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Abstract 

In cognitive network neuroscience, the connectivity and community structure of the 

brain network is related to cognition. Much of this research has focused on two 

measures of connectivity – modularity and flexibility – which frequently have been 

examined in isolation. By using resting state fMRI data from 52 young adults, we 

investigate the relationship between modularity, flexibility and performance on 

cognitive tasks. We show that flexibility and modularity are highly negatively 

correlated. However, we also demonstrate that flexibility and modularity make 

unique contributions to explain task performance, with modularity predicting 

performance for simple tasks and flexibility predicting performance on complex 

tasks that require cognitive control and executive functioning. The theory and 

results presented here allow for stronger links between measures of brain network 

connectivity and cognitive processes.  

 

 

Keywords: flexibility, modularity, resting-state fMRI, task complexity, individual 
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1. Introduction 

Research in cognitive neuroscience has typically focused on identifying the 

function of individual brain regions. Recent advances, however, have led to thinking 

about the brain as consisting of interacting subnetworks that can be identified by 

examining connectivity across the whole brain. This emerging discipline of cognitive 

network neuroscience has been made possible by combining methods from 

functional neuroimaging and network science (Bullmore et al., 2009; Medaglia et al., 

2015; Sporns, 2014). Functional neuroimaging methods provide a rich source of 

data for characterizing the connections – either functionally or structurally – 

between different brain regions. Using these data, network science provides 

mathematical tools for investigating the structure of the brain network, with brain 

regions serving as nodes, and the connections between brain regions serving as 

edges in the analysis.  

 Under this framework, the structure of the brain network can be 

characterized with a variety of measures. For example, one measure, network 

modularity, characterizes the extent to which a network has community structure 

by dividing the brain into different modules so as to maximize the relative strength 

of within-module to between-module connections (Newman, 2006).  A different 

measure, network flexibility, characterizes how frequently regions of the brain 

switch allegiance from one module to another, over time (Bassett et al., 2010). Going 

forward, a major challenge of cognitive network neuroscience is to determine the 

relationship between measures of brain network structure and cognitive theorizing 

(Sporns, 2014). 
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Relating individual differences in brain network structure to behavioral 

performance on cognitive tasks provides one tool for understanding the link 

between network measures and cognitive theories. Both modularity and flexibility 

have been shown to explain variation in cognitive performance. Individual 

differences in modularity correlate with variation in memory capacity (e.g. Meunier 

et al., 2014; Stevens et al., 2012)and have been shown to have a systematic 

relationship with task complexity, with high modular individuals performing better 

on simpler tasks and low modular individuals performing better on more complex 

tasks (Yue et al., submitted) consistent with theoretical work on modularity drawn 

from theoretical biology (Deem, 2013). Variation in network flexibility has been 

linked to other aspects of cognition including skill learning (e.g. Bassett et al., 2013, 

2010), cognitive control (e.g. Alavash et al., 2015; Braun et al., 2015), and mood 

(Betzel et al., 2016), and has been identified as a biomarker of the cognitive 

construct of cognitive flexibility (Braun et al., 2015). 

On the surface, this prior literature suggests that network modularity and 

flexibility may be tapping into different cognitive capacities. There is an intuitive 

basis for this distinction, as flexibility relates to how much brain networks change 

over time, and modularity relates to differences in interconnectivity. However, such 

a conclusion would be premature, since each of these previous studies measured 

modularity and flexibility in isolation, without considering whether the other 

measure could also explain variation in cognitive performance. Indeed, no study has 

addressed the basic question of the relationship between these two common 

measures of network structure, either from an empirical or theoretical perspective. 
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This relationship might be the key to understand how different measures from 

network neuroscience relate to different cognitive functions. 

The current study investigated the relationship between flexibility and 

modularity, demonstrating a strong relationship between the two measures and 

presenting a theoretical framework that explains this relationship. Despite this 

correlation, we suggest that modularity and flexibility still reflect distinct cognitive 

abilities, as flexibility was found to be a better predictor of performance for complex 

tasks while modularity was a better predictor of performance for simple tasks.  

