
To identify additional genomic variants associated with Lp(a) and Lp(a)-C, we performed 
genome-wide common variant (MAF > 0.1%) association analyses using a linear mixed model, 
conditioning on KIV2-CN. Association was performed at the cohort-level and followed by trans-
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ethnic meta-analysis. We analyzed a total of 32,695,476 variants for Lp(a)-C and 31,652,301 
variants for Lp(a), identifying common variants at 3 loci at conventional genome-wide 
significance (P < 5x10-8) for Lp(a)-C at LPA (rs140570886, P = 3.3x10-30), CETP (rs247616, P = 
6.1x10-10), and SORT1 (rs12740374 P = 1.0x10-21), and 2 genome-wide significant loci for Lp(a) 
at LPA (rs6938647, P = 4.7x10-129), and APOE (rs7412, P = 1.3x10-23) (Supplementary Fig. 9-
11; Supplementary Tables 7, 8). 
  
The lead SORT1 locus variant, rs12740374, has been previously causally associated with LDL 
cholesterol26. Here, Lp(a)-C association for rs12740374 was not substantially altered conditioned 
on either LDL cholesterol (Fig. 4a) or apolipoprotein B (Supplementary Fig. 12). Common 
variants at CETP are associated with HDL cholesterol27 and the lead CETP locus variant for 
Lp(a)-C, rs247616, is no longer significant after conditioning on HDL cholesterol 
(Supplementary Fig. 13). Lp(a)-C is strongly associated with HDL cholesterol (B = 0.41 SD 
Lp(a)-C/SD HDL, P =2.9x10-191); notably, HDL and Lp(a) particles have similar densities 
potentially influencing Lp(a)-C measurement accuracy28. Finally, rs7412 (APOE p. Arg176Cys), 
denoting the major APOE2 polymorphism, has been previously associated with LDL 
cholesterol29 and recently with Lp(a) in a meta-analysis11. The association of rs7412 with Lp(a) is 
diminished when conditioning on LDL cholesterol but remains strongly associated (before 
conditioning: B = -0.25 SD, P = 1x10-23, after conditioning: B = -0.18 SD, P = 5x10-16) (Fig. 4b). 
 
On average, LPA locus genetic variants yielding a 1 SD increase in Lp(a) yield a 0.48 SD 
increase in Lp(a)-C, similar to the observational correlation between the two phenotypes 
(Supplementary Fig. 14). Iterative conditional analyses at the LPA locus showed that, for Lp(a)-
C there are 2 (JHS) and 3 (EST) independent genome-wide significant variants, (Supplementary 
Table 9a,b), while for Lp(a) there are 13 (JHS) and 30 (FIN) independent genome-wide 
significant variants (Supplementary Table 10a,b) (Supplementary Fig. 15a,b), similar to the 
number of independent variants from past studies11,17,30,31. We replicated Lp(a) associations for 
two known LPA loss-of-function (LOF) alleles24,25: splice donor variant rs41272114 (B = -0.7 
SD, P = 8x10-77) and splice acceptor variant rs143431368 (B = -0.5 SD, P = 2x10-26), and also 
discovered a novel LOF variant, a splice acceptor variant in exon 28 only observed African 
Americans in JHS: rs199583644 (MAF = 0.28%, B = -1.5 SD, P = 3x10-13).  
 
Next, we compared inter-ethnic effects of LPA locus variants attaining sub-threshold significance 
(P < 1x10-4) in either ethnicity for Lp(a) and Lp(a)-C. Spearman rank correlation of genetic 
effects between the two ethnicities for Lp(a)-C was 0.38 and for Lp(a) 0.16 (Supplementary 
Fig. 16a,b). Moderately associated (P < 1x10-2) LPA locus variants largely private in African 
Americans (FIN MAF <0.1%) had larger absolute effects across MAFs compared to such 
variants observed in both ethnicities (P = 3x10-32) (Supplementary Fig. 17a,b). In comparing 
betas from genome-wide significant variants in African Americans with betas from the same 
variants in Europeans (Fig. 4c), we found the strongest inter-ethnic heterogeneity (HetP = 
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9.8x10-64) at an LPAL2 intronic variant at the LPA locus (rs192873801, MAF 2.8% in JHS and 
2.7% in FIN) with strongly divergent effects between the two ethnicities: +0.80 SD in JHS (P = 
3.8x10-32) and -0.61 SD in FIN (P = 2.0x10-35) Supplementary Fig. 18. We noted these variants 
to be on separate haplotypes for JHS and FIN (Supplementary Fig. 19). Notably, the LPA loss-
of-function variant rs41272114, shows similarly strong effects in both ethnicities (HetP > 0.05).  
 
Early family studies in Europeans and Africans have suggested the heritability of Lp(a) to be 
between 51%-90% 6-10. A recent array-based genotyping study in KORA estimated 49%11 of 
variance in Lp(a) from genome-wide heritability analysis of 6,002 Europeans. From WGS, we 
now estimate genetic heritability in African Americans and Europeans, respectively, to be 85% 
(SE 5%) and 75% (SE 7%) for Lp(a), and 52% (SE 7%) and 75% (SE 34%) for Lp(a)-C (Fig. 
4d).  
 
Common variant association: KIV2-CN modifier analyses 
 
To determine if there are variants that influence the relationship between KIV2-CN and Lp(a)-C 
or Lp(a) concentrations, we performed variant-by-KIV2-CN interaction analyses at a 4MB 
window around LPA. We identified three independent modifier variants at this locus which 
influenced the relationship between KIV2-CN and Lp(a)-C (rs13192132, P = 1.73x10-15, 
rs1810126, P = 6.84x10-14, rs1740445, P = 6.35x10-9) (Fig. 5) and were consistent across 
ethnicities (Supplementary Table 11, Supplementary Fig. 20a,b). Sensitivity analyses of 
interactions was performed to assess for confounding from 1) haplotype effects and 2) single 
variants tagged through LD32,33. All three variants show association with Lp(a)-C individually (P 
< 0.05), but are not correlated with KIV2-CN genotype (Pearson correlation r2 < 0.1) 
(Supplementary Table 12). Furthermore, interaction associations persisted after conditioning on 
variants independently associated with Lp(a)-C (Supplementary Table 13).  
 
Genomic context interrogation using adult liver regulatory annotations from the Roadmap 
Epigenome Project34 showed that the top modifier variant in EST, a 3-base deletion, rs4063600 
(TAGG>T, B = +0.03 SD Lp(a)-C/CN/allele, P = 2.96x10-12), is in strong LD with rs13192132 
(r2 = 0.88) and overlies significant H3K4me3 and H3K27ac peaks (P < 1x10-2) 7,508 bases 
downstream of the LPA transcription start site (TSS) (Supplementary Fig. 21a). We 
additionally performed variant-by-KIV2-CN modifier analyses for Lp(a) using the JHS WGS 
(Supplementary Fig. 21b). Complete lists of cohort-specific, LD-clumped significant variants 
are provided in Supplementary Tables 14-17. 
 
Rare variant analysis: Coding and non-coding burden tests  
 
Rare and low-frequency disruptive coding variants within LPA have been previously associated 
with Lp(a)24,25. Here, we performed two coding rare variant analyses studies (RVAS) aggregating 
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rare (MAF <1%) variants which were 1) LOF or missense deleterious by in-silico prediction 
tools35, or 2) non-synonymous, within their respective genes, and performed association with 
Lp(a)-C, adjusting for KIV2-CN. All analyses were done separately for JHS and EST and meta-
analyzed. While no genes reached significance in either analysis after accounting for multiple-
hypothesis testing, we observed suggestive evidence for LPA in both coding RVAS tests (P = 
7x10-4 for LOF and missense deleterious mutations, 1x10-4 for non-synonymous mutations) 
(Supplementary Tables 18-19, Supplementary Fig. 22a,b). 
 
