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Abstract 37 

Zika virus (ZIKV) has re-emerged in the population and caused 38 

unprecedented global outbreaks. Here, the transcriptomic consequences of 39 

ZIKV infection were studied systematically firstly in human peripheral blood 40 

CD14+ monocytes and monocyte-derived macrophages with high density 41 

RNA-sequencing. Analyses of the ZIKV genome revealed that the virus 42 

underwent genetic diversification and differential mRNA abundance was 43 

found in host cells during infection. Notably, there was a significant change in 44 

the cellular response with crosstalk between monocytes and natural killer 45 

(NK) cells as one of the highly identified pathway. Immune-phenotyping of 46 

peripheral blood from ZIKV-infected patients further confirmed the activation 47 

of NK cells during acute infection. ZIKV infection in peripheral blood cells 48 

isolated from healthy donors led to the induction of IFNγ and CD107a — two 49 

key markers of NK-cell function. Depletion of CD14+ monocytes from 50 

peripheral blood resulted in a reduction of these markers and reduced priming 51 

of NK cells during infection. This was complemented by the immunoproteomic 52 

changes observed. Mechanistically, ZIKV infection preferentially 53 

counterbalances monocyte and/or NK-cell activity, with implications for 54 

targeted cytokine immunotherapies.  55 
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Importance 56 

Zika virus (ZIKV), an infectious agent, which has re-emerged over the recent 57 

years, has been associated with causing congenital brain deformities. While 58 

numerous studies have focused on understanding the mechanisms of ZIKV 59 

pathogenesis, little knowledge is available for describing host cell immune 60 

response during active infection. ZIKV is transmitted via the bites of infected 61 

female Aedes mosquitoes and subsequently travels to the blood stream 62 

where it will encounter the peripheral immune cells. Recent studies have 63 

shown that the blood monocytes are targets of ZIKV, and thus understanding 64 

the response of these cells during infection would be critical as virus-host 65 

interaction determines disease progression. The significance of this study 66 

highlights the important immune pathways elicited by the monocytes during 67 

infection and further provides a model for the functional study of these cells 68 

and their fellow immune partners, with implications for the development of 69 

future immune-based therapies.  70 
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Introduction 71 

Zika virus (ZIKV) gained global attention in 2015-2016 when the virus 72 

suddenly re-emerged in the human population and caused major viral 73 

outbreaks across the world with a large disease burden (1). Although ZIKV 74 

has been causing sporadic outbreaks since it was first reported in Uganda 75 

>60 years ago (2), very little is known about the biology of the virus and the 76 

host response to infection. ZIKV is an arthropod-borne flavivirus that causes 77 

Zika fever — a disease that for the majority of patients has little or no 78 

symptoms (3). However, in severe cases, ZIKV infection may be 79 

responsible for neurological complications such as Guillain Barré Syndrome 80 

(GBS) in adults (4) and congenital fetal growth-associated anomalies in 81 

newborns (5). The host response to ZIKV infection may be one of the main 82 

drivers of the different disease phenotypes. 83 

Recent studies have established that ZIKV can infect peripheral 84 

blood monocytes (6-9). However, despite ongoing intensive investigative 85 

efforts to understand ZIKV-related neuropathogenesis, knowledge 86 

regarding the mechanisms of ZIKV infection in peripheral immune cells is 87 

lacking. Given that ZIKV is transmitted into the dermis via the bite from a 88 

virus-infected mosquito, monocytes would be one of the first immune cells 89 

in the blood to interact with the virus when it reaches the circulatory system. 90 

Therefore, the interplay between ZIKV and monocytes will be crucial in 91 

determining the outcome of infection (10). 92 

This study focused on characterising the primary ex vivo response of 93 

human donor blood monocytes and monocyte-derived macrophages 94 

(MDMs) to ZIKV infection. Systematically, RNA-sequencing (RNA-seq) was 95 
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first used to identify and quantify the abundance of host messenger RNA 96 

(mRNA) and characterise viral RNA. This information was subsequently 97 

used to map the host response to ZIKV infection in the two different ex vivo 98 

cell types. These data also provided insights into the potential adaptation of 99 

the virus during viral replication in these cells. Immune-phenotyping of 100 

peripheral blood cells isolated from patients infected with ZIKV 101 

independently was executed to validate the predictions obtained from the 102 

differential gene expression analysis.  Depletion of CD14+ monocytes in 103 

peripheral blood was then performed ex vivo to functionally understand the 104 

crosstalk between monocytes and priming of NK cells during ZIKV infection. 105 

Lastly, a multiplex assay was carried out to further understand host cell 106 

immunoproteomic changes during ZIKV infection. To our knowledge, this 107 

study is the first large-scale systematic investigation into the host cellular 108 

response to ZIKV infection in biologically relevant cells. This global analysis 109 

of the host immune response provides a novel understanding of the 110 

pathobiology of the virus, leading to the possibility of targeted therapeutic 111 

interventions in severe cases.   112 
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Results  113 

ZIKV targets human peripheral blood monocytes and macrophages.  114 

CD14+ monocytes have been reported to be the main targets of ZIKV 115 

during infection (6-9). In this study, human primary CD14+ monocytes were 116 

first isolated from fresh peripheral blood mononuclear cells (PBMCs) to 117 

enrich this cell type to >90% of the total cell population (Figure 1A). In 118 

addition, isolated monocytes from the same donors were differentiated into 119 

monocytes-derived macrophages (MDMs) over 5 days (Figure 1B). Purified 120 

cells were then infected ex vivo with ZIKV and their permissiveness to ZIKV 121 

infection and growth was determined at 24 and 72 hours post-infection (hpi) 122 

(Figure 1A). The early time point was chosen to cover the acute infection 123 

phase and the later time point a stage by which a substantial host-virus 124 

interaction would have taken place (11). Data obtained showed that ZIKV 125 

infection of MDMs was greater than infection of monocytes in all five donors 126 

(~40% compared to ~20% at 72 hpi, respectively) (Figure 1C). A decrease 127 

in viral load was observed in the virus-infected MDMs between the two time 128 

points, whereas the viral load remained consistent in infected monocytes 129 

over time (Figure 1D).  130 

To further show that monocytes are the main targets of ZIKV 131 

infection, PBMCs obtained from four healthy human volunteers were 132 

infected and the percentage of ZIKV antigen positive cells was determined 133 

in the different immune subsets (Supplemental Figure 1A and 1B). ZIKV 134 

antigen was detected in the CD14+ monocytes (~6%), while infection of T, 135 

natural killer (NK), NKT, and B cells by ZIKV was negligible (Supplemental 136 

Figure 1B and 1C). These data suggested that these cell types were either 137 
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refractive or infected at levels below the detection limits at the chosen time-138 