2. Methods 

2.1 Participants 

Participants were 52 (18-26 years old, Mean: 19.8 years; 16 males and 36 

females) students from Rice University with no neurological or psychiatric 

disorders. Subjects were given informed consent in accordance with procedures 

approved by the Rice University Institutional Review Board. Subjects were 

compensated with $50 upon their participation in both the behavioral and imaging 

sessions.  

2.2 Resting-state fMRI 

2.2.1 Imaging data acquisition 

 A high-resolution T1-weighted structural and three resting state functional 

scans were acquired using a 3T Siemens Magnetom Tim Trio scanner equipped with 

a 12-channel head coil. Scanning was done at the Core for Advanced Magnetic 

Resonance Imaging (CAMRI), at Baylor College of Medicine. The T1-weighted 

structural scan was collected prior to the functional scans and it involved the 
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following parameters: TR=2500ms, TE=4.71ms, FoV=256mm, voxel size = 1x1x1 

mm3.. Functional runs were three 7-minute resting-state scans obtained by using the 

following sequences: TR = 2000ms, TE = 40ms, FoV = 220 mm, voxel size = 3x3 

mm2, slice thickness = 4mm. A total of 210 volumes per run each with 34 slices were 

acquired in the axial plane to cover the whole brain. All 52 subjects participated in 

the imaging session.  

2.2.2 Preprocessing 

Image preprocessing was conducted using the AFNI_2011_12_21_1014 version 

software (Cox, 1996). The first 6 volumes of each functional run were discarded to 

allow stabilization of the BOLD signal. Each functional run was preprocessed 

separately, including de-spiking of large fluctuations for some time points, slice 

timing and head motion correction. Then each subject’s functional images were 

aligned to that individual’s structural image, warped to the Talairach standard 

space, and resampled to 3-mm isotropic voxels. Next, the functional images were 

spatially smoothed with a 4-mm full-width half-maximum Gaussian kernel. A whole 

brain mask was then generated and applied for all subsequent analysis. Bandpass 

(0.005-0.1Hz) filtering and outlier censoring were then conducted. The outliers 

censoring removed the time points in which the head motion exceeded a distance 

(Euclidean Norm) of 0.2mm respect to the previous time point, or in which > 10% of 

whole brain voxels were considered as outliers by AFNI’s 3dToutcount. A multiple 

regression model was then applied to each voxel’s time series to regress out several 

nuisance signals, including third-order polynomial baseline trends, six head motion 

correction parameters, and six derivatives of head motion. The residual time series 
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after application of the regression model were used for the following network 

analyses. 

2.2.3 Network re-construction, modularity, and flexibility calculation 

The whole brain network was re-constructed based on 84 Brodmann areas 

(42 Brodmann areas for left and right hemispheres respectively). First, Brodmann 

area masks were generated using the TT_Daemon standard AFNI atlas (Lancaster et 

al., 2000), from AFNI_2011_12_21_1014 version. Then the mean time series for each 

area was extracted by averaging the preprocessed time series across all voxels 

covered by the corresponding mask. In the network, each Brodmann area served as 

a node and the edge between any two nodes was defined by the Pearson correlation 

of the time series for those two nodes. For each subject and each run, edges for all 

pairs of nodes in the network were estimated, resulting in an 84×84 correlation 

matrix. An averaged correlation matrix across three runs was then obtained for each 

subject. This matrix was later used to calculate modularity for each subject by 

applying Newman’s algorithm (Newman, 2006).  

Modularity is a measure of the excess probability of connections within the 

modules, relative to what is expected by random chance. To calculate modularity, 

we first took the absolute values of each correlation and set all the diagonal 

elements of the correlation matrix to zero. Since fewer than .05% of the elements in 

the matrix were negative and their absolute values are relatively small, taking 

absolute values should not have major effect on results. The resulting matrix was 

binarized by setting the largest 400 edges in the network to 1 and all others to 0. To 

show that the results were persistent with the cutoff, we also considered 300 and 
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500 edges. This binarization process has been argued to improve detection of 

modularity, by increasing the signal-to-noise ratio (Chen and Deem, 2015). 