We also interrogated whether there was evidence of rare, non-coding variants aggregated within 
regulatory sequences uniquely detected by WGS that influence Lp(a)-C. We performed three 
non-coding RVAS using the variant groupings described in the Methods along with Roadmap 
epigenome data34 from adult liver, the main tissue where LPA is expressed (Supplementary Fig. 
23, Supplementary Fig. 24). The only genome-wide significant association was for an intron of 
SLC22A3 at 6:160851000-160854000 with Lp(a)-C (P = 4.5x10-8) (Supplementary Tables 20-
25). Similarly, rare variants in a putative regulatory domain of SLC22A3 were recently shown to 
be associated with Lp(a) in a sliding window analysis using low-coverage whole genomes36. 
However, we found that conditioning on LPA’s KIV2-CN, 128 kb away, mitigated the observed 
association (P = 4.3x10-3, Supplementary Tables 20-21). Upon conditioning on KIV2-CN, 
while no sliding windows reached statistical significance, the top window was 6:160,939,500-
160,942,500 (P = 1.6x10-4), 13kb downstream of the LPA transcription end site and overlapping 
three annotated ORegAnno37 CTCF binding sites (Fig. 6).  
 
Interrogation of rare enhancer variants predicted to influence LPA expression in liver38 showed 
nominal evidence of association with Lp(a)-C before (P = 5x10-5) and after (P = 1x10-3) 
conditioning on KIV2-CN (Fig. 6, Supplementary Fig. 25). However, other putative gene-
linked rare enhancer variants at the LPA locus, including the aforementioned SLC22A3 
(Supplementary Fig. 26), also demonstrate nominal associations, highlighting current 
challenges in both mapping associated regulatory elements to causal genes through in silico 
approaches and discerning the relative impacts of potentially pleiotropic regulatory elements.  
 
Mendelian randomization 
 
Genetic variation at the LPA locus is an optimal instrument for Mendelian randomization (MR) 
as it strongly and specifically influences circulating Lp(a) levels. Past studies have performed 
Lp(a) MR across clinical and metabolic traits using genetic risk scores comprised of between 1-
18 variants14,39,40. Here, we performed MR using three different genetic instruments per cohort to 
distinguish variant classes influencing Lp(a) phenotypes: 1) an expanded genetic risk score, 
“GRS,” comprised of the sum of the KIV2-CN-adjusted variant effects from LD-pruned variants 
in a ~4MB window around LPA with sub-threshold significance (P < 1x10-4); 2) a “KIV2-CN” 
score using the directly genotyped or imputed KIV2-CN; and 3) a combined “GRS+KIV2-CN” 
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score combining scores from (1) and (2). Each genetic instrument was normalized such that 1 
unit increase in the score was equal to 1SD increase in Lp(a) (or Lp(a)-C). In African Americans, 
235 variants were used towards the Lp(a) GRS and 39 towards the Lp(a)-C GRS 
(Supplementary Table 26). In Europeans, 399 variants were used towards the Lp(a) GRS and 
49 towards the Lp(a)-C GRS (Supplementary Table 27-28). The GRS+KIV2-CN score 
explains 45-49% of Lp(a) variance and 20% of Lp(a)-C variance (Supplementary Fig 27, 
Supplementary Table 29).  
 
Association of GRS+KIV2-CN with 10 incident clinical events from the FIN imputation dataset 
(N=27,344) (Fig. 7a, Supplementary Table 30) demonstrated anticipated associations for 
incident cardiovascular diseases (HR 1.18/Lp(a) SD, P = 1x10-5), comprising incident 
myocardial infarction (HR 1.23/Lp(a) SD, P = 8x10-4), coronary heart disease (CHD) (HR 
1.25/Lp(a) SD, P = 7x10-7), and stroke (HR 1.27/Lp(a) SD, P = 1x10-3). For given effect on 
Lp(a), the GRS had a larger effect on incident cardiovascular risk (HR 1.30/Lp(a) SD, P = 6x10-

8) than KIV2-CN (HR 1.03/Lp(a) SD, P = 0.17). While the KIV2-CN score alone was not as 
strongly associated with cardiovascular outcomes (P > 0.05), its estimated effect with incident 
MI (HR = 1.16) was similar to recent estimations in a MI case-control analysis14. Thus, power for 
MR using the KIV2-CN instrument may be hindered due to a limited number of incident MI 
cases and modest effect conferred by KIV2-CN. These results suggest that knowledge of LPA 
variant class genotypes may provide additional information on cardiovascular risk beyond 
circulating Lp(a) levels.  
 
To determine whether LPA genomic variants influence the accumulation of subclinical 
cardiovascular atherosclerosis, we associated both the Lp(a) and Lp(a)-C genetic instruments 
with computed tomography-derived measures of atherosclerosis in the coronary arteries (CAC) 
and abdominal aorta (AAC) in 1,701 African Americans from JHS without prevalent clinical 
cardiovascular disease (Supplementary Table 31, Fig. 7b). Here, the comprehensive 
(GRS+KIV2-CN) genetic instruments for both Lp(a) and Lp(a)-C demonstrated association with 
subclinical atherosclerosis with similar standardized effects for both CAC and AAC: Lp(a) 
(CAC: B = 0.097, P = 7.6x10-4; AAC: B = 0.092, P = 2.7x10-3), and Lp(a)-C (CAC: B = 0.14, P 
= 4.6x10-3; AAC: B = 0.12, P = 6.4x10-3). Notably, this is the first known demonstration of LPA 
genomic variants affecting atherosclerotic risk in African Americans. A prior study of African 
Americans from the Dallas Heart Study found no association between sub-clinical measures of 
atherosclerosis, such as coronary calcium, and Lp(a) phenotype41. Compared to prior work, our 
power is optimized with larger sample size and genetic instrument for causal inference. 
 
DISCUSSION: 
 
We characterized the genetic architecture of Lp(a) and Lp(a)-C using deep coverage WGS in 
8,392 Europeans and African Americans across allele frequencies and classes. While we observe 
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that Lp(a) is highly heritable in Europeans and African Americans, distinct and common genetic 
determinants influence concentrations. Using a comprehensive genetic instrument that separately 
imputes apo(a) isoform, we show that knowledge of LPA genotypes can better inform incident 
cardiovascular disease risk prediction than just knowledge of Lp(a) biomarker level. 
 
These observations permit several conclusions. First, through whole-genome sequencing and 
imputation, we observe substantial genetic heritability of Lp(a) – 85% (SE 5%) in African 
Americans and 75% (SE 6%) in Europeans. We leverage this observation to systematically 
dissect the heritable components of Lp(a) across two ethnicities. Through single variant analysis, 
we find a novel locus for Lp(a)-C, SORT1, whereby the top variant (rs12740374) reduces plasma 
Lp(a)-C concentrations in both ethnicities and is independent of LDL cholesterol levels, thereby 
providing evidence for the sortilin receptor as a novel component in Lp(a)-C metabolism. 
Through genetic modifier analysis, we find evidence of three loci which affect the relationship 
between KIV2-CN and Lp(a)-C similarly across both ethnicities. We replicate evidence 
supporting rare coding variation at LPA influencing Lp(a); however, observed associations of 
aggregates of rare non-coding variation appeared to be largely explained by LPA structural 
variation, namely KIV2-CN.  
 
Second, we observed high heritability in diverse ethnicities despite notable inter-ethnic 
differences in circulating biomarker concentrations. Upon finding that similar Lp(a) effect sizes 
are conferred per KIV2 copy in African Americans and Europeans, we delved further into KIV2-
independent effects conferred by variants at the LPA locus. Among distinct sequence variation, 
we notably observed an LPAL2 intronic variant with significant yet opposing effects in each 
ethnicity, likely indicating influences from haplotype structure or gene-environment interactions. 
Altogether, LPA locus variants largely private to African Americans (FIN MAF < 0.1%) confer 
significantly greater absolute effect on standardized Lp(a) levels than variants observed in both 
ethnicities.  
 
Third, WGS enables the detection of relevant genomic variants for Lp(a) which cannot be 
detected via WES or genotyping arrays. Furthermore, knowledge of such variants, given 
differential effects on circulating Lp(a) and differential effects on incident cardiovascular events, 
provides additional information regarding cardiovascular disease risk beyond circulating Lp(a).  
 