points. The overall viral load in ZIKV-infected PBMCs was not significantly 139 

different between 24 and 72 hpi (Supplemental Figure 1D).  140 

 141 

Genome variation in ZIKV during infection of the peripheral blood. In 142 

order to compare the amount of virus between the different cell types and 143 

determine whether ZIKV underwent genetic diversification during infection, 144 

viral sequence reads were mapped and compared to that of the progenitor 145 

virus stock (PF/ZIKV/HPF/2013). These data indicated that for MDMs, 4.53% 146 

and 0.43% of total sequence reads mapped to the ZIKV genome at 24 hpi and 147 

72 hpi, respectively. While 24% and 0.8% of sequence reads generated from 148 

monocytes mapped to the ZIKV genome at 24 hpi and 72 hpi respectively. 149 

These observations are consistent with ZIKV viral load analysis, where higher 150 

levels of viral RNA were detected in MDMs (Figure 1). 151 

 Due to the inherent error-prone nature of viral RNA replication, 152 

nucleotide variants may become established in the viral genome during ZIKV 153 

infection in different cell types. To investigate this hypothesis, consensus 154 

genome information for each sample and the frequency of minor variants at 155 

each nucleotide position in the progenitor stock was determined and 156 

compared to the genome of virus present in the infected samples utilizing 157 

previously developed workflows (12,13). The ZIKV consensus genome 158 

sequence derived from the progenitor stock was 10,570 nucleotides in length 159 

and contained minor variants (as a measure of quasi-species) spread 160 

throughout the genome (Figure 2A). Of the 11 valid consensus sequences 161 

derived from the virus-infected samples, the virus recovered in cells from five 162 
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donors (D1-D5) had the same consensus sequence as the input stock 163 

(PF/ZIKV/HPF/2013). However, some donor samples contained viral 164 

genomes that had additional nucleotide differences at six different positions 165 

(Table 1). These nucleotide differences (Table 1) were visualized as a 166 

maximum likelihood phylogenetic tree, where the input stock was used as the 167 

reference sample (Figure 2B). There were only eight high frequency transition 168 

mutations to choose from (log108 = 0.9, see Figure 2A), increasing the 169 

likelihood of these changes appearing several times. Of these eight transition 170 

mutations, six appeared as major variants and thus changed the overall 171 

consensus sequence. The nucleotide positions of these six transition 172 

mutations (Table 2) indicated that all the changes in the consensus sequence 173 

were already present at relatively high frequency as minor variants in the input 174 

stock and were subsequently amplified during viral replication. Changes at 175 

nucleotide positions 2,815 and 4,211 were the most common, being found in 176 

~35% reads mapping to the virus genome. Had these changes been found in 177 

≥50% reads, they would have been classified as major variants and thus 178 

changed the consensus sequence (Table 2). 179 

 180 

Transcriptomic profiling reveals key cellular responses to ZIKV 181 

infection. RNA-seq was used to identify and quantify global mRNA 182 

abundance in ZIKV-infected peripheral monocytes and MDMs at 24 and 72 183 

hpi. mRNA purified from 27 samples showed no signs of degradation and had 184 

sufficient read depth for inclusion in the analyses (Supplemental Figure 2A). 185 

For monocytes, mock and ZIKV-infected cells at both 24 and 72 hpi exhibited 186 

minimal changes in host transcript abundance. For MDMs, the abundance of 187 
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transcripts that mapped to 1,736 and 545 genes at 24 and 72 hpi respectively, 188 

were significantly different (FDR < 0.05) between the mock and ZIKV-infected 189 

samples (Supplemental Figure 2B).  190 

 Ingenuity Pathway Analysis (IPA) was used to interrogate and group 191 

the differentially expressed genes into functional pathways (Figure 3A). A total 192 

of 169 pathways were identified, of which 27 were common in ZIKV-infected 193 

MDMs at 24 and 72 hpi. A further 106 pathways were unique to samples at 24 194 

hpi (Supplemental Table S1), and 36 pathways were unique to samples at 72 195 

hpi (Supplemental Table S2). This analysis found that genes associated with 196 

the interferon response were significantly upregulated at both time-points. In 197 

addition, signalling pathways involved in the pathogenesis of multiple 198 

sclerosis, and key pathways involved in monocyte-derived dendritic cell 199 

(moDCs) and NK cell processes were also shared between the two time 200 

points (Figure 3A). Overall, the top three common pathways activated in 201 

MDMs were interferon signalling, multiple sclerosis pathogenic pathways and 202 

crosstalk pathways between moDCs and NK cells (Figure 3A). The specific 203 

genes with the most abundant transcripts within these three pathways were 204 

analyzed, and when compared to the mock-infected controls were all 205 

increased in abundance after ZIKV infection (Figure 3B). 206 

 207 

Virus-infected MDMs exhibit reduced cellular responsiveness. 208 

Transcriptomic profiles of various ZIKV-infected MDMs were compared to 209 

evaluate the transition of the cellular host response over the course of ZIKV 210 

infection. The percentage overlap of the identified transcripts between ZIKV-211 

infected MDMs was assessed at 24 hpi and 72 hpi within the three targeted 212 
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pathways described above (Figure 4). Interestingly, the percentage of 213 

overlapping transcripts identified at 72 hpi was lower for all three pathways, 214 

which may reveal a lower activation status of these pathways at this stage of 215 

the infection. The identification of different transcripts associated with 72 hpi 216 

may indicate the different signalling cascades present or activation status of 217 

these cells (Figure 4A). Global assessment of all identified transcripts 218 

revealed that transcripts mapping to 251 genes were in fact present in virus-219 

infected MDMs at both time points. Transcripts that mapped to 1,485 genes 220 

were specific to 24 hpi, of which 54.81% exhibited greater abundance 221 

compared to the mock controls. By comparison, transcripts that mapped to 222 

294 genes were unique to 72 hpi, with 63.36% of them having greater mRNA 223 

abundance compared to the mock controls (Figure 4B). Within the 251 224 

common genes, transcripts mapping to 218 genes had a greater fold-change 225 

value compared to the mock-infected controls, indicating that these transcripts 226 

were increased in abundance in all ZIKV-infected MDMs. Further inquiry of 227 

these transcripts revealed that 60.1% of them were greater in abundance at 228 

72 hpi compared to 24 hpi. Likewise, of the remaining transcripts that mapped 229 

to 33 genes and showed decreased abundance, 84.85% were further reduced 230 

at 72 hpi.  231 

 232 

NK cells are activated in ZIKV-infected patients. IPA predicted robust 233 

crosstalk between NK cells and moDCs in peripheral blood upon ex vivo 234 

ZIKV infection (Figure 3-4). The IPA prediction that NK cells were activated 235 

in the peripheral blood of ZIKV-infected patients was, therefore, 236 

investigated by comprehensive immune-phenotyping of blood samples 237 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/225102doi: bioRxiv preprint 

https://doi.org/10.1101/225102


 