Modularity was defined as in Equation 1 below, where Aij is 1 if there is an edge 

between Broadmann areas i and j and zero otherwise, the value of ai = Σj Aij is the 

degree of Brodamann area i, and e = ½ Σi ai is the total number of edges, here set to 

300,400 and 500, respectively. Newman’s algorthim was applied to the binarized 

matrix to obtain the (maximal) modularity value and the corresponding partitioning 

of Brodmann areas into different modules for each subject. 

 𝑀 = 1
2𝑒
∑ ∑ �𝐴𝑖𝑖 −

𝑎𝑖𝑎𝑗
2𝑒
�𝑤𝑤𝑤ℎ𝑖𝑖 𝑡ℎ𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎 𝑖,𝑗                  (1) 

 Flexibility was calculated from the time series data by computing Ci(t), the 

record of which module the ith Brodmann area is in at time window t, 1≤t≤165.  

Flexibility for a given Brodmann area of a given subject is the number of changes in 

the value of Ci(t) across the 165 time windows of length 40.  Results for given 

subject are averaged over all Brodmann areas of that subject. Finally, the average 

flexibility of Brodmann area i was computed by the average over all subjects of the 

flexibility in each subject of Brodmann area i.  

2.2.4 Simulations 

Two simulation studies were carried out using 400 edges to determine if the 

relationship between flexibility and modularity observed in the human subjects 

could be observed with spatially correlated random data. For either study,  each run 

of simulation generated 52 subjects (same number as the human subjects), and 

flexibility and modularity were calculated for each subject, thus obtaining the 
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correlation coefficient r. Each study contains 1000 runs of simulation, and therefore 

corresponds to a distribution of 1000 values of r. 

In both simulation studies, we generated neural activity signals with spatial 

structure: 

                   Si(t)=(1-α) Xi(t)+αYj(t)       (2) 

Where Si denotes the signal for Brodmann area 1≤i≤84, Xi is a Gaussian signal 

different from area to area and Yj is a Gaussian signal shared by areas that belong to 

the same module 1≤j≤4, but different from module to module. α therefore describes 

how modular the signal is (0≤α≤1). Specific expressions for Xi and Yj are: 

Xi(t)=normal distribution ( mean=0, variance=1/vi ) 

Yj(t)=normal distribution ( mean=0, variance= ), 

Where vi is the number of voxels of area i. Note that we defined four modules in the 

simulation, since most of the human subjects have four modules. The module sizes 

were calculated as the average of the ranked values of the module sizes from the 

human subjects with four modules: 15, 18, 23 and 28. For each time point, Xi was 

generated for each area, and Yj was generated four times corresponding to four 

modules. Each area’s signal at time t is then (1-α) Xi(t)+αYj(t). This procedure was 

repeated 204 times to generate a 204*1 time series for each area of each subjects, as 

the real subjects also have 204 time points in their data. 

The modularity of the matrix increases monotonically with α, where α=0 gives 

uncorrelated data.  In the first simulation study (simulation 1), we chose a fixed α so 

that the mean value of modularity is the value from human data (M=0.48). In a 

second simulation study (simulation 2), to better represent the distribution of 
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human modularity values, we varied α for each computational subject, choosing the 

value that produced modularity matching the corresponding human subject.  

2.3 Behavioral tasks 

 All fifty-two subjects participated in the operation span and task-shifting 

tasks. Forty-three of them participated in the ANT task and visual short term 

memory task, and forty-four subjects participated in the traffic light task and digit 

span task, as these were done in a different session, and not all subjects returned to 

participate in all tasks. The interval between neuroimaging and behavioral sessions 

varied from 0 (i.e., measuring resting-state fMRI and behavior on the same day but 

during different sessions) to 140 days.  

2.3.1 Operation span 

Subjects were administered the operation span task (Unsworth et al., 2005) 

to measure their working memory capacity. This task has been shown to have high 

test-retest reliability, thus providing a stable measure in term of the rankings of 

individuals across test session (Redick et al., 2012). In this task, for each trial, 

participants saw an arithmetic problem, e.g., (2×3)+1, and were instructed to solve 

the arithmetic problem as quickly and accurately as possible. The problem was 

presented for 2 seconds. Then, a digit, e.g., 7, was presented on the next screen. 

