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Abstract

Context High-resolution animal movement data are becoming increasingly available, yet having a

multitude of empirical trajectories alone does not allow us to easily predict animal

movement. To answer ecological and evolutionary questions at a population level,

quantitative estimates of a species’ potential to link patches or populations are of5

importance.

Objectives We introduce an approach that combines movement-informed simulated trajectories

with an environment-informed estimate of the trajectories’ plausibility to derive

connectivity. Using the example of bar-headed geese we estimated migratory connectivity at

a landscape level throughout the annual cycle in their native range.10

Methods We used tracking data of bar-headed geese to develop a multi-state movement model

and to estimate temporally explicit habitat suitability within the species’ range. We

simulated migratory movements between range fragments, and calculated a measure we

called route viability. The results are compared to expectations derived from published

literature.15

Results Simulated migrations matched empirical trajectories in key characteristics such as

stopover duration. The viability of the simulated trajectories was similar to that of the

empirical trajectories. We found that, overall, the migratory connectivity was higher within

the breeding than in wintering areas, corresponding to previous findings for this species.

Conclusions We show how empirical tracking data and environmental information can be fused20

for meaningful predictions of animal movements throughout the year and even outside the

spatial range of the available data. Beyond predicting connectivity, our framework will prove

useful for modelling ecological processes facilitated by animal movement, such as seed

dispersal or disease ecology.

Keywords25

Anser indicus, bar-headed goose, empirical random trajectory generator, migratory connectivity,

movement model, stepping-stone migration model
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Introduction

Understanding the movement of animals is key to understanding the functional connectivity they

provide between suitable patches of habitat by transporting biomass, genes, and less mobile30

organisms. How and when animals move in space, thereby linking areas that are separated in

geographical space, has wider ecological implications for the population structure of the species

in question, and can also shape the dispersal opportunities for e.g. flowering plants in form of

pollen and seeds, or pathogens (Bauer and Hoye, 2014). Establishing connectivity networks and

understanding the contribution of animal movement to such networks is a prime motive in35

ecology, and pivotal to our understanding of spatial structuring processes.

Establishing whether, how, and when animal movement provides a functional connection in

space, however, is not easily achieved. Capture-mark-recapture techniques have revealed much

about dispersal capabalities of individual animals, thereby providing a history of observed

connectivity between distant patches. Estimates such as maximum observed dispersal distances40

can be used to infer connectivity networks where movement has not been observed, yet there are

limitations to their application (Calabrese and Fagan, 2004), as distance alone can be insufficient

to explain e.g. patch connectivity. Descriptors of effective rather than e.g. Euclidian distance

between patches that incorporate barriers and facilitations to animal movement can be used to

improve predictions of connectivity. Algorithms like least-cost paths (e.g., Ferreras, 2001; Graham,45

2001) and electrical circuit theory (McRae, Dickson, et al., 2008) can, in combination with spatially

explicit predictors of landscape resistance to movement, provide environmentally informed

estimates of connectivity between patches (e.g. for population genetics (Row, Blouin-Demers,

et al., 2010). Often, however, the animal location data used to inform models used for predicting

such resistance surfaces lack a behavioural context, and consequently might not be representative50

of how animals move through the environment (Keeley, Beier, et al., 2017).

More recently, the equipment of wild animals with remote tracking technology has provided

great insights into how, when, and where animals move (Hussey, Kessel, et al., 2015; Kays, Crofoot,

et al., 2015). Such data are a rich source of information not only about the movement and

behaviour of individuals, but can also reveal the functional, observed connectivity between55

spatially separated areas in great detail. In combination with environmental information about

the utilised habitat, movement data can provide detailed insight into habitat connectivity for the

observed individuals (e.g., Almpanidou, Mazaris, et al., 2014). Connectivity estimates derived from
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observed movement, as e.g. in fragmented landscapes, have been shown to outperform

predictions derived from resistance surfaces (e.g., LaPoint, Gallery, et al., 2013). Yet, even though60

remotely tracked animal movement provides data for the most direct and detailed estimate of

connectivity (Calabrese and Fagan, 2004), the use of animal movement data is not without

constraints. While the miniaturisation of tracking technologies permits scientists to follow ever

more individuals of ever smaller species, the cost and effort associated with animal tracking limit

sample size, as well as the spatial and temporal extent of the data that can be collected. Thus, the65

number of individuals that scientists are realistically able to track will remain minuscule compared

to even the most conservative estimates of the numbers of moving animals on this planet.

Inferring the movements of unobserved individuals is thus becoming an increasingly important

matter to utilise the knowledge from few, well-studied individuals to estimate the behaviour at a

population level. However, such generalisations are not straightforward, mainly because the70

movement behaviour of individuals and the observed variation may not be representative for the

population or the whole species (e.g., Austin, Bowen, et al., 2004). Individual decision-making is

not only influenced by general species properties, but also variation between individuals and their

needs, and the surrounding environmental conditions (Nathan, Getz, et al., 2008). Any kind of

movement behaviour is thus to some extent unique to the individual, explicit in time, space, and75

the environmental conditions as well as specific to the ecological context it happened in.

The literature published on animal movement models is extensive, and such models have

been shown to provide useful and sensible estimates on the behaviour of observed as well as

unobserved individuals (e.g., Morales, Haydon, et al., 2004; Codling, Plank, et al., 2008; Péron,

Fleming, et al., 2017; Michelot, Langrock, et al., 2017). Making such models aware of the80

environmental context of the movements is however key to providing sensible hypotheses of the

routes that animals might take. This requires the contextualisation of observed movement, and

the understanding of how animals utilise environmental features for route decision-making.