 12

taken from ZIKV-infected patients. These patients were recruited from the 238 

first endemic ZIKV outbreak in Singapore in 2016 (7,14). Blood aliquots 239 

were obtained from ZIKV-infected patients (n=9) during the acute disease 240 

phase (between 1 and 7 days post-illness-onset), and were subjected to a 241 

whole blood staining protocol that targeted CD56+ cells, predominantly NK 242 

cells (15) (Figure 5A). Blood from healthy donors (n=5) was collected and 243 

processed in parallel as a control group. Gated cells were further grouped 244 

with the C-type lectin receptor CD94, giving three CD56+ populations: 245 

CD56brightCD94hi, CD56dimCD94hi and CD56dimCD94lo (16). The activation 246 

status of these populations was then assessed based on the percentage of 247 

each subset expressing CD16 and CD69 (Figure 5B). A higher level of 248 

CD16 was observed across all CD56+ subsets in ZIKV-infected patients 249 

compared to the healthy controls. A higher percentage of the subsets also 250 

expressed CD69 — a known cellular activation marker (17).     251 

 252 

CD14+ monocytes prime NK-cell activity during ZIKV infection. Given that 253 

peripheral NK cells were activated in ZIKV-infected patients and that the 254 

precursor of MDMs was the monocytes, the functional relationship between 255 

monocytes and NK cells were assessed. This relationship is critical especially 256 

during the viremic phase. Briefly, CD14+ monocytes were depleted from 257 

human primary PBMCs, with an average efficiency of >95% (Supplemental 258 

Figure 3). Lipopolysaccharide (LPS; 10ng/ml) was used as a positive control 259 

to stimulate monocytes to prime NK cells (18). A significant reduction in the 260 

activity of NK cells was observed when CD14-depleted PBMCs were 261 

stimulated with LPS compared to LPS stimulation of PBMCs containing 262 
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CD14+ monocytes (Supplemental Figure 4). This effect was evidenced by the 263 

reduced levels of the surface markers CD69, CD107a and intracellular IFNγ in 264 

depleted cells, verifying that this approach was an efficient strategy for 265 

investigating the relationship between monocytes and NK cells. 266 

PBMCs were then isolated from seven healthy donors and subjected to 267 

CD14-depletion before being either infected with ZIKV or stimulated with LPS 268 

in parallel to serve as a control to determine activation of NK cells. ZIKV 269 

infection in non-depleted PBMCs resulted in high levels of CD107a and IFNγ 270 

(Figure 6A) in CD56+CD94+ NK cells (Supplemental Figure 5) at 36 hpi  — an 271 

optimal time-point to detect NK-cell priming (19). The opposite effect, 272 

however, was observed in ZIKV-infected PBMCs depleted of CD14+ 273 

monocytes as the levels of both CD107a and IFNγ were significantly reduced 274 

(Figure 6B). The levels of CD107a and IFNγ remained high at 72 hpi in non-275 

depleted infected PBMCs compared to depleted infected PBMCs 276 

(Supplemental Figure 6). Interestingly, although monocyte depletion did not 277 

affect the expression of NK-cell activation receptors NKG2A or NKG2D, a 278 

general reduction in NKG2D-expressing NK cells was observed during ZIKV 279 

infection (Supplemental Figure 7A and 7B). Surprisingly, the activation marker 280 

CD69 was not increased upon ZIKV infection in this study (Supplemental 281 

Figure 7C and 7D). ZIKV viral load was comparable between both conditions 282 

(Figure 6C). 283 

 To delve further into the mechanism, the profile of secreted immune 284 

mediators from ZIKV-infected PBMCs was quantified using a 45-plex 285 

microbead-based immunoassay (20). Levels of 11 mediators were 286 

significantly affected by the depletion of CD14+ monocytes (Figure 7A and 287 
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Supplemental Figure 8A), while 8 mediators were affected upon ZIKV 288 

infection (Supplemental Figure 8B). Interestingly, depletion of CD14+ 289 

monocytes and ZIKV infection did not affect the levels of EGF, IL-9, IL-17A, 290 

MIP-1α and MIP-1β (Supplemental Figure 8C). The effect of CD14+ 291 

monocytes depletion was observed in the levels of SCF and TNFα only after 292 

ZIKV infection (Supplemental Figure 8D). Importantly, levels of MCP-1, IL1RA 293 

and VEGF-A were affected by both CD14+ monocytes depletion and ZIKV 294 

infection (Figure 7B). To further investigate the capacity of the cytokine 295 

milieus in priming NK cells, freshly isolated human primary PBMCs were then 296 

treated with the same culture supernatants from ZIKV-infected PBMCs and 297 

CD14+ monocytes-depleted PBMCs. Stimulation with culture supernatant from 298 

ZIKV-infected non-depleted PBMCs led to slightly more cell death 299 

(Supplemental Figure 9A) accompanied by a significant upregulation in 300 

expression of CD107a, IFNγ and NKG2D in the CD94+CD56+ NK cells (Figure 301 

7C and Supplemental Figure 9B), confirming the importance of monocytes in 302 

NK-cell priming during ZIKV infection. To rule out priming of NK cells by 303 

viruses present in the culture supernatant, a UV-treatment procedure was 304 

performed to inactivate the virus, prior to the stimulation assay. Expectedly, 305 

while UV-inactivation successfully inactivated ZIKV (Supplemental Figure 306 

10A), it also affected the quality of the cytokines and led to reduced priming of 307 

NK cells (Supplemental Figure 10B).   308 
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Discussion 309 

Myeloid cells are targets of active ZIKV infection (6-9,21-23) and can elicit 310 

immune responses with detrimental outcomes (6,8). Both monocytes and 311 

macrophages exhibit extensive heterogeneity (24,25). While it is difficult to 312 

obtain tissue-resident macrophages for experimental purposes, human 313 

blood is a readily accessible, valuable source of these cells. Transcriptomic 314 

profiling of ex vivo human blood monocytes and MDMs has revealed 315 

marked differences between these cell types (26,27). In this study, human 316 

primary monocytes were naturally differentiated into MDMs without any bias 317 

for an M1 or M2 macrophage phenotype (28). Given that these cells are 318 

targets of ZIKV infection (8), investigations into their cellular immune 319 

responses during infection will open avenues to exploit their function for 320 

therapeutic benefits.  321 

The level of ZIKV infection (as assessed by the amount of ZIKV 322 

antigen and genome copy number) was higher in MDMs than monocytes, 323 

which corroborates previous observations (8). Transcriptomic differences 324 

between monocytes and MDMs (26,27) would be a plausible explanation 325 

for the differential susceptibility of these cells to ZIKV infection. It is also 326 