Subjects judged whether this digit was a correct solution to the previous arithmetic 

problem by using a mouse to click a “True” or “False” box on the screen. After the 

arithmetic problem, a letter was presented on the screen for 800ms that subjects 

were instructed to remember. Then the second arithmetic problem was presented, 

followed by the digit and then the second letter, with the same processing 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224956doi: bioRxiv preprint 

https://doi.org/10.1101/224956
http://creativecommons.org/licenses/by-nc-nd/4.0/


                               MODULARITY, FLEXIBILITY, AND TASK COMPLEXITY 11 

requirements for both arithmetic problem and letter, and so forth. At the end of each 

trial, subjects were asked to recall the letters in the same order in which they were 

presented. The recall screen consisted of a 3×4 matrix of letters on the screen and 

subjects checked the boxes aside letters to recall. Subjects used the mouse to 

respond to the arithmetic problem and to recall letters. The experimental trials 

included set sizes of six or seven arithmetic problem – letter pairs. There were 

twelve trials for each set size, resulting a total of 156 letters and 156 math problems. 

The six and seven set size trials were randomly presented.  

Before the actual experiment, a practice session was administered to 

familiarize subjects with the task. The practice session consisted of a block involving 

only letter recall, e.g., recalling 2 or 3 letters in a trial, a block involving only 

arithmetic problems, and a mixed block in which the trial had the same procedure 

as in the experimental trials, i.e., solving the arithmetic problems while memorizing 

the letters, and recalling them at the end, but with smaller set sizes of 2, 3, or 4.  

The response times for math problems and accuracy for arithmetic problems 

and letter recall were recorded. The operation span score is the accuracy for letter 

recall, calculated as the number of letters that were recalled at the correct position 

out of total number of the presented letters. The maximum span score is 156. 

2.3.2 Visual arrays task 

A visual array task was used to tap visual short-term memory capacity. In 

this task, subjects were instructed to fixate at the center of the screen.  Arrays of 2 to 

5 colored squares at different positions on the screen were presented for 500ms, 

followed by a blank screen for 500ms, and then by multi-colored masks for 500ms. 
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A single probe square was then presented at one of locations where the colored 

squares had appeared. Subjects had to judge whether the probe square had the 

same or different color as the one at the same position. The order of different array 

sizes was random. Each array size condition had 32 trials, half of which were 

positive response trials and half negative. We calculated the visual short-term 

memory capacity (Cowan, 2000; Rouder et al., 2011) as k=N×(H-F), where N was the 

number of colored squares in the largest set size (here N=5), H was the hit rate, and 

F was the false alarm rate. 

2.3.3 Digit span  

In this task a list of numbers were presented in auditory form at the rate of 

one number per second and participants were required to memorize them. After 

presenting the last number in the list, a blank screen prompted participants to recall 

the numbers in the order in which they were presented by typing on the keyboard. 

Participants were given five trials for each set size starting at two. The program 

would terminate if participants got less than 3 correct trials for that set size (60% 

accuracy). Digit span was calculated by estimating the list length at which the 

subject would score 60% correct using linear interpolation between the two set 

sizes that spanned this threshold.  

2.3.4 Task-shifting task 

In this task, participants responded to an object according to a preceding cue 

word. The object was either a square or a triangle, and the color of the object was 

either blue or yellow. If the cue was “color”, participants pressed a button to indicate 

whether the object was blue or yellow, and if the cue was “shape”, they pressed a 
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button to indicate whether the object was a square or a triangle. The same buttons 

were used for the two tasks. The response time was recorded from the onset of the 

object. For half of the trials, the cue was the same as that in the previous trial, a 

repeat trial, and for the other half, the cue changed, a switch trial. For each 

condition, to take into account both response time and accuracy in a single measure, 

we calculated the inverse efficiency (IE) score (Townsend and Ashby, 1983) defined 

as mean RT/proportion correct. The task shifting cost was measured as the 

difference in inverse efficiency score between the repeat and switch trials. We also 

adjusted cue-stimulus Interval (CSI), which is the time between onset of the cue and 

onset of the object, using CSIs of 200ms, 400ms, 600ms, and 800ms. However, as the 

effect of modularity on IE did not differ for different CSIs, the data were averaged 

across CSI.  In total, there were 256 repeat trials and 256 switch trials.  