It should be noted that several limitations to this work exist. First, we estimate total KIV2-CN, 
but individuals may have different KIV2-CN alleles on each chromosome42. Our CNV analysis 
of next-generation sequencing data relies on aggregate depth of coverage for genotyping, 
precluding our ability to determine allelic KIV2-CN. However, despite this, sensitivity analyses 
suggest that the sum of KIV2-CN alleles may similarly associate with Lp(a) across varied KIV2-
CN allele combinations. Additionally, the strongest SNP in our KIV2-CN imputation model is 
rs10455872, whose association with KIV2-CN has been well-described previously17, and our 
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KIV2-CN estimate is robustly associated with Lp(a) phenotypes as expected. Second, we only 
assess one non-European cohort; however, it has been observed that there are distinct Lp(a) 
distributions in other ethnicities which may uncover additional loci and sources of genetic 
heterogeneity. Third, while in silico prediction tools for non-coding regions identify putative 
regulatory sequence, they are limited in their ability to 1) determine disruptive mutations, and 2) 
link regulatory regions to genes.  
 
In summary, we characterize the shared and unique genetic determinants of Lp(a) using whole 
genome sequences in African Americans and Europeans. Additional knowledge of the 
complement of these determinants better informs cardiovascular disease risk prediction than 
biomarker alone.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2017. ; https://doi.org/10.1101/225169doi: bioRxiv preprint 

https://doi.org/10.1101/225169
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

REFERENCES: 

Uncategorized References 

1.	 Tsimikas,	S.	&	Hall,	J.L.	Lipoprotein(a)	as	a	potential	causal	genetic	risk	factor	of	
cardiovascular	disease:	a	rationale	for	increased	efforts	to	understand	its	
pathophysiology	and	develop	targeted	therapies.	J	Am	Coll	Cardiol	60,	716-21	(2012).	

2.	 Utermann,	G.	The	mysteries	of	lipoprotein(a).	Science	246,	904-10	(1989).	
3.	 Berglund,	L.	&	Ramakrishnan,	R.	Lipoprotein(a):	an	elusive	cardiovascular	risk	factor.	

Arterioscler	Thromb	Vasc	Biol	24,	2219-26	(2004).	
4.	 Kraft,	H.G.,	Kochl,	S.,	Menzel,	H.J.,	Sandholzer,	C.	&	Utermann,	G.	The	apolipoprotein	(a)	

gene:	a	transcribed	hypervariable	locus	controlling	plasma	lipoprotein	(a)	concentration.	
Hum	Genet	90,	220-30	(1992).	

5.	 Lanktree,	M.B.,	Anand,	S.S.,	Yusuf,	S.,	Hegele,	R.A.	&	Investigators,	S.	Comprehensive	
analysis	of	genomic	variation	in	the	LPA	locus	and	its	relationship	to	plasma	
lipoprotein(a)	in	South	Asians,	Chinese,	and	European	Caucasians.	Circ	Cardiovasc	Genet	
3,	39-46	(2010).	

6.	 Lamon-Fava,	S.	et	al.	The	NHLBI	Twin	Study:	heritability	of	apolipoprotein	A-I,	B,	and	low	
density	lipoprotein	subclasses	and	concordance	for	lipoprotein(a).	Atherosclerosis	91,	
97-106	(1991).	

7.	 Austin,	M.A.	et	al.	Lipoprotein(a)	in	women	twins:	heritability	and	relationship	to	
apolipoprotein(a)	phenotypes.	Am	J	Hum	Genet	51,	829-40	(1992).	

8.	 Schmidt,	K.,	Kraft,	H.G.,	Parson,	W.	&	Utermann,	G.	Genetics	of	the	Lp(a)/apo(a)	system	
in	an	autochthonous	Black	African	population	from	the	Gabon.	Eur	J	Hum	Genet	14,	190-
201	(2006).	

9.	 Scholz,	M.	et	al.	Genetic	control	of	lipoprotein(a)	concentrations	is	different	in	Africans	
and	Caucasians.	Eur	J	Hum	Genet	7,	169-78	(1999).	

10.	 Mooser,	V.	et	al.	The	Apo(a)	gene	is	the	major	determinant	of	variation	in	plasma	Lp(a)	
levels	in	African	Americans.	Am	J	Hum	Genet	61,	402-17	(1997).	

11.	 Mack,	S.	et	al.	A	genome-wide	association	meta-analysis	on	lipoprotein(a)	
concentrations	adjusted	for	apolipoprotein(a)	isoforms.	J	Lipid	Res	(2017).	

12.	 Kraft,	H.G.	et	al.	Apolipoprotein(a)	kringle	IV	repeat	number	predicts	risk	for	coronary	
heart	disease.	Arterioscler	Thromb	Vasc	Biol	16,	713-9	(1996).	

13.	 Sandholzer,	C.	et	al.	Apo(a)	isoforms	predict	risk	for	coronary	heart	disease.	A	study	in	
six	populations.	Arterioscler	Thromb	12,	1214-26	(1992).	

14.	 Saleheen,	D.	et	al.	Apolipoprotein(a)	isoform	size,	lipoprotein(a)	concentration,	and	
coronary	artery	disease:	a	mendelian	randomisation	analysis.	Lancet	Diabetes	
Endocrinol	(2017).	

15.	 Clarke,	R.	et	al.	Genetic	variants	associated	with	Lp(a)	lipoprotein	level	and	coronary	
disease.	N	Engl	J	Med	361,	2518-28	(2009).	

16.	 Kraft,	H.G.	et	al.	Frequency	distributions	of	apolipoprotein(a)	kringle	IV	repeat	alleles	
and	their	effects	on	lipoprotein(a)	levels	in	Caucasian,	Asian,	and	African	populations:	
the	distribution	of	null	alleles	is	non-random.	Eur	J	Hum	Genet	4,	74-87	(1996).	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2017. ; https://doi.org/10.1101/225169doi: bioRxiv preprint 

https://doi.org/10.1101/225169
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

17.	 Lanktree,	M.B.	et	al.	Determination	of	lipoprotein(a)	kringle	repeat	number	from	
genomic	DNA:	copy	number	variation	genotyping	using	qPCR.	J	Lipid	Res	50,	768-72	
(2009).	

18.	 Kulkarni,	K.R.,	Garber,	D.W.,	Marcovina,	S.M.	&	Segrest,	J.P.	Quantification	of	
cholesterol	in	all	lipoprotein	classes	by	the	VAP-II	method.	J	Lipid	Res	35,	159-68	(1994).	

19.	 Kulkarni,	K.R.	Cholesterol	profile	measurement	by	vertical	auto	profile	method.	Clin	Lab	
Med	26,	787-802	(2006).	

20.	 Waldeyer,	C.	et	al.	Lipoprotein(a)	and	the	risk	of	cardiovascular	disease	in	the	European	
population:	results	from	the	BiomarCaRE	consortium.	Eur	Heart	J	38,	2490-2498	(2017).	

21.	 Handsaker,	R.E.,	Korn,	J.M.,	Nemesh,	J.	&	McCarroll,	S.A.	Discovery	and	genotyping	of	
genome	structural	polymorphism	by	sequencing	on	a	population	scale.	Nat	Genet	43,	
269-76	(2011).	

22.	 Noureen,	A.,	Fresser,	F.,	Utermann,	G.	&	Schmidt,	K.	Sequence	variation	within	the	KIV-2	
copy	number	polymorphism	of	the	human	LPA	gene	in	African,	Asian,	and	European	
populations.	PLoS	One	10,	e0121582	(2015).	

23.	 Handsaker,	R.E.	et	al.	Large	multiallelic	copy	number	variations	in	humans.	Nat	Genet	
47,	296-303	(2015).	

24.	 Lim,	E.T.	et	al.	Distribution	and	medical	impact	of	loss-of-function	variants	in	the	Finnish	
founder	population.	PLoS	Genet	10,	e1004494	(2014).	

25.	 Kyriakou,	T.	et	al.	A	common	LPA	null	allele	associates	with	lower	lipoprotein(a)	levels	
and	coronary	artery	disease	risk.	Arterioscler	Thromb	Vasc	Biol	34,	2095-9	(2014).	