noteworthy that higher ZIKV infection levels were found in purified primary 327 

cell populations compared to PBMCs, perhaps due to the presence of other 328 

immune subsets in PBMCs that may dampen the overall infection level. 329 

ZIKV RNA was detected at the two time-points, 24 and 72 hpi and the virus 330 

was present as quasi-species post-infection in human primary myeloid 331 

cells. The virus consensus sequence and minor variant mapping revealed 332 

an over-representation of transition mutations at highly variable nucleotide 333 
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positions in the sequence reads. The proportion of these minor variants 334 

indicated a shift towards becoming major variants. A recent study that 335 

sequenced ZIKV genomes isolated from infected patients provided 336 

important information pertaining to ZIKV transmission (29). These data 337 

highlighted the degree of divergence in sequenced genomes and placed 338 

further emphasis on understanding virus evolution and transmission 339 

effectiveness (30). As not all recovered ZIKV RNA samples contained the 340 

same mutations, it will be interesting to determine how different host 341 

immune responses can lead to ZIKV quasi-species that acquire different 342 

combinations of mutations.  343 

 ZIKV infection led to the differential abundance of host transcripts 344 

mapping to numerous cellular genes in MDMs but not in monocytes, likely to 345 

be due to the higher levels of infection observed in MDMs. Furthermore, it is 346 

known that differences between donors can account for significant varied 347 

cellular responses (31,32), which when coupled with the lower infection 348 

levels observed in the monocytes may have triggered a disparate range of 349 

immune responses. However, this differential effect does not necessary 350 

signify that ZIKV-infected monocytes do not elicit any cellular response to 351 

infection, but rather the differences were not measurable by RNA-seq at the 352 

read depths used in this analysis. In fact, transcript abundance of numerous 353 

genes were different between the mock and ZIKV-infected monocytes, just 354 

that the statistical threshold of FDR < 0.05 was not reached and was thus 355 

excluded from further analyses. Using IPA data mining, these differentially 356 

expressed genes were involved in 133 and 63 canonical cellular pathways 357 

(27 of them being shared) in MDMs at 24 and 72 hpi, respectively. The lower 358 
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number of cellular pathways identified in ZIKV-infected MDMs at the later 72 359 

hpi time-point suggests that certain cellular functions may be shut down post-360 

infection (33). This effect could signify: (1) that the host cells conserve energy 361 

to focus only on essential pathways for survival; and/or (2) the host cells 362 

have succumbed to ZIKV infection, which leads to transcriptional shutdown in 363 

host cells.  364 

Unsurprisingly, the IFN response was the most highly expressed 365 

signalling pathway of these common pathways at both time-points because 366 

of virus trigger (34). This observation was further complemented by the 367 

presence of few other IFN-related pathways. Observations were found for 368 

the next two most expressed pathways — pathogenesis of multiple 369 

sclerosis and crosstalk between NK cells moDCs cells — both of which 370 

involve NK cells. Although ZIKV infection has not been previously 371 

associated with multiple sclerosis due to the relatively new disease 372 

spectrum, other viral infections such as Epstein-Barr virus (35) and measles 373 

virus (36) have been linked.  374 

CXCL9, CXCL10, CXCL11 and CCL5 (identified as the top genes in 375 

the pathway) are known chemokines to stimulate NK-cell activation (37,38). 376 

The increased transcript abundance of these immune mediators, coupled 377 

with others such as IL-15, is a strong indication that ZIKV-infected 378 

macrophages are primed to “communicate” with NK cells. Other recent 379 

studies have also provided evidence of communication between 380 

macrophages and NK cells (18). The increased abundance of TNFSF10 381 

and FAS transcripts in ZIKV-infected MDMs, could indicate priming of NK-382 

cell mediated apoptosis (39). Interestingly, levels of typical NK cell-383 
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activating cytokines, such as IL-12 (40,41) and IL-18 (42,43) were not 384 

differentially expressed in this study. However, mRNA levels of IL-23 and 385 

IL-27, two cytokines belonging to the family of IL-12 (44) with roles in NK-386 

cell activation (45,46) were increased.  387 

Immune-phenotyping of whole blood samples from ZIKV-infected 388 

patients revealed the presence of CD69+CD56+ immune cells 389 

(predominantly the CD56+ NK cells) (15), suggesting the possible priming of 390 

NK cells in ZIKV infection. The involvement of NK cells was thus explored 391 

ex vivo in human primary PBMCs. Interestingly, ex vivo culture alone led to 392 

an increase in the basal expression level of CD69 in CD56+CD94+ NK cells, 393 

as previously reported (47). Furthermore, ZIKV infection resulted in reduced 394 

levels of CD69, which is a phenomenon also reported for the flavivirus tick-395 

borne encephalitis virus infection in healthy donor NK cells (48). Moreover, 396 

NK cells behave differently ex vivo and in vivo (49), which may explain the 397 

different levels of CD69 detected in patients and in ex vivo ZIKV-infected 398 

NK cells. It was also reported in CD69-deficient mice that the activity of NK 399 

cells remains functional (50). High levels of key NK activation markers, 400 

including the degranulation marker CD107a and intracellular cytokine IFNγ 401 

indicate the higher activation status of NK cells. The activity of NK cells was 402 

directly dependent on the presence of CD14+ monocytes. ZIKV infection of 403 

PBMCs depleted of CD14+ monocytes significantly down-regulated the 404 

expression of the various NK-cell markers, demonstrating the functional role 405 

of monocytes as one of the key players for NK-cell stimulation. The data 406 

presented in this study are further supported by a recent publication in 407 

which ZIKV patients had high levels of IL-18, TNFα and IFNγ (20) — 408 
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immune mediators associated with NK-cell function. The usage of SJL 409 

mice, which lack NK cells (51), as a model of ZIKV infection also suggest a 410 

protective role for these immune cell given that these animals succumbed 411 

to cortical malformations (52). Likewise, NK-cell-mediated immune 412 

response was significantly increased in healthy volunteers receiving a 413 

vaccination for the closely related yellow fever virus (53). 414 

Interestingly, multiplex quantification of secreted immune mediators 415 

from ex vivo ZIKV-infected PBMCs provided an alternate perspective. IL-18 416 

and IFNγ, two NK-cell related cytokines, were below detection limit. 417 

However, freshly isolated PBMCs stimulated with culture supernatants from 418 

ZIKV-infected PBMCs resulted in increased priming of NK cells, clearly 419 

indicating that the concoction of immune mediators are capable in driving 420 

NK-cell activation.  421 

Nonetheless, the, depletion of CD14+ monocytes would abrogate this 422 

activation as observed by the low levels of MCP-1, IL-1RA, VEGF-A, 423 

Eotaxin, GROα, IFNα SDF-1α, IP-10, IL-6, IL-1α, IL-1β, IL-8, IL-21 and IL-424 

10. The reduced levels of MCP-1 could also have a detrimental effect on 425 

NK-cell recruitment and priming (37,54), although MCP-1 and VEGF-A 426 

have been reported to drive the production of each other (55-57). The high 427 

levels of secreted IL1RA from ZIKV-infected PBMCs could also have 428 

participated in the increased priming of NK cells, as IL1RA is known to 429 

potentiate the effect of IL-2 stimulation of NK cells (58). Thus, the loss of 430 

detectable IL-2 after ZIKV infection in CD14-depleted PBMCs would further 431 

dwindle NK-cell priming. The presence of other immune mediators such as 432 

IL-6, IL-8, IL-10 and IP-10, SDF-1α, GROα, IL-1α and IL-1β in ZIKV-433 
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infected non-depleted PBMCs would further provide an inflammatory 434 

condition for cellular activation. While the levels of these immune mediators 435 

have been reported to be high in ZIKV patients (20), IL-10 and IP-10 have 436 

been demonstrated to contribute to cytolysis and activation of NK cells 437 

(37,59). Levels of LIF (60), IL-22 (61) and IL-31 (62) were high upon ZIKV 438 

infection, indicating their roles in regulating T cells during ZIKV infection 439 