2.3.5 Attention network test 

The Attention Network Test (ANT; Fan et al., 2002) was used to measure 

three different attentional components: alerting, orienting, and conflict resolution. 

In this task, subjects responded to the direction of a central arrow, pressing the left 

or right mouse button to indicate whether it was pointing left or right. The arrow(s) 

appeared above or below a fixation cross, which was in the center of the screen. The 

central arrow appeared alone on a third of the trials and was flanked by two arrows 

on the left and two on the right on the remaining two third of trials.  The flanking 

arrows were evenly split between a condition in which they pointed in the same 

direction as the central one, a congruent condition, and a condition in which they 

pointed in the opposite direction, an incongruent condition. In the neutral condition, 
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there were no flanking arrows. On three-quarters of the trials, the arrow(s) were 

cued by an asterisk or two asterisks, which appeared for 100ms on the screen. The 

interval between offset of the cue and onset of the arrow was 400ms. There were 

four cue conditions: 1) no cue condition, 2), a cue at fixation, 3) double-cue 

condition, with one cue above and the other below fixation, 4) spatial-cue condition, 

where the cue appeared above or below the fixation to indicate where the arrows 

would appear. Thus, the task had a 4 cue × 3 flanker condition factorial design. The 

experimental trials consisted of three sessions, with 96 trials in each session, and 8 

trials for each condition. For half of all trials, arrows were presented above the 

fixation and for the other half below. Also, for half of the trials, the middle arrow 

pointed left and for the other half right. The order of trials in each session was 

random. Before the experimental trials, 24 practice trials with feedback were given 

to subjects that included trials of all types. 

Response times and accuracy were recorded. Mean RT for each condition for 

each subject was computed based on correct trials only. As with task shifting, we 

calculated the inverse efficiency (IE) score for each condition. The alerting effect 

was computed by subtracting the IE for the no cue condition from the IE for the 

double cue condition. The orienting effect was computed by subtracting the IE for 

the center cue condition from the IE for the spatial cue condition. The conflict effect 

was computed by subtracting the IE for the congruent condition from the IE for the 

incongruent condition. To make the direction of the conflict effect the same as that 

of alerting and orienting effects, we reversed the sign of conflict effect. Thus, the 
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more negative the conflict effect value, the greater the interference from the 

incongruent flankers.  

2.3.6 Traffic light task  

In this task, subjects saw a red square in the center of screen, which was 

replaced after an unpredictable time delay (from 2 to 3 seconds) by a green circle. 

Subjects pressed a button as quickly as possible when they saw the green circle. 

There were 25 trials in total. Mean response time was calculated for each subject. 

2.3.7 Simple vs. Complex Composite scores 

Previous empirical research (Yue et al., submitted) and theoretical work 

(Deem, 2013) suggests an interaction between measures of network structure and 

performance on simple versus complex tasks. For the purposes of the current 

research, complex tasks are defined as those whose performance taps into executive 

functions and cognitive control, while simple tasks do not depend on these 

operations. From the battery of tasks described above, complex tasks include 

operation span, visual arrays, digit span, task-shifting, and the conflict resolution 

component of the ANT, while simple tasks include the orienting and alerting 

components of the ANT and the traffic light task. To limit the number of behavioral 

measures in the analysis, two composite scores, simple and complex were calculated 

for the 40 subjects who participated in all of the tasks described above. These 

composites were computed by summing the z-scores for the performance measures 

for the simple and complex tasks. 