26.	 Musunuru,	K.	et	al.	From	noncoding	variant	to	phenotype	via	SORT1	at	the	1p13	
cholesterol	locus.	Nature	466,	714-9	(2010).	

27.	 Willer,	C.J.	et	al.	Discovery	and	refinement	of	loci	associated	with	lipid	levels.	Nat	Genet	
45,	1274-1283	(2013).	

28.	 Yeang,	C.,	Clopton,	P.C.	&	Tsimikas,	S.	Lipoprotein(a)-cholesterol	levels	estimated	by	
vertical	auto	profile	correlate	poorly	with	Lp(a)	mass	in	hyperlipidemic	subjects:	
Implications	for	clinical	practice	interpretation	of	Lp(a)-mediated	risk.	J	Clin	Lipidol	10,	
1389-1396	(2016).	

29.	 Surakka,	I.	et	al.	The	impact	of	low-frequency	and	rare	variants	on	lipid	levels.	Nat	Genet	
47,	589-97	(2015).	

30.	 Li,	J.	et	al.	Genome-	and	exome-wide	association	study	of	serum	lipoprotein	(a)	in	the	
Jackson	Heart	Study.	J	Hum	Genet	60,	755-61	(2015).	

31.	 Lu,	W.	et	al.	Evidence	for	several	independent	genetic	variants	affecting	lipoprotein	(a)	
cholesterol	levels.	Hum	Mol	Genet	24,	2390-400	(2015).	

32.	 Fish,	A.E.,	Capra,	J.A.	&	Bush,	W.S.	Are	Interactions	between	cis-Regulatory	Variants	
Evidence	for	Biological	Epistasis	or	Statistical	Artifacts?	Am	J	Hum	Genet	99,	817-830	
(2016).	

33.	 Wood,	A.R.	et	al.	Another	explanation	for	apparent	epistasis.	Nature	514,	E3-5	(2014).	
34.	 Roadmap	Epigenomics,	C.	et	al.	Integrative	analysis	of	111	reference	human	

epigenomes.	Nature	518,	317-30	(2015).	
35.	 Kim,	S.,	Jhong,	J.H.,	Lee,	J.	&	Koo,	J.Y.	Meta-analytic	support	vector	machine	for	

integrating	multiple	omics	data.	BioData	Min	10,	2	(2017).	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2017. ; https://doi.org/10.1101/225169doi: bioRxiv preprint 

https://doi.org/10.1101/225169
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

36.	 Morrison,	A.C.	et	al.	Practical	Approaches	for	Whole-Genome	Sequence	Analysis	of	
Heart-	and	Blood-Related	Traits.	Am	J	Hum	Genet	100,	205-215	(2017).	

37.	 Lesurf,	R.	et	al.	ORegAnno	3.0:	a	community-driven	resource	for	curated	regulatory	
annotation.	Nucleic	Acids	Res	44,	D126-32	(2016).	

38.	 Liu,	Y.,	Sarkar,	A.,	Kheradpour,	P.,	Ernst,	J.	&	Kellis,	M.	Evidence	of	reduced	
recombination	rate	in	human	regulatory	domains.	Genome	Biol	18,	193	(2017).	

39.	 Emdin,	C.A.	et	al.	Phenotypic	Characterization	of	Genetically	Lowered	Human	
Lipoprotein(a)	Levels.	J	Am	Coll	Cardiol	68,	2761-2772	(2016).	

40.	 Kettunen,	J.	et	al.	Genome-wide	study	for	circulating	metabolites	identifies	62	loci	and	
reveals	novel	systemic	effects	of	LPA.	Nat	Commun	7,	11122	(2016).	

41.	 Guerra,	R.	et	al.	Lipoprotein(a)	and	apolipoprotein(a)	isoforms:	no	association	with	
coronary	artery	calcification	in	the	Dallas	Heart	Study.	Circulation	111,	1471-9	(2005).	

42.	 Marcovina,	S.M.,	Hobbs,	H.H.	&	Albers,	J.J.	Relation	between	number	of	
apolipoprotein(a)	kringle	4	repeats	and	mobility	of	isoforms	in	agarose	gel:	basis	for	a	
standardized	isoform	nomenclature.	Clin	Chem	42,	436-9	(1996).	

43.	 Jun,	G.,	Wing,	M.K.,	Abecasis,	G.R.	&	Kang,	H.M.	An	efficient	and	scalable	analysis	
framework	for	variant	extraction	and	refinement	from	population-scale	DNA	sequence	
data.	Genome	Res	25,	918-25	(2015).	

44.	 Jun,	G.	et	al.	Detecting	and	estimating	contamination	of	human	DNA	samples	in	
sequencing	and	array-based	genotype	data.	Am	J	Hum	Genet	91,	839-48	(2012).	

45.	 Tan,	A.,	Abecasis,	G.R.	&	Kang,	H.M.	Unified	representation	of	genetic	variants.	
Bioinformatics	31,	2202-4	(2015).	

46.	 Li,	B.	&	Leal,	S.M.	Methods	for	detecting	associations	with	rare	variants	for	common	
diseases:	application	to	analysis	of	sequence	data.	Am	J	Hum	Genet	83,	311-21	(2008).	

47.	 Li,	H.	&	Durbin,	R.	Fast	and	accurate	short	read	alignment	with	Burrows-Wheeler	
transform.	Bioinformatics	25,	1754-60	(2009).	

48.	 Van	der	Auwera,	G.A.	et	al.	From	FastQ	data	to	high	confidence	variant	calls:	the	
Genome	Analysis	Toolkit	best	practices	pipeline.	Curr	Protoc	Bioinformatics	11,	11	10	1-
11	10	33	(2013).	

49.	 Ganna,	A.	et	al.	Ultra-rare	disruptive	and	damaging	mutations	influence	educational	
attainment	in	the	general	population.	Nat	Neurosci	19,	1563-1565	(2016).	

50.	 Li,	H.	Toward	better	understanding	of	artifacts	in	variant	calling	from	high-coverage	
samples.	Bioinformatics	30,	2843-51	(2014).	

51.	 Vartiainen,	E.	et	al.	Thirty-five-year	trends	in	cardiovascular	risk	factors	in	Finland.	Int	J	
Epidemiol	39,	504-18	(2010).	

52.	 Howie,	B.N.,	Donnelly,	P.	&	Marchini,	J.	A	flexible	and	accurate	genotype	imputation	
method	for	the	next	generation	of	genome-wide	association	studies.	PLoS	Genet	5,	
e1000529	(2009).	

53.	 Goldstein,	J.I.	et	al.	zCall:	a	rare	variant	caller	for	array-based	genotyping:	genetics	and	
population	analysis.	Bioinformatics	28,	2543-5	(2012).	

54.	 Delaneau,	O.,	Zagury,	J.F.	&	Marchini,	J.	Improved	whole-chromosome	phasing	for	
disease	and	population	genetic	studies.	Nat	Methods	10,	5-6	(2013).	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2017. ; https://doi.org/10.1101/225169doi: bioRxiv preprint 

https://doi.org/10.1101/225169
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

55.	 Peloso,	G.M.	et	al.	Association	of	low-frequency	and	rare	coding-sequence	variants	with	
blood	lipids	and	coronary	heart	disease	in	56,000	whites	and	blacks.	Am	J	Hum	Genet	
94,	223-32	(2014).	

56.	 Hoggart,	C.J.	et	al.	Control	of	confounding	of	genetic	associations	in	stratified	
populations.	Am	J	Hum	Genet	72,	1492-1504	(2003).	

57.	 Libiger,	O.	&	Schork,	N.J.	A	Method	for	Inferring	an	Individual's	Genetic	Ancestry	and	
Degree	of	Admixture	Associated	with	Six	Major	Continental	Populations.	Front	Genet	3,	
322	(2012).	

58.	 Price,	A.L.	et	al.	Principal	components	analysis	corrects	for	stratification	in	genome-wide	
association	studies.	Nat	Genet	38,	904-9	(2006).	