(63). T cells can regulate NK-cell activity (64) and monocytes could 440 

indirectly mediate NK-cells functions through the T lymphocytes.  441 

To conclude, through a systematic investigative workflow combining 442 

approaches exploring host cell transcriptomes and immunoproteomes, it was 443 

demonstrated that monocytes and macrophages do not act alone, but in 444 

conjunction with other immune cells to orchestrate a series of host immune 445 

response and drive disease progression. As such, a comprehensive 446 

understanding of immune-cell interaction will have important clinical 447 

implications for the design of novel therapeutics that can either dampen down 448 

or enhance a response as appropriate.  449 
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Materials and Methods 450 

Ethics approval and consent to participate. Whole blood samples were 451 

collected from ZIKV-infected patients who were referred to the Communicable 452 

Disease Centre, Tan Tock Seng Hospital, Singapore. Blood was obtained 453 

from patients who provided written informed consent. The study protocol was 454 

approved by the SingHealth Centralized Institutional Review Board (CIRB 455 

Ref: 2016/2219). Blood samples were collected from healthy donors with 456 

written consent in accordance with guidelines from the Health Sciences 457 

Authority of Singapore (study approval number: NUS IRB: 10-250).  458 

 459 

Patient whole blood samples. This study utilized whole blood samples 460 

obtained from patients admitted to the Communicable Disease Centre at Tan 461 

Tock Seng Hospital, Singapore from 27 August to 18 October 2016. Samples 462 

included in this study were collected during the acute phase (1-7 pio) of ZIKV 463 

infection. These patients were confirmed to be infected with ZIKV by reverse-464 

transcription polymerase chain reaction (RT-PCR) performed on serum and 465 

urine samples obtained during their first visit to the clinic. Whole blood 466 

samples were collected in EDTA Vacutainer tubes (Becton Dickinson). Whole 467 

blood samples were also obtained from healthy volunteers as controls, which 468 

were confirmed to be negative for ZIKV RNA by RT-PCR.  469 

 470 

Virus preparation. The ZIKV strain (accession KJ776791) used in this study 471 

was originally isolated from the French Polynesia outbreak in 2013 (65). The 472 

virus was propagated as previously described (8). Briefly, the virus was 473 

propagated by multiple passages in Vero-E6 cells (ATCC; CRL-1587) and 474 
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pre-cleared by centrifugation before storing at -80oC. The virus titre was 475 

determined using standard plaque assays with Vero-E6 cells. Vero-E6 cells 476 

were regularly tested for mycoplasma contamination and were grown and 477 

passaged in Dulbecco’s Modified Eagle Medium (DMEM; HyClone) 478 

supplemented with 10% (vol/vol) FBS. UV-inactivation of ZIKV was performed 479 

with the CL-1000 UV cross-linker (UVP) at intensity of 100mJ/cm2 for 10 480 

minutes. 481 

 482 

Isolation and depletion of monocytes from human PBMCs. Monocytes 483 

were prepared from fresh human PBMCs as previously described (8)  and by 484 

gradient centrifugation using Ficoll-Paque density gradient media (GE 485 

Healthcare). Subsequently, monocytes were isolated using an indirect 486 

magnetic labelling system (Monocyte Isolation Kit II, Miltenyi Biotec). A direct 487 

magnetic labelling system (Human CD14+ monocytes isolation kit 2, 488 

STEMCELL) was used for depletion of monocytes from PBMCs. The 489 

manufacturers’ protocols were strictly adhered to for these procedures. 490 

 491 

Differentiation of monocytes into MDMs. Isolated monocytes were 492 

differentiated into MDMs by plating in complete Iscove Modified Dulbecco’s 493 

Medium (IMDM) (Hyclone) supplemented with 10% (vol/vol) heat-inactivated 494 

human serum (HS) (Sigma-Aldrich), which was replaced every 2 days. ZIKV 495 

infections were performed on monocytes and MDMs 5 days later, as 496 

described below. 497 

 498 
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Virus infection. ZIKV infections were performed at multiplicity of infection 499 

(MOI) 10. Each infection mix consisted of a virus suspension prepared in 500 

serum-free IMDM (Hyclone). The cells were incubated with the infection mix 501 

at 37oC and allowed to adsorb for 2 h with intermittent shaking before the 502 

virus inoculum was removed and replaced with complete IMDM supplemented 503 

with 10% (vol/vol) HS (Sigma-Aldrich). Cells were incubated at 37oC until 504 

harvesting at 24 and 72 hpi. The harvested cells for downstream total RNA 505 

isolation were stored at -80oC. A total of 140 µl of the infected cell suspension 506 

was used to quantify the viral load. For assessment of monocyte function in 507 

NK-cell activation during ZIKV infection, total human PBMCs and donor-508 

corresponding CD14-depleted PBMCs were infected with ZIKV at MOI 10. In 509 

parallel, both PBMC fractions were stimulated with 10ng/ml 510 

lipopolysaccharide (LPS; Sigma) as a positive control to measure NK-cell 511 

activation. Cells were subsequently treated with 1X Brefeldin (eBioscience) 512 

and stained with CD107a (BD Pharmingen) 6 h before harvesting at 36 hpi. 513 

The viral load was quantified from 140 µl of the infected cell suspension. 514 

Negative controls were cells undergoing the same infection conditions in the 515 

absence of infectious ZIKV particles. These controls are referred to as mock-516 

infected samples. 517 

 518 

PBMCs stimulation assay. Fresh PBMCs were isolated as described above 519 

and subjected to stimulation with ZIKV-infected culture supernatants in a final 520 

ration of 1:10 in fresh IMDM (Hyclone) supplement with 10% (vol/vol) of HS 521 

(Sigma-Aldrich). Cells were subsequently treated with 1X Brefeldin 522 
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(eBioscience) and stained with CD107a (BD Pharmingen) 6 h before 523 