3. Results 

3.1 Correlations of modularity and flexibility 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224956doi: bioRxiv preprint 

https://doi.org/10.1101/224956
http://creativecommons.org/licenses/by-nc-nd/4.0/


                               MODULARITY, FLEXIBILITY, AND TASK COMPLEXITY 16 

Using Brodmann areas as nodes and functional connectivity between these 

nodes (determined from resting state fMRI) as the measure of the strength of edges, 

we determined modularity and flexibility for each subject. Figure 1a depicts the 

relationship between modularity and flexibility across our 52 participants. For the 

400-edge analysis, modularity values ranged from .33 to .60, with a mean of .48 

(standard deviation 0.055) on a scale from 0 to 1.0. Flexibility values ranged from 

26.4 to 38.7 with a mean of 31.6 (standard deviation 2.79). A striking negative 

correlation r=-0.78 (p < 0. 000001) was obtained between these two mathematically 

different measures, which had not been previously reported. The analysis for the 

300- and 500-edge yielded negative correlations of r=-0.70 (p < 0.000) and r=-0.74 

(p < 0.000) respectively.  

 To understand the extent to which modularity and flexibility are necessarily 

related, two simulation studies were carried out (see Figure 1b). In simulation 1, 

connectivity data were generated such that the mean modularity across different 

connectivity matrices matched the mean for the human data, but the standard 

deviation of the modularity values was significantly lower than the standard 

deviation of the actual population. The distribution of r-values (blue color bars in 

Figure 1b) has a mean of -0.16, with all thousand r-values below the negative 

correlation of -.78 observed in the human data (p < .001). It is worth noting that the 

standard deviation of the modularity values is narrow in this stimulation (0.028), 

and smaller than that of the human data.  The second simulation matched the 

human data on individual modularity values, thus matching both their mean and 

standard deviation. As shown in Figure 1b (red color bars), this model results in 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224956doi: bioRxiv preprint 

https://doi.org/10.1101/224956
http://creativecommons.org/licenses/by-nc-nd/4.0/


                               MODULARITY, FLEXIBILITY, AND TASK COMPLEXITY 17 

correlation coefficients consistent with the value measured for human subjects, with 

an average -0.72 and a standard deviation 0.05 (p > .2). Thus, it is the diversity in 

human modularity values that leads to the negative correlation between flexibility 

and modularity.  

3.2 Consistency of constituent BAs in modules and flexibility across BAs 

 As reported in Yue et al. (submitted), the most typical number of modules for 

each subject was 4, with a range of 3 to 6. The four modules roughly corresponded 

to networks for 1) somatosensory-motor processing, 2) bilateral auditory/language 

processing, 3) default mode processes, and 4) a diverse set of functions including 

visual processing, attention, and memory.  In Yue et al., (submitted) we quantified 

the degree of consistency in assignment of BAs to modules across subjects by a 

distance measure which was a count of the number of subjects for whom the 

assignment of a BA to module for their own data differed from the assignment based 

on group average data.  For low-level sensory-motor BAs, the assignment of nodes 

to modules was highly consistent across subjects whereas for high-level cognitive 

control areas, the assignment was highly variable.  

We also analyzed the flexibility of each Brodmann area. Some BAs more 

frequently changed module alignment across time, and therefore had higher 

flexibility scores, than others. Figure 1c illustrates flexibility by BA. Regions with 

higher flexibility include the anterior cingulate cortex, ventromedial prefrontal 

cortex, orbitofrontal cortex, and dorsolateral prefrontal cortex bilaterally, regions 

typically associated with cognitive control and executive functions. Regions with 

lower flexibility are those regions involved in motor, gustatory, visual, and auditory 
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processes such as postcentral gyrus, primary motor cortex, primary gustatory 

cortex, and secondary visual cortex. In general, the regions showing greater distance 

in module assignment were the same regions showing greater flexibility, with a 

strong correlation between distance and flexibility across BAs (r=.64, p=.001).  

3.3 Relationship with cognitive performance 

Results for the seven behavioral tasks are reported in supplementary 

materials and in Figure 1 supplemental. Scores from the seven behavioral tasks 

were converted into z-scores and combined to create simple and complex composite 

scores. Correlation analyses revealed a significant negative correlation between 

modularity measured with 400 edges and the complex composite (r=-0.330, 

p=0.038). In contrast, for simpler tasks, individuals with high modularity performed 

better, with a significant positive correlation between modularity and simple 

composite (r=0.449, p=0.004). As might be expected, given the strong negative 

correlation between modularity and flexibility, there was a significant positive 

correlation between flexibility measured with 400 edges and the complex composite 

(r=0.408, p=0.009) and a negative correlation with the simple composite (r=-0.242, 

p=0.133).  The same pattern was observed at different edge densities (see Table 1). 