59.	 McLaren,	W.	et	al.	Deriving	the	consequences	of	genomic	variants	with	the	Ensembl	API	
and	SNP	Effect	Predictor.	Bioinformatics	26,	2069-70	(2010).	

60.	 Kang,	H.M.	et	al.	Variance	component	model	to	account	for	sample	structure	in	
genome-wide	association	studies.	Nat	Genet	42,	348-54	(2010).	

61.	 Willer,	C.J.,	Li,	Y.	&	Abecasis,	G.R.	METAL:	fast	and	efficient	meta-analysis	of	
genomewide	association	scans.	Bioinformatics	26,	2190-1	(2010).	

62.	 Loh,	P.R.	et	al.	Contrasting	genetic	architectures	of	schizophrenia	and	other	complex	
diseases	using	fast	variance-components	analysis.	Nat	Genet	47,	1385-92	(2015).	

63.	 Purcell,	S.	et	al.	PLINK:	a	tool	set	for	whole-genome	association	and	population-based	
linkage	analyses.	Am	J	Hum	Genet	81,	559-75	(2007).	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2017. ; https://doi.org/10.1101/225169doi: bioRxiv preprint 

https://doi.org/10.1101/225169
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

 
 
 
FIGURES:  
 
Fig 1. Schema of overall study design. Analyses were stratified by phenotype, Lp(a) (mass) and 
Lp(a)-C, where available. Lp(a)-C analyses were performed using the following individuals with 
WGS data: 2,284 individuals from the Estonian Biobank (EST) and 3,418 individuals from 
Jackson Heart Study (JHS). Lp(a) mass analyses were performed using the same Jackson Heart 
Study participants as well as array-derived genotypes from 27,344 Finnish FINRISK (FIN) 
individuals with imputation performed using 2,690 FIN individuals with WGS and 5,093 FIN 
individuals with WES. After quality control filters, 119,401,837 SNPs and 7,207,350 indels were 
discovered genome-wide across individuals analyzed. Structural variant discovery at the LPA 
locus was performed, finding KIV2-CN and 8 additional rare CNVs. An imputation model was 
developed to impute KIV2-CN using 60 LPA-locus variants. Three overarching analyses were 
subsequently performed: 1) Common variant analyses, 2) Rare variant analyses, and 3) 
Mendelian randomization. Among common and low-frequency variants with MAF > 0.1%, we 
performed single variant analysis, and separately, analyzed genetic modifiers of KIV2-CN’s 
effect on Lp(a) and Lp(a)-C concentrations. We also performed rare variant analyses, 
aggregating rare variants (MAF < 1%) in 1) coding sequence and 2) putative functional non-
coding sequence, and associated with Lp(a)-C. Lastly, we performed Mendelian randomization, 
using different classes of variants associated with Lp(a) as genetic instruments and associating 
these with incident clinical cardiovascular events in FIN and prevalent subclinical atherosclerosis 
in JHS.  
CNV = copy number variant; EST = Estonian biobank; FIN = FINRISK; JHS = Jackson Heart 
Study; KIV2-CN = kringle IV-2 copy number; Lp(a) = lipoprotein(a); Lp(a)-C = lipoprotein(a) 
cholesterol; MAF = minor allele frequency; MR = Mendelian randomization 
 
Fig 2. Structural variant discovery at the LPA locus and KIV2-CN imputation. a) Nine 
separate copy number variants were discovered across the EST, JHS, and FIN whole genome 
sequences. Here, these are shown by plotting sample-level normalized read depth against the 
position along the hg19 reference genome at the LPA locus (with the black line denoting median 
read depth across all individuals). The KIV2-CN is shown in the highlighted region and each 
unique non-gray line outside of this region depicts a discovered structural variant (described 
further in Supplementary Table 4). b) The random forest importance of each variant in the 61-
variant KIV2-CN imputation model developed in FIN is shown against its genomic position, 
with KIV2-CN region highlighted and the top five rsIDs labeled. c) Correlation of directly 
genotyped KIV2-CN and imputed KIV2-CN from 738 FIN individuals with WGS in the 
validation dataset (with Pearson correlation, Rp = 0.78). 
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EST = Estonian biobank; FIN = FINRISK; JHS = Jackson Heart Study; KIV2-CN = kringle IV-2 
copy number 
 
Fig 3. KIV2-CN association with Lp(a) phenotypes. Directly genotyped KIV2-CN (in EST 
and JHS) and imputed KIV2-CN (in FIN) are inversely associated with Lp(a) and Lp(a)-C.  
EST = Estonian biobank; FIN = FINRISK; JHS = Jackson Heart Study; KIV2-CN = kringle IV-2 
copy number; Lp(a) = lipoprotein(a); Lp(a)-C = lipoprotein(a) cholesterol; Rp = Pearson 
correlation; RS = Spearman correlation  
 
Fig 4. Trans-ethnic LPA and non-LPA loci associations with lipoprotein(a) phenotypes.  In 
trans-ethnic meta-analysis of single variant results adjusted for KIV2-CN, we observed two 
associations (P < 5x10-8) at loci distinct from LPA and independent of other conventional lipid 
measures: SORT1 for Lp(a)-C and APOE for Lp(a). a-b) Associations (Betas in SD and 95% CI) 
for top variants at the SORT1 and APOE loci are shown by ethnicity. The SORT1 and APOE loci 
have been previously associated with LDL cholesterol. Thus, associations conditional on LDL 
cholesterol are also presented. The effect size for SORT1 is preserved after conditioning on LDL 
cholesterol while the effect size for APOE is slightly reduced but still genome-wide significant. 
c) Standardized effect estimates for variants at the LPA locus (LPA TSS +/- 1Mb) attaining P < 
5x10-8 in JHS are shown comparing effects in JHS (African Americans) with FIN (European 
Americans). Color demonstrates inter-ethnic effect difference as measured by heterogeneity P. 
Similar effects are observed for a known null (splice donor) mutation in LPA but strongly 
diverging effects are observed for a distinct nearby LPAL2 intronic variant. d) Genetic 
heritability estimates using variants with MAF > 0.001 for normalized Lp(a) were acquired for 
African Americans in the whole-genome sequenced JHS cohort and for Europeans in the 
genotyped and imputed FIN cohort. Here, heritability and 95% CI are shown without adjusting 
for KIV2-CN. 
KIV2-CN = kringle IV-2 copy number; HetP = heterogeneity P; Lp(a) = lipoprotein(a); Lp(a)-C 
= lipoprotein(a) cholesterol; MAF = minor allele frequency; TSS = transcription start site 
 
Fig 5. Genetic modifiers of KIV2-CN’s effect on lipoprotein(a) cholesterol. Three 
independent genetic modifiers of KIV2-CN’s effect on Lp(a)-C were discovered at the LPA 
locus. Regional association plots showing the variant-by-KIV2-CN interaction P values of all 
variants within a 1Mb window of the LPA TSS are shown for African Americans (top) and 
Europeans (bottom), highlighting variants in linkage disequilibrium with rs1810126 (green), 
rs13192132 (red), and rs1840445 (blue), the top independent genome-wide significant variants 
(interaction P < 5x10-8) upon meta-analysis.  
KIV2-CN = kringle IV-2 copy number;Lp(a)-C = lipoprotein(a) cholesterol; TSS = transcription 
start site 
 
Fig 6. Rare variant non-coding burden analyses. A schematic of rare variant association 
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results from (1) aggregating rare variants in adult liver enhancers or promoters and strong DHS 
(P < 10-10) within 3kb sliding windows, and (2) aggregating rare variants in liver enhancers 
grouped to LPA via the “By expression” in-silico prediction method. In the top two panels, each 
red diamond represents the meta-analyzed mixed-model SKAT P-value with Lp(a)-C of rare 
(MAF < 1%), non-coding variants overlapping liver enhancer or promoter annotations in strong 
DHS (P(DHS) < 1e-10) grouped in a 3kb window, before adjusting for KIV2-CN (top, 
“Original”) and after adjusting for KIV2-CN (bottom, “Conditioned on KIV2-CN”). The 
horizontal red lines denote the genome-wide Bonferroni significance threshold given the number 
of unique windows analyzed. The horizontal gray lines denote the Bonferroni significance 
threshold within this 1MB region around LPA. The regions incorporated into the “By 
Expression” grouping to LPA are shown in aqua, along with the respective associations of rare 
non-coding variants in these regions before and after conditioning on KIV2-CN. Annotated adult 
liver enhancers (green bars) and promoters (red bars) overlapping strong DHS are included 
above protein-coding genes from ENSEMBLE.  
DHS = DNAse hypersensitivity sites; Lp(a)-C = lipoprotein(a) cholesterol; MAF = minor allele 
frequency; SKAT = Sequence Kernal Association Test 
 