harvesting at 36 h for downstream antibodies staining. 524 

 525 

Viral RNA extraction and viral load analysis. Viral RNA was extracted 526 

using a QIAamp® Viral RNA Mini Kit (QIAGEN), according to manufacturer’s 527 

instructions. Quantification of ZIKV NS5 RNA was determined by quantitative 528 

real time-PCR (qRT-PCR) TaqMan assay (66) using a QuantiTect® Probe 529 

RT-PCR Kit (QIAGEN) in a 12.5 µl reaction volume. All reactions were 530 

performed on a 7900HT Fast Real-Time PCR System machine (Applied 531 

Biosciences).  532 

 533 

Total RNA extraction. Total RNA was extracted using an RNeasy Mini Kit 534 

(QIAGEN) according to the manufacturer’s instructions. The extracted total 535 

RNA was quantified on a Nanodrop 1000 spectrophotometer (Thermo Fisher 536 

Scientific). 537 

 538 

Flow cytometry and antibodies. Detection of ZIKV antigen was carried out 539 

in a two-step indirect intracellular labelling process. Briefly, harvested cells 540 

were first fixed and permeabilized with FACS lysing solution (BD Biosciences) 541 

and FACS permeabilization solution 2 (BD Biosciences), respectively. Antigen 542 

staining was then performed with a flavivirus-specific mouse monoclonal 543 

antibody (clone 4G2) (Millipore) followed by secondary staining with a goat 544 

anti-mouse IgG F(ab’)2 antibody (Invitrogen). Cells were then specifically 545 

stained for the surface markers CD45 and CD14 (for ZIKV-infected 546 

monocytes and MDMs). Dead cells were excluded by staining with the 547 
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LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Life Technologies). For 548 

PBMCs, surface markers CD45, CD14, CD3, CD19 and CD56 were stained 549 

prior to intracellular staining (for ZIKV-infected PBMCs). For patient samples, 550 

100 μl of whole blood was stained for the surface markers, CD45, CD56, 551 

CD94, CD16, CD69, CD107a, NKG2D and NKG2A. The stained cells were 552 

subsequently incubated with FACS lysing solution (BD Biosciences) to lyse 553 

the red blood cells. CD56+ cells were first identified and were subsequently 554 

further defined with the CD94 surface marker to give three other subsets - 555 

CD56brightCD94hi, CD56dimCD94hi and CD56dimCD94lo (16). To specifically 556 

assess NK-cell activity ex vivo, PBMC fractions were stained for CD107a and 557 

various lineage markers (CD3, CD19, CD20 and CD14) (15) in addition to the 558 

panel of antibodies used for patient whole blood staining. The usage of 559 

lineage markers excludes the presence of non-NK cells in the ensuing 560 

analysis. Stained PBMCS were fixed and permeabilized as described above 561 

before intracellular staining of ZIKV antigen and IFNγ. 562 

All antibodies used were mouse anti-human and were obtained from 563 

BD Pharmingen (CD3, CD19, CD20, CD14, CD69, CD56, CD94, NKG2D, 564 

CD107a and IFNγ), Biolegend (CD16 and CD45) and Miltenyi Biotec 565 

(NKG2A). Data were acquired on a Fortessa flow cytometer (BD Biosciences) 566 

with BD FACSDivaTM software. Data analysis was performed using FlowJo 567 

version 9.3.2 software (Tree Star, Inc).  568 

 569 

Cytokines quantification using microbead-based immunoassay and data 570 

analyses. Cytokine levels in supernatant obtained from mock and ZIKV-571 

infected PBMCs were measured simultaneously using the ProcartaPlexTM 572 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/225102doi: bioRxiv preprint 

https://doi.org/10.1101/225102


 

 26

immunoassay (Thermo Fisher Scientific) detecting for 45 secreted cytokines, 573 

chemokines and growth factors including brain derived neurotropic factor 574 

(BDNF); Eotaxin/CCL11; epidermal growth factor (EGF); fibroblast growth 575 

factor 2 (FGF-2); granulocyte macrophage-colony stimulating factor (GM-576 

CSF); growth-related oncogene (GRO) alpha/CXCL1; hepatocyte growth 577 

factor (HGF); nerve growth factor (67) beta; leukemia inhibitory factor (10); 578 

interferon (IFN) alpha; IFN gamma; interleukin (IL)-1 beta; IL-1 alpha; IL-1RA; 579 

IL-2; IL-4; IL-5; IL-6; IL-7; IL-8/CXCL8; IL-9; IL-10; IL-12p70; IL-13; IL-15; IL-580 

17A; IL-18; IL-21; IL-22; IL-23; IL-27; IL-31; interferon-gamma induced protein 581 

(IP)-10/CXCL10; monocyte chemoattractant protein (MCP-1/CCL2); 582 

macrophage inflammatory protein (MIP)-1 alpha/CCL3; MIP-1 beta/CCL4; 583 

regulated on activation, normal T cell expressed and secreted 584 

(RANTES)/CCL5; stromal cell-derived factor (SDF)-1 alpha/CXCL12; tumor 585 

necrosis factor (TNF) alpha; TNF beta/LTA; Platelets-derived growth factor 586 

(PDGF)-BB; placental growth factor (PLGF); stem cell factor (SCF); vascular 587 

endothelial growth factor (VEGF)-A; VEGF-D. Preparation of samples, 588 

reagents and immunoassay procedures were performed according to 589 

manufacturers’ instructions. Data were acquired using Luminex FlexMap 3D® 590 

instrument (Millipore) and analyzed using Bio-plex Manager™ 6.0 software 591 

(Bio-Rad) based on standard curves plotted through a five-parameter logistic 592 

curve setting.  Levels of BDNF, FGF-2, HGF, NGF, IFN gamma, IL-4, IL-5, IL-593 

7, IL-12p70, IL-13, IL-15, IL-18, RANTES, PDGF-BB, PLGF and VEGF-D 594 

were below detection limit and excluded for further analysis. Hierarchical 595 

clustering was done using TM4-MeV (http://mev.tm4.org/). 596 

 597 
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RNA-seq and differential gene expression analysis. The general approach 598 