Despite the strong correlation between flexibility and modularity, it is 

possible that they make independent contributions to explaining individual 

differences in cognitive performance. As show in Figure 2 and Table 1, the 

magnitude of the correlation coefficient between modularity and the simple task 

composite is larger than the correlation coefficient between flexibility and simple 

task composite, across edge densities. The opposite pattern is true for the complex 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224956doi: bioRxiv preprint 

https://doi.org/10.1101/224956
http://creativecommons.org/licenses/by-nc-nd/4.0/


                               MODULARITY, FLEXIBILITY, AND TASK COMPLEXITY 19 

tasks. The correlation coefficient between flexibility and task performance is higher 

than the correlation coefficient between modularity and task performance. This 

pattern is confirmed by multiple regression analysis performed on tasks 

performance, regressing the effect on modularity and flexibility measured in a 

network with 400 edges simultaneously in order to determine the significance of 

the unique contribution of each. For the simple task composite, the coefficient for 

modularity was significant (β=.75, p<.004), but that for flexibility was not (β=.37, 

p<.14). In contrast, for the complex task composite, the coefficient for flexibility was 

marginally significant (β=.48, p<.07) but that for modularity was not (β=.09, p=.72).   

Table 1 
The correlation coefficients for simple and complex tasks at different edge densities 
 
 Correlation Coefficient 
 Modularity Flexibility 
Number of Edges 300 400 500 300 400 500 
Simple Tasks .43 .45 .39 -.27 -.24 -.14 
Complex Tasks -.38 -.30 -.32 .40 .41 .33 
 

4. Discussion 

 The present results show the two measures of brain network structure that 

are treated as independent in the literature – flexibility and modularity – are 

actually highly related. Still, each makes independent contributions to cognitive 

performance, with modularity contributing more to performance on simple tasks 

and flexibility contributing more to performance on complex tasks. Simulations 

revealed that this correlation was dependent on the distribution in modularity 

observed across subjects. This finding raises the question of why the population has 

such a broad distribution of modularity values. One explanation is that broad 
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distribution ensures that some fraction of the population will have low M, suitable 

for performance on complex tasks, and some fraction will have high M, for 

performance on simple tasks (Deem, 2013). From an evolutionary point of view, and 

in light of Figure 2, selection for performance on a broad spectrum of tasks should 

lead to such a broad range of modularity values.   

 How might we account for this strong negative correlation between 

flexibility and modularity? An intuitive explanation for the negative correlation 

between flexibility and modularity derives from a dynamical systems perspective 

that views different configurations of brain regions as attractor states, with 

modularity measuring the depth of the attractor states (Smolensky et al., 1996). 

Flexibility measures how frequently the brain transitions between states. Deeper 

states will naturally be more stable and resistant to transitions, leading to a negative 

correlation between modularity and flexibility. Given the high degree of correlation 

between these two measures, it is difficult to interpret findings in the literature that 

report only one of these measures in isolation.  

 Still, flexibility and modularity make independent contributions to explaining 

task performance and likely link to different cognitive processes. Our results suggest 

that flexibility, rather than modularity, may reflect cognitive control processes 

(Bassett et al., 2013, 2010). The regions that show the highest flexibility (Figure 1b) 

are those that have been previously implicated in control. The complex tasks used in 

the current study all require control, while the simple tasks do not. Assuming 

flexibility indexes cognitive control capacity, we can explain why variation in 

flexibility plays a larger role in explaining performance on complex tasks. 
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Flexibility is only weakly related to performance on simple tasks. Why then, 

has flexibility been shown to have strong relationships with the ability to learn even 

in very simple motor tasks (Bassett et al., 2010)? We argue that at the initial stages 

of learning the acquisition of even simple skill benefits from cognitive control 

operations, making tasks appear more complex. Therefore, at the initial stages of 

learning, it is beneficial to have a more flexible brain (Bassett et al., 2013). As 

learning progresses and the task becomes automatized, cognitive control is no 

longer necessary and the task becomes simpler. Following the theory depicted in 

Figure 2, as learning progresses, flexibility should decrease and modularity should 

increase, as has been previously observed (Bassett et al., 2015, 2013).  