Fig 7. Association of LPA variant classes with incident clinical events and subclinical 
measures. Mendelian randomization was performed using three genetic instruments: a weighted 
genetic risk score using variants conditioned on KIV2-CN at a 4Mb window around LPA (GRS), 
a KIV2-CN score, and a combined GRS+KIV2-CN score, and compared to the observational 
effects. The genetic instruments were all normalized such that 1 unit increase in the score is 
equal to 1SD increase in Lp(a) or Lp(a)-C. a) Associations (HR and 95% CI) of incident 
coronary heart disease (1,056 cases; 21,207 controls) and myocardial infarction (580 cases; 
21,377 controls) with the Lp(a) measurement and with genetic instruments among the genotyped 
and imputed FIN individuals (exact values in Supplementary Table 30). b) Associations (Beta 
and 95% CI) of Lp(a) and Lp(a)-C measurements and respective genetic instruments with 
standardized markers of subclinical atherosclerosis (CAC and AAC) among 1,701 whole-
genome sequenced JHS participants (exact values in Supplementary Table 31). These data 
indicate that 1) a comprehensive Lp(a) genetic instrument (GRS+KIV2-CN) provides improved 
risk assessment compared to the Lp(a) phenotype, and 2) further stratifying this comprehensive 
instrument into separate Lp(a) variant classes provides additional risk stratification in that 
genomic sequence variants independent of KIV2-CN (i.e.: GRS) have a stronger influence on 
clinical atherosclerosis compared to KIV2-CN. 
AAC = Abdominal aortic calcium; CAC = coronary artery calcium; CI = confidence interval; 
FIN = FINRISK; GRS = genetic risk score; HR = hazard ratio; JHS = Jackson Heart Study; 
KIV2-CN = kringle IV-2 copy number; Lp(a) = lipoprotein(a); Lp(a)-C = lipoprotein(a) 
cholesterol 
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Fig 1. Schema of overall study design. 
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Fig 2. Structural variant discovery at the LPA locus and KIV2-CN imputation. 
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Fig 3. Trans-ethnic KIV2-CN association with Lp(a) phenotypes. 
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Fig 4. Trans-ethnic LPA and non-LPA loci associations with lipoprotein(a) phenotypes. 
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Fig 5. Genetic modifiers of KIV2-CN’s effect on lipoprotein(a) cholesterol. 
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Fig 6. Rare variant non-coding burden analyses.  
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Fig 7. Association of LPA variant classes with incident cardiovascular events and 
subclinical measures. 
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METHODS: 
 
Study participants. 
Please refer to Supplementary Text for study participant details. 

Whole genome sequencing and variant calling. 
Sequencing was performed at one of two sequencing centers, with all members within a cohort 
sequenced at the same center. The JHS WGS individuals were sequenced at University of 
Washington Northwest Genomics Center (Seattle, WA) as part of the as a part of the Phase 1 
NIH/NHLBI Trans-Omics for Precision Medicine (TOPMed) program. The Finnish and 
Estonian WGS individuals were sequenced at the Broad Institute of Harvard and MIT 
(Cambridge, MA). Target coverage was >30X for JHS (mean attained 37.1), >20X for EST 
(mean attained 30.4), and >20X for FIN (mean attained 29.8). 
 
TOPMED phase 1 BAM files were harmonized by the TOPMed Informatics Research Center 
(Center for Statistical Genetics, University of Michigan, Hyun Min Kang, Tom Blackwell and 
Goncalo Abecasis). In brief, sequence data were received from each sequencing center in the 
form of bam files mapped to the 1000 Genomes hs37d5 build 37 decoy reference sequence.  
Processing was coordinated and managed by the ‘GotCloud’ processing pipeline43. Samples with 
DNA contamination > 3% (estimated using verifyBamId software44) and <95% of the genome 
covered at least 10x were filtered out. The JHS WGS used for analysis are from the “freeze 3a” 
genotype callsets of the variant calling pipeline performed using the software tools in the 
following repository:  https://github.com/statgen/topmed_freeze3_calling, with variant detection 
performed by vt discover2 software tool45.  
 
WGS for FINRISK and the Estonian Biobank were performed using the Illumina HiSeqX 
platform at the Broad Institute of Harvard and MIT (Cambridge, MA). Libraries were 
normalized to 1.7nM, constructed, and sequenced on the Illumina HiSeqX with the use of 151-bp 
paired-end reads for WGS and output was processed by Picard to generate aligned BAM files (to 
hg19) 46,47. Variants were discovered using the Geome Analysis Tookit (GATK) v3 
HaplotypeCaller according to Best Practices48. Finland and Estonia WGS samples were jointly 
called. 
 
Whole genome sequence quality control 
Sample quality control:  
The following three approaches were used by the TOPMed Genetic Analysis Center to identify 
and resolve sample identity issues in JHS: (1) concordance between annotated sex and biological 
sex inferred from the WGS data, (2) concordance between prior SNP array genotypes and WGS-
derived genotypes, and (3) comparisons of observed and expected relatedness from pedigrees. 
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Additional measures for quality control of JHS, Finland, and Estonia were performed using the 
Hail software package (https://github.com/hail-is/hail)49. Samples were filtered by contamination 
(>3.0% for JHS, >5.0% for Finland and Estonia), chimeras >5%, GC dropout >4, raw coverage 
(<30X for JHS, <19X for Finland and Estonia), and indeterminant genotypic sex or 
genotypic/phenotypic sex mismatch (Supplementary Table 1). 
 
Genotype and Variant quality control:  
The variant filtering in JHS was performed by (1) first calculating Mendelian consistency scores 
using known familial relatedness and duplicates, and (2) training SVM classifier between the 
known variant sites (positive labels) and the Mendelian inconsistent variants (negative labels). 
Two additional hard filters were applied: (1) Excess heterozygosity filter (EXHET), if the Hardy-
Weinberg disequilbrium p-value was less than 1x10-6 in the direction of excess heterozygosity; 
(2) Mendelian discordance filter (DISC), with 3 or more Mendelian inconsistencies or duplicate 
discordances observed from the samples. Genotypes with a depth < 10 were excluded, prior to 
filtering variants with > 5% missingness.  
 
Variants for Finland and Estonia were initially filtered by GATK Variant Quality Score 
Recalibration. Additionally, genotypes with GQ<20, DP<10 or >200, and poor allele balance 
(homozygous with <0.90 supportive reads or heterozygous with <0.20 supportive reads) were 
removed. Variants within low complexity regions were removed across all samples.50 Variants 
with > 20% missing calls, quality by depth <2 (SNPs) or <3 (indels), InbreedingCoeff <-0.3, and 
pHWE <1x10-9 were filtered out. 
 
Finnish imputation and quality control.  
 
The imputation of the FINRISK samples51 was done utilizing population specific reference panel 
of 2,690 high-coverage whole-genome and 5,093 high-coverage whole-exome sequences with 
IMPUTE252 that allows the usage of two panels at the same time. Before phasing and imputation, 
the data was QCed using following criteria: exclude samples with obscure sex, missingness 
(>5%), excess heterozygosity (+-4sd), non-European ancestry and SNPs with low call-rate (>2% 
missing), low HWE P-value (<1e-6), minor allele count (MAC) < 3 (in case Zcalled53) or MAC < 
10 (if only called using Illumina GenCall). The haplotypic phase was determined using 
SHAPEIT2.054 prior to imputation. The FINRISK samples have been genotyped using multiple 
different genotyping chips, for which the QC, phasing and imputation was done in multiple chip-
wise batches. 
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Lipid phenotypes 
Lp(a) and Lp(a)-C  
 
Serum Lp(a)-C was measured in both EST and JHS via density gradient ultracentrifugation 
(Vertical Auto Profile [VAP], Atherotech). 
 