to RNA-seq and differential expression has been previously described 599 

(10,68), and is detailed in brief below. 600 

 601 

RNA-seq. RNA samples were treated with DNase using an Ambion Turbo 602 

DNA-free Kit (Ambion), and then purified using Ampure XP beads 603 

(Agencourt). The DNase-treated RNA (2 ug) underwent Ribozero treatment 604 

using an Epicentre Ribo-Zero Gold Kit (Human/Rat/Mouse) (Epicentre) and 605 

re-purified on Ampure XP beads. Successful RNA depletion was verified 606 

using a Qubit (Thermo Fisher Scientific) and an Agilent 2100 Bioanalyzer 607 

(Agilent) and all of the depleted RNA was used as input material for the 608 

ScriptSeq v2 RNA-Seq Library Preparation protocol.  RNA was amplified for 609 

14 cycles and the libraries were purified on Ampure XP beads. Each library 610 

was quantified using Qubit and the size distribution was assessed using the 611 

AATI Fragment Analyser (Advanced Analytical). These final libraries were 612 

pooled in equimolar amounts using the Qubit and Fragment Analyser data. 613 

The quantity and quality of each pool was assessed by the Fragment 614 

Analyser and subsequently by qPCR using the Illumina Library Quantification 615 

Kit (KAPA Biosystems) on a Light Cycler LC480II (Roche) according to 616 

manufacturer's instructions. The template DNA was denatured according to 617 

the protocol described in the Illumina cBot User guide and loaded at 12 pM 618 

concentration. Sequencing was carried out on three lanes of an Illumina 619 

HiSeq 2500 with version 4 chemistry, generating 2 × 125 bp paired-end reads. 620 

 621 
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Bioinformatics Analysis. Briefly, base calling and de-multiplexing of indexed 622 

reads was performed using CASAVA version 1.8.2 (Illumina) to produce 30 623 

samples from the five lanes of sequence data in fastq format.  The raw fastq 624 

files were trimmed to remove the Illumina adapter sequences using Cutadapt 625 

version 1.2.1 (69). The option “-O 3” was set so that the 3' end of any read 626 

that matched the adapter sequence by ≥3 bp was removed.  The reads were 627 

further trimmed to remove low-quality bases using Sickle version 1.200 with a 628 

minimum window quality score of 20.  After trimming, reads <50 bp were 629 

removed. If both reads from a pair passed this filter, each read was included 630 

in the R1 (forward reads) or R2 (reverse reads) file.  If only one read of a read 631 

pair passed this filter, it was included in the R0 (unpaired reads) file. The 632 

reference genome used for alignment was the human reference genome 633 

assembly GRCh38. The reference sequence was downloaded from the 634 

Ensembl ftp site 635 

(ftp://ftp.ensembl.org/pub/release77/fasta/homo_sapiens/dna/Homo_sapiens636 

GRCh38.dna_sm.primary_assembly.fa.gz). The reference annotation was 637 

also downloaded from the Ensembl ftp site (ftp://ftp.ensembl.org/pub/release-638 

77/gtf/homo_sapiens/Homo_sapiens.GRCh38.77.gtf.gz).  The annotated file 639 

contained 63,152 genes. R1/R2 read pairs were mapped to the reference 640 

sequence using TopHat2 version 2.1.0 (70) that employs the mapper Bowtie2 641 

version 2.0.10 (71).  642 

 643 

Differential Gene Expression and Functional Analysis. Mapped reads 644 

were further analyzed using EdgeR version 3.3 (72) to calculate normalized 645 

counts per million (CPM), identify differentially expressed genes between 646 
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infected and mock-infected conditions, and compare infected conditions with 647 

each other. Correlation and PCA analysis plots were created in RStudio. 648 

Heat-maps were generated using GENE-E (Broad Institute; 649 

https://software.broadinstitute.org/GENE-E/). IPA was used for gene ontology 650 

and pathway analysis. The P value associated with each identified canonical 651 

pathway was calculated by Fisher’s Exact test (right-tailed). The presence of 652 

the 27 common canonical pathways was illustrated in a heat-map generated 653 

by hierarchical clustering using TM4-MeV (73).  654 

 655 

Identification of ZIKV variants. Bowtie 2 (71) was used to determine the 656 

mean sequence coverage. Here, 12 of the 41 samples (including the 657 

inoculum) had a mean coverage >10 following alignment with the ZIKV 658 

reference genome (accession KJ776791) used in this study. The frequencies 659 

of minor variants were calculated using QuasiRecomb (74). Sequences of 660 

individual viral proteins were compared to the protein databank using the 661 

online NCBI Protein BLAST server 662 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). 663 