5. Conclusion 

For cognitive network neuroscience to advance, better links between 

measures of network structure to cognitive and neural computations must be 

developed (Sporns, 2014). The theory and results presented here, disentangling the 

effects of two commonly, but interrelated measures, are one step.  By considering 

how different measures of brain structure relate to each other and relate to 

variation in performance, we can start to develop stronger links between the 

cognitive and the network sides of this new approach.  
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  11	
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  demonstrate	
  that	
  the	
  correlation	
  between	
  modularity	
  and	
  flexibility	
  12	
  
persists	
  after	
  using	
  different	
  functional	
  and	
  anatomical	
  parcellations	
  of	
  the	
  brain,	
  13	
  
the	
  whole	
  brain	
  network	
  was	
  re-­‐constructed	
  based	
  on	
  methods	
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  by	
  others	
  in	
  14	
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  resting	
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  literature	
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  et	
  al.,	
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  al.,	
  2016;	
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  et	
  al.,	
  15	
  
2016;	
  Power	
  et	
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  2011).	
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  shown	
  in	
  table	
  1,	
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  different	
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  methods	
  16	
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  negative	
  correlation	
  between	
  modularity	
  and	
  flexibility.	
  However,	
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  17	
  
magnitude	
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  much	
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  Brodmann	
  areas	
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  anatomical	
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  task	
  performance	
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   Figure	
  1	
  supplemental	
  illustrates	
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  relationship	
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  modularity	
  and	
  23	
  
task	
  performance	
  and	
  flexibility	
  and	
  task	
  performance	
  during	
  tasks	
  varying	
  from	
  24	
  
simple	
  to	
  complex	
  processes.	
  	
  Simple	
  tasks	
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  light	
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  orienting	
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  Attention	
  Network	
  Task	
  (ANT).	
  	
  Complex	
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  Operation	
  26	
  
Span,	
  Digit	
  Span,	
  Visual	
  Short-­‐term	
  Memory,	
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  Conflict	
  Effect	
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  the	
  ANT,	
  and	
  27	
  
the	
  Task-­‐Shifting.	
  For the purposes of the current research, this simple vs. complex task 28	
  
distinction is operationalized in the following way: complex tasks are those tasks in 29	
  
which executive attention and cognitive control (the ability to ignore preponderant 30	
  
distractors while performing correctly the task at hand) are required to properly perform 31	
  
the task. Simple tasks are those tasks whose performance does not depend on these 32	
  
operations. Because of the engagement of cognitive control, complex tasks typically 33	
  
require longer processing times than simple tasks. 	
  In	
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  of	
  complex	
  tasks,	
  flexibility	
  34	
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  shows	
  a	
  larger	
  coefficient	
  than	
  modularity.	
  	
  The	
  opposite	
  is	
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  35	
  
tasks	
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  modularity:	
  modularity	
  presents	
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  larger	
  coefficient	
  than	
  flexibility.	
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  Supplementary	
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  captions	
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  Tables	
  38	
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Figure	
  1	
  Supplemental.	
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  modularity	
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  flexibility	
  with	
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task	
  performance	
  represented	
  by	
  the	
  magnitude	
  of	
  the	
  coefficient	
  between	
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modularity	
  and	
  task	
  performance	
  and	
  flexibility	
  and	
  task	
  performance	
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organized	
  from	
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  (left)	
  to	
  complex	
  (right).	
  The	
  center	
  of	
  the	
  figure	
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curve)	
  and	
  flexibility	
  (red	
  curve).	
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Figure	
  2	
  Supplemental.	
  A	
  comparison	
  of	
  flexibility	
  across	
  the	
  brain	
  between:	
  A)	
  an	
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anatomical	
  based	
  parcellated	
  atlas	
  with	
  84	
  regions	
  such	
  as	
  Brodmann’s	
  Areas	
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(BA)	
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  fuctional	
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  with	
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al.,	
  2012.	
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  color	
  bar	
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  right	
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  figures	
  represents	
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