Lp(a) was measured in JHS using a Diasorin nephelometric assay on a Roche Cobas FARA 
analyzer (Roche Diagnostics Corporation, Indianapolis, IN, USA), which measures Lp(a) mass 
by immunoprecipitin analysis using the SPQTM Antibody Reagent System of DiaSorin 
(DiaSorin Inc., Stillwater, MN 55082-0285). Turbidity produced by the antigen-antibody 
complexes was measured using the Roche Modular P Chemistry Analyzer. In FIN, Lp(a) was 
measured from serum stored at –70°C using a commercially available latex immunoassay on an 
Architect c8000 system (Quantia Lp(a), Abbott Diagnostics).  
 
Lp(a)-C and Lp(a) were inverse-rank normalized separately by cohort for analysis. 
 
Conventional lipids 
 
Conventional lipoprotein cholesterols (HDL, LDL, TG, Total Cholesterol) and proteins (ApoB, 
ApoAI) were measured in EST and JHS by the VAP assay (where LDL refers to directly 
measured LDL, and not calculated). In FIN, these lipoproteins were measured via NMR as 
described in the Mendelian randomization methods below. In FIN, LDL cholesterol was either 
calculated by the Friedwald equation when triglycerides were <400 mg/dl or directly measured. 
Given the average effect of statins, when statins were present, total cholesterol was adjusted by 
dividing by 0.8 and LDL cholesterol by dividing by 0.7, as previously done55. All lipids were 
inverse-rank normalized separately by cohort in analysis. 
 
KIV2-CN estimation from WGS data.  
Genome STRiP21 version 2.00.1710 was used to estimate KIV2-CN in the LPA gene. 
Specifically, we ran Genome STRiP read-depth genotyping on the hg19 interval 6:161032614-
161067851 using the following custom settings to capture an aggregate read depth signal over 
every base position: -P depth.minimumMappingQuality:0, without specifying any of the usual 
genome masks.  
 
After genotyping, we estimated the number of KIV2 protein domains from the raw copy number 
estimate by dividing the VCF genotype field CNF by the info field GSM1 and then estimating 
the KIV2 copy number by 
 KIV2-CN = (CNF / GSM1) * 6.354 - 0.708 
where 6.354 is derived from the number of full copies of the repeating unit represented on the 
hg19 reference genome and -0.708 is to adjust to the KIV2 units as visualized in Supplementary 
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Fig. 6A, removing the outermost flanking exons that are part of the KIV1 and KIV3 (which are 
picked up in Genome STRiP due to their homology with the exons within the KIV2 domain). 
 
Evaluation of KIV2-CN precision.  
To evaluate the precision of our measurements of KIV2 copy number, we utilized 123 pairs of 
siblings from JHS that were confidently IBD2 (identical by descent on both haplotypes) at the 
LPA locus. To identify these sibling pairs, we interrogated the hg19 interval 6:160,450,001-
161,590,000 (0.5 Mb upstream and downstream of the LPA gene) and computed the concordance 
of SNP genotypes in this interval between all sequenced sibling pairs. We classified all sibling 
pairs with less than 1% genotype discordance as confidently IBD2 at the LPA locus and 
compared IBD2 sibling KIV2-CNs. 
 
KIV2-CN Imputation.  
We split the FIN WGS into one training dataset comprised of two thirds of the samples (1477 
samples) and one validation dataset (738 samples), and used the least absolute shrinkage and 
selection operator (LASSO), a machine-learning regression analysis method, using variants in a 
4MB window around LPA imputed with high-quality (imputation quality > 0.8) and MAF > 
0.001 in the FIN dataset. After applying 10-fold cross validation to find the optimal lambda 
(degree of shrinkage), the LASSO model selected 61 variants which minimized the mean 
squared error (Supplemental Fig. 6A). These 61 variants were also used in a random forest 
model, reiterating the exponential decay of mean-squared error as the number of variants in the 
model reaches 61 (Supplemental Fig. 6B), and finding the relative importance of each variant in 
the model. 
 
Principle component analysis (PCA) 
To visualize PCs across all 3 cohorts against each other, a panel of approximately 16,000 
ancestry informative markers56 (AIMs) identified across six continental populations57 was chosen 
to derive principal components (PCs) of ancestry for all samples that passed quality control. 
Principal component analysis was performed using EIGENSTRAT, using suggested quality 
control criteria58 (Supplementary Fig. 3).  Separately, within-cohort PCA was performed for use 
as covariates in analysis. 
 
Variant annotation 
Variants were annotated with Hail49 using annotations from Ensembl’s Variant Effect Predictor 
(VEP), ascribing the most severe, canonical consequence and gene to each variant59. For non-
coding regions in adult liver cells (E066), we used the Reg2Map HoneyBadger2-intersect34 at 
strong (P < 1x10-10) DNase I hypersensitive regions 
(https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/). 
Variants overlapping putative enhancers and promoters from the 25-state chromatin model34 at 
this link were annotated and used in the single variant results annotations (Supplementary 
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Tables 7-8) as well as grouping rare variants in the “sliding window” and “by distance” non-
coding rare variant studies. 
 
Single variant association.  
Single variant analysis for EST and JHS WGS was performed using Hail’s linear mixed model 
regression49 for associating each variant site with inverse normal transformed Lp(a) and Lp(a)-C 
within each cohort. All analyses were adjusted for KIV2-CN, age, sex, and an empirically 
derived kinship matrix to account for both familial and more distant relatedness60. To create the 
kinship matrix, regions of high-complexity known to have high LD were removed (as in the 
EPACTS make-kin --remove-complex flag); these regions included: 5:44000000-52000000, 
6:24000000-36000000, 8:8000000-12000000, 11:42000000-58000000, and 17:40000000-
43000000. Ten-fold random down-sampling of variants was performed to further reduce variant 
counts for fast processing-time. 
 
For the FIN imputation dataset, single variant analysis was performed using SNPTEST (v2.5.2), 
using KIV2-CN, age, sex, fasting > 10hr, and adding PC1-10 as covariates to account for 
population structure due to absence of kinship matrix.  
 
To ensure robust results, we only performed single variant analysis for variants with a MAF > 
0.001 within either cohort. Summary statistics for JHS and FIN for Lp(a) and JHS and EST for 
Lp(a)-C, for the corresponding inverse-rank normalized phenotypes, were meta-analyzed across 
cohorts using METAL61, while also calculating heterogeneity statistics. Statistical significance 
alpha of 5x10-8 was used for these analyses.  
 
Additionally, for the LPA locus, iterative conditional association analysis was performed by 
cohort. Iterative conditioning was performed until P > 5x10-8 was attained.  
 
Heritability analyses.  
Heritability analyses in EST WGS (for Lp(a)-C) and JHS WGS (for both Lp(a) and Lp(a)-C) 
were performed using Hail’s linear mixed model regression heritability estimate49, described here 
https://hail.is/hail/hail.VariantDataset.html?highlight=lmm#hail.VariantDataset.lmmreg. Several 
filters were applied before variants were used in the kinship matrix. First, genome-wide variants 
underwent two-fold LD pruning as previously described via BOLT-REML62, using variants with 
MAF > 0.001 and missingness < 1% with maximum LD r2 = 0.9 (PLINK63 commands used: --
maf 0.001 --geno 0.01 --indep-pairwise 50 5 0.9). Regions of high-complexity were removed as 
previously described for single variant analysis. Ten-fold random down-sampling of variants was 
performed to further reduce variant counts for feasible analysis processing-time. For the 
heritability estimates provided, 6,370,696 variants were used towards the kinship matrix in EST 
Lp(a)-C analysis, 1,897,407 variants in JHS Lp(a)-C analysis, and 1,894,291 variants in the JHS 
Lp(a) analysis. Baseline covariates used in the model, performed separately by cohort, included 
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age, sex, fasting > 10h, and for EST, sequencing batch. A separate heritability estimate was also 
derived additionally conditioning on KIV2-CN.  
 