  664 
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Figure 1: Primary human MNCs and MDMs are targets of ZIKV infection. Isolated human primary MNCs and 
MDMs (2×106 cells each) were infected with ZIKV at MOI 10 and harvested at 24 and 72 hpi. Flow cytometry gating on 
(A) monocytes (MNCs) and (B) MDMs. Gating for positive infection was set using the mock-infected samples. For the 
dot plots, cells positive for ZIKV Ag are shown in red. For the histogram, ZIKV-infected samples (red) were overlaid on 
mock-infected samples (black). Compiled results for (C) infection (ZIKV Ag) and (D) viral load detected in MNCs and 
MDMs obtained from five healthy donors. All data are presented as mean ± SD. *P < 0.05, by Mann Whitney U test, 
two tailed. Viral load data was not statistically significant between 24 and 72 hpi in MNCs by Mann Whitney U test, two 
tailed. Abbreviations: hpi, hours post-infection; MDM, monocyte-derived macrophage; MNC, monocyte; ZIKV, Zika 
virus; Ag, antigen.  
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Figure 2: Phylogenetic analyses based on sample consensus sequences. (A) Frequency of ZIKV minor variants (transitions and transversions) recovered from 
infected human primary MNCs and MDMs isolated from five donors. Bin -3 is where ≤1/1000 reads show a specific change at an individual nucleotide position. Bin -2 is 
>1/1000 and ≤1/100 reads showing a difference. Bin -1 is >1/100 and ≤1/10 reads and Bin > -1 is >1/10 reads showing a change up to a logical limit of just under ½. (B) 
Phylogenetic tree generated from the alignment of consensus sequences of ZIKV RNA recovered from the same samples as described in (A). All samples included in 
the tree had a mean sequence coverage >10 at each nucleotide position. PF/ZIKV/HPF/2013 is the virus strain used for infection and denoted as the reference sample 
in this analysis. Abbreviations: hpi, hours post-infection; MDM, monocyte-derived macrophage; MNC, monocyte; ZIKV, Zika virus. 
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Figure 3: Transcriptomic profiling of host cells during ZIKV infection. Primary human MNCs and MDMs (2×106 
cells per infection) were infected with ZIKV at MOI 10 and harvested at 24 and 72 hpi for transcriptomic analysis by 
RNA-seq and then compared to mock-infected controls. (A) Venn-diagram illustrating the proportion of up-regulated 
signaling pathways identified by IPA in ZIKV-infected MDMs. Up-regulation intensity of the 27 common canonical 
pathways are shown in a heat-map. Stars within the boxes represent the calculated P values associated with each 
identified pathway, compared to the mock-infected samples. (B) The five most up-regulated genes within the top three 
signaling pathways at 24 and 72 hpi are shown: Interferon pathway, multiple sclerosis pathway and crosstalk between 
moDCs and NK cells. Data presented were obtained from a total of five donors. Abbreviations: hpi, hours post-
infection; NK, natural killer; IPA, ingenuity pathway analysis; MDM, monocyte-derived macrophage; MNC, monocyte; 
moDCs, monocyte-derived dendritic cells; ZIKV, Zika virus. Figure 3_Lum et al., 2017 
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Figure 4: Transition of the host cellular response over the course of ZIKV infection. The host cellular response 
was analyzed and investigated by RNA-sequencing and significant transcriptomic differences were identified. (A) 
Transitional analysis (% genes overlapping) of the top three common canonical signaling pathways was determined 
using IPA of infected MDMs. Venn diagrams indicate the top five common and time-point specific genes associated 
with each canonical pathway. (B) Proportion of common and differentially expressed genes within ZIKV-infected MDMs 
at 24 and 72 hpi. Data presented were obtained from a total of five donors. Abbreviations: moDCs, monocyte-derived 
dendritic cells; hpi, hours post-infection; IPA, ingenuity pathway analysis; ZIKV, Zika virus; MDM, monocyte-derived 
macrophage. 
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Figure 5: Activation of CD56+ cells in patients infected with ZIKV. (A) Gating strategy of CD56+ cell subsets and 
their expression of CD16 and CD69. CD56+ cells were first gated from CD45+ lymphocytes from peripheral blood 
mononuclear cells isolated from patients. These populations were further gated into three populations based on the 
expression of surface marker CD94:  CD94hiCD56bright cells (blue), CD94hiCD56dim (green) and CD94loCD56dim 
(red). The data presented correspond to a representative patient infected with ZIKV. Cells from a healthy control are 
overlaid and depicted as the black population (Q8). (B) Compiled data on the percentage of gated subsets that are 
positive for CD16 (Q5 and Q6) and CD69 (Q6 and Q7). Patients (n=9) are depicted as filled circles, and healthy 
controls (n=5) are depicted as clear circles. All data are presented as mean ± SD. *P < 0.05, by Mann Whitney U test, 
two tailed. Abbreviations: NK, natural killer; ZIKV, Zika virus. 
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Figure 6: Role of monocytes in NK-cell activity. Full PBMCs and CD14-depleted PBMCs (2×106 cells per infection) 
were infected with Zika virus (ZIKV) at MOI 10 and harvested at 36 hpi. (A) Gating strategy of CD94+CD56+Lineage- 
NK cells and their expression of CD69, CD107a and IFNγ. Plots from one representative donor are shown. The red 
circle indicates the presence or absence of CD14+ monocytes. (B) Compiled percentages of CD107a and IFNγ-
positive NK cells (depicted in (A)) as normalized to the respective mock sample. (C) Viral load in the infected cells. 
Data shown were derived from seven donors. Lineage markers CD3, CD19, CD20 and CD14 have been included to 
rule out the presence of non-NK cells. All data are presented as mean ± SD. *P < 0.05, **P < 0.01, by Mann Whitney U 
test, two tailed. Viral load data was not statistically significant between the two conditions by Mann Whitney U test, two 
tailed. Abbreviations; NK, natural killer; PMBC, peripheral blood mononuclear cell; hpi, hours post-infection.  
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Figure 7: Immune profiling of ZIKV-infected PBMCs. (A) Immune mediators in the culture supernatant of ZIKV-
infected PBMCs and CD14-depleted PBMCs were quantified with a 45-plex microbeads assay. Concentrations were 
scaled between 0 and 1. (B) Bar-charts of three cytokines, which levels were significantly affected by both the 
depletion of CD14+ monocytes and ZIKV infection. (C) Stimulatory capacity of the culture supernatants were further 
evaluated with freshly isolated PBMCs. Culture supernatant was added in a ratio of 1:10 and cells were harvested at 
36 hours post-stimulation. Compiled percentages of CD107a, IFNγ, and NKG2D-positive CD94+CD56+ NK cells are 
shown as normalized to the respective mock sample. Data displayed were derived from seven donors. Lineage 
markers CD3, CD19, CD20 and CD14 have been included to rule out the presence of non-NK cells. All data are 
presented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, by Mann Whitney U test, two tailed.  Abbreviations: NK, 
natural killer; PMBC, peripheral blood mononuclear cell.  
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Table 1: Summary of nucleotide differences at specific genome 
positions 
 

Position in 
consensus 
sequenceA 

Nucleotide 
difference Sample(s) 

1904 g � a D1 MNC ZIKV 72hpi 
2673 t � c D2 MDM ZIKV 24hpi      D2 MNC ZIKV 72hpi 

2815 

t 
D1 MDM ZIKV 24hpi      D2 MDM ZIKV 24hpi 
D2 MDM ZIKV 72hpi      D1 MNC ZIKV 72hpi 
D2 MNC ZIKV 72hpi 

c 
D3 MDM ZIKV 24hpi      D3 MDM ZIKV 72hpi 
D4 MDM ZIKV 24hpi      D5 MDM ZIKV 24hpi 
D5 MDM ZIKV 72hpi      PF/ZIKV/HPF/2013 

4211 

a 
D3 MDM ZIKV 24hpi      D3 MDM ZIKV 72hpi 
D4 MDM ZIKV 24hpi      D5 MDM ZIKV 24hpi 
D5 MDM ZIKV 72hpi      PF/ZIKV/HPF/2013 

g 
D1 MDM ZIKV 24hpi      D2 MDM ZIKV 24hpi 
D2 MDM ZIKV 72hpi      D1 MNC ZIKV 72hpi 
D2 MNC ZIKV 72hpi 

10253 t � c D1 MDM ZIKV 24hpi      D2 MNC ZIKV 72hpi 
10472 t � c D1 MNC ZIKV 72hpi 

 
The phylogenetic tree shown in Figure 3B revealed specific nucleotide 
differences at 6 different positions within the consensus sequence. All 
samples included had a mean coverage of greater than 10. 
PF/ZIKV/HPF/2013 represents the virus used for the infection and therefore, 
denoted as the reference sample in this analysis. Abbreviations: MNC, 
monocytes; MDM, monocyte-derived macrophage. ANote that minor variant 
file numbering of positions starts at 0 rather than 1. 
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Table 2: Selected nucleotide positions from the minor variants file of the 
inoculum 
 

Position in consensus 
sequenceA 

Frequency of minor nucleotide variants 

A C G T(U) D          
(A/G/T) 

1904 0.11324 0 0.88601 0.00074 0 
2673 0.00681 0.11779 0.000619 0.87476 0 
2815 0.00876 0.64463 0 0.34659 0 
4211 0.65122 0 0.34815 0.000626 0 

10253 0.000891 0.11229 0 0.8868 0 
10472 0.00108 0.00543 0.00108 0.99239 0 

 
Table showing the frequency distribution of minor nucleotide variants at six 
positions in the consensus sequence. Major variant (i.e. the consensus 
nucleotide) at each position is indicated by the nucleotide with the highest 
frequency. ANote that minor variant file numbering of positions starts at 0 rather 
than 1.  
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