For the FIN imputation dataset, variants were similarly limited, filtering to variants with MAF > 
0.001, imputation quality > 0.8, and applying two-fold LD-pruning and removal of complex 
regions as described above (though the ten-fold down-sampling was not applied to keep the 
variant count on the same order of magnitude as in the WGS heritability analyses). A total of 
3,088,864 variants were used towards heritability analysis, which was performed using BOLT-
REML. Covariates used in the analysis included age, sex, fasting > 10hr, and PC1-10. A separate 
heritability estimate was also derived additionally conditioning on KIV2-CN. For Lp(a), 
heritability analysis additionally conditioning on both KIV2-CN and the KIV2-CN-independent 
GRS using in Mendelian randomization was performed. BOLT-REML was also applied towards 
the Lp(a) heritability analysis in JHS, arriving at the same heritability estimates as Hail (data not 
shown).  
 
KIV2-CN modifier analysis.  
Variant-by-KIV2-CN interaction analysis in the WGS was performed at a ~4MB window 
(6:158532140-162664257) around LPA to identify variants which modify the relationship 
between directly genotyped KIV2-CN and Lp(a)-C (for EST and JHS) and Lp(a) (for JHS only). 
Variants with minor allele count > 20 (by cohort) were included in analyses. The following 
interaction model was performed:  

Lp(a)-C ~ KIV2-CN + Variant + KIV2-CN x Variant + covariates 
Where the interaction effect and p-value corresponds to the term: “KIV2-CN x Variant”. Cohort-
specific analyses were performed and for Lp(a)-C, EST and JHS interaction results were meta-
analyzed using METAL61. Using the full interaction results, three top modifier variants were 
identified (rs13192132, rs1810126, and rs1740445) that were genome-wide significant upon 
meta-analysis (P < 5x10-8), in linkage equilibrium (r2 < 0.1) across both ethnic backgrounds, and 
had replicating interaction effect directions in both ethnicities. To determine the cohort-specific 
Bonferroni significance threshold, LD clumping was performed on the full interaction results 
separately by cohort using the following PLINK63 flags: --clump-kb 500 --clump-p1 1 --clump-
p2 1 --clump-r2 0.25. In JHS, 1373 LD-pruned variants were identified, leading to a significance 
threshold of P = 3.64x10-5. In EST, 566 LD-pruned variants were identified, leading to a 
significance threshold of P = 8.83x10-5. Clumped variants with interaction p-values surpassing 
the Bonferroni threshold are provided by cohort and phenotype in Supplementary Table 14. For 
each of these variants, the statistics for the KIV2-CN term, the Variant term, and the KIV2-CN x 
Variant term from the interaction model, and the variant associations with KIV2-CN and Lp(a)-C 
(or Lp(a)) are provided in Supplementary Tables 15-17 (where each Supplementary Table 
reflects a different cohort and phenotype combination). Overlap with methylation and acetylation 
marks was visualized using data from Roadmap for E066 adult liver cells at 
http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/. Liver ATAC-seq data 
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was downloaded from the ENCODE data portal (accession ENCFF893CSN).  FASTQ files were 
adapter-trimmed and aligned to hg19 with bowtie2, and duplicates reads and reads with MAPQ < 
30 were removed. 
 
Previous publications of variant-by-variant interactions have recommended performing 
sensitivity analyses to ensure significant interactions identified are not 1) due to the variants 
being in LD on the same haplotype and 2) mitigated by a separate third variant which explains 
the entire association32,33. In particular, the most recent study by Fish et al. 28 recommended that 
variant-by-variant interactions be performed using un-correlated variants (LD r2 < 0.6). Thus, we 
checked the correlation of each of the three top identified variants with KIV2-CN by cohort 
(Supplementary Table 12), finding that these variants are indeed not correlated with KIV2-CN 
(Pearson correlation r2 < 0.1). Furthermore, variants not associated (P > 0.05) with the phenotype 
are suggested to be removed, under the hypothesis that they may represent weak marginal effects 
from a true underlying interaction. Indeed, our three top Lp(a)-C interaction variants are all 
individually associated with Lp(a)-C (Supplementary Table 12). Lastly, conditional analysis 
has been suggested to ensure that the interaction model is not mitigated by a separate third 
variant that explains the interaction. Thus, we performed conditional analysis on the top 3 
interaction models, conditioning on the previously identified variants from single variant analysis 
(reported in Supplementary Table 9) found to be conditionally independently associated with 
Lp(a)-C in each cohort. As seen in Supplementary Table 13, conditional analysis does not fully 
mitigate any of the identified interaction associations. 
 
Rare variant association analyses (RVAS). 
Coding and non-coding grouping schemes 
Please refer to the Supplementary Text for details on the coding and non-coding grouping 
schemes used.  
 
Statistical Analysis 
We tested the association of the aggregate of the aforementioned groupings with each lipid trait 
using the mixed-model Sequence Kernal Association Test (SKAT) implementation in EPACTS 
to account for bidirectional effects.60 Analyses were adjusted for age, sex, fasting > 10hr, 
sequencing batch (just used in Estonia), and empiric kinship. Groups with at least 2 rare variants 
and combined MAF > 0.001 across all aggregated variants in a given cohort were included in 
meta-analysis. P values were meta-analyzed using Fisher’s method. Statistical significance for 
each RVAS test was based on the number of groups tested and is provided in the headers of 
Supplementary Tables 16-25. 
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Mendelian randomization 
Genetic Instruments 
We developed three genetic instruments per cohort. The first instrument used was a genetic risk 
score, “GRS,” comprised of variants in a ~4MB window around LPA (6:158532140-162664257) 
with sub-threshold significance (p-value < 1x10-4), using variant effect sizes from the KIV2-CN 
conditioned single variant analysis and performing LD clumping in plink using the following 
parameters: --clump-kb 500 --clump-p1 0.0001 --clump-p2 1 --clump-r2 0.25. This resulted in 
399 variants for Lp(a) GRS in FIN, 235 variants for Lp(a) GRS in JHS, 39 variants for Lp(a)-C 
GRS in JHS, and 49 variants for Lp(a)-C GRS in EST (Supplementary Table 26-28). The 
second instrument used was a “KIV2-CN” score using the directly genotyped or imputed KIV2-
CN. The third instrument used was a combined “GRS+KIV2-CN” score combining scores from 
(1) and (2). Each of the three scores were inverse rank normalized and adjusted such that 1 unit 
increase in the score is equal to 1SD increase in Lp(a) (or Lp(a)-C, depending on how the 
instrument was adjusted). The multiplicative factors used to adjust each score are provided in 
Supplementary Table 29. Note: the genetic instruments for EST were not used in MR but are 
provided as a reference for European Lp(a)-C genetic instruments to compare with those from 
the JHS African Americans. 
 
Phenotypes 
Please refer to Supplemental Text for details on incident events and subclinical measures used. 
 
Statistical analyses 
For incident clinical events, a cox proportional hazards test was performed, finding the 
association between each incident event and each of the genetic instruments as well as 
observational Lp(a). For the quantitative subclinical measures, linear regression was performed, 
finding the association between each inverse-rank normalized phenotype and each of the genetic 
instruments as well as inverse-rank normalized Lp(a) and Lp(a)-C (where available). Covariates 
used in all analyses included the first 5 principal components of genetic ancestry, age, sex, if the 
individual was fasting > 10hr. To find the p-value of difference between GRS and KIV2-CN or 
the genetic instrument and observational phenotype, the following was used:  

P(difference)=2*pnorm(-abs(Z)), where Z=b1−b2/(√((SEb1)^2+(SEb2)^2)) 
Statistical significance was defined for the 9 FIN incident clinical events and 2 JHS subclinical 
atherosclerosis traits using a Bonferroni significance threshold was based on the number of 
phenotypes (P = 0.0056 and 0.025, respectively).  
 