Movement models that incorporate e.g. a resource-selection model (step-selection functions, e.g.

Fortin, Beyer, et al., 2005; Thurfjell, Ciuti, et al., 2014) are becoming increasingly popular.85

Step-selection functions have been shown to yield functional estimates how environmental

features influence an animal’s movement through the landscape (e.g., Richard and Armstrong,

2010), and have been used to estimate connectivity between patches (Squires, DeCesare, et al.,

2013). Such step-selection functions, representing resource selection during actual movement,
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can be used to derive behaviour-specific predictions for resistance of a landscape to movement. In90

combination with least-cost paths or circuit theory, these context-aware resistance surfaces

provide the means to predict the movement of individuals through the landscape (e.g., Zeller,

McGarigal, et al., 2014; Zeller, McGarigal, et al., 2016).

In many cases, however, animals use series of different movement strategies that change in

response to the surrounding environment, or in response to the different needs an animal has for95

different behaviour or life-history stages. Currently, however, even context-aware approaches used

for predicting the movement of unstudied individuals often make the assumption that animals

follow a single, constant decision rule. As shown by Zeller, McGarigal, et al. (2016), these decision

rules can be sensitive to the spatial and temporal scale of the observations, and are considered to

be independent of the supply needs of the individual. We think that realistic movement100

simulations should not only take the environmental context of movement behaviour into account,

but also acknowledge the different movement strategies expressed by a species (see e.g. Morales,

Haydon, et al., 2004). One example of such a multi-state movement behaviour with striking

differences in e.g. spatial scale of movement between states is the stepping-stone-like migrations

as performed by many migratory bird species that predominantly use flapping flight for105

locomotion. Here, we refer to stepping-stone migrations as e.g. performed by large waterbirds like

ducks and geese who cover large distances in fast and non-stop flight and use stopover locations

for extended staging periods to replenish their fat reserves. Context-aware, multi-state approaches

for simulating animal trajectories are however, not easily available. While it is possible to model

habitat suitability or resistance or cost surfaces and use modelled movement trajectories to110

estimate connectivity, the movement and the context represent two separate and static entities.

An additional difficulty is that for the formulation of such resistance or cost surfaces detailed

a-priori knowledge is required, which again necessitates a level of knowledge that might not be

present. In the case of stepping-stone migratory movements, this could refer to a-priori

knowledge about available stopover sites for staging migrants.115

Here, we would like to introduce a novel approach that allows for inferring environmentally

informed migratory trajectories from a multi-state discrete movement model. Using a novel

conditional movement model specifically designed for generating random trajectories using

template empirical trajectories (Technitis, Weibel, et al., 2016; Technitis, Weibel, et al., in

preparation), we developed this approach especially with stepping-stone migrations and similar120
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movement strategies in mind. We extend this movement model to represent the two major states

of stepping stone migrations, the non-stop migratory flights and the staging periods, using a

stochastic switch informed by empirical estimates of typical duration of both behaviours. Our

multi-state movement model can simulate migratory trajectories that are realistic in terms of the

geometric properties of empirically collected migratory movements by sampling from empirical125

distribution functions. We develop a measure of route viability that integrates properties of the

simulated trajectory and its environmental context to assess how suitable the simulated migratory

route and timing strategy might be for actual, unobserved individuals. For stepping-stone

migrations, we here assume that the quality of stopover sites between the breeding grounds and

wintering areas predominantly determines how preferable a certain route might be (Green,130

Alerstam, et al., 2002; Drent, Eichhorn, et al., 2007). While the migration simulation model and the

measure of route viability we introduce here are tailored for our study system, we think that this

approach in general is flexible and could be applicable to many other study systems and strategies.

Specifically, we apply this approach to a pronounced long-distance migrant: the bar-headed

goose (Anser indicus, Latham 1790), a Central Asian species of waterbird well known for its135

incredible performance of crossing the Himalayas during migration. This species has a

distribution range that is characterised by four distinct breeding areas, mirrored by four distinct

wintering areas south of the Himalayas. The migratory routes for some populations of bar-headed

geese are known (e.g., Hawkes, Balachandran, et al., 2011; Guo-Gang, Dong-Ping, et al., 2011;

Prosser, Cui, et al., 2011; Bishop, Yanling, et al., 1997; Takekawa, Heath, et al., 2009): Previous140

tracking studies have revealed that large parts of the respective populations migrate from their

breeding grounds in Mongolia, northern China and on the Tibetan Plateau over the Himalayas to

their wintering grounds on the Indian subcontinent. But while the crossing of the Himalayas has

been studied in great detail (Hawkes, Balachandran, et al., 2011; Hawkes, Balachandran, et al.,

2013; Bishop, Spivey, et al., 2015), less is known about the connectivity between range fragments145

both within the wintering and within the breeding range (Takekawa, Heath, et al., 2009). The

bar-headed goose thus provides a suitable study species for our approach. We will establish a

model for bar-headed goose migrations from previously published tracking data, and simulate

migrations of unobserved individuals between all fragments of the species’ distribution range. We

will assess the viability of these trajectories during several times of year using a segmented habitat150

suitability model to derive a dynamic migratory connectivity network. To test whether this
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migratory connectivity network could serve as a quantitative null hypothesis for bar-headed goose

migration, we will test our predictions against two very simple hypotheses generated from

previously published studies.

Stable isotope analyses suggested that the connectivity within the breeding range of155

bar-headed geese is relatively high (Bridge, Kelly, et al., 2015), a notion that has been supported by

tracking data as well (Cui, Hou, et al., 2010). In the wintering range, however, relatively few

movements have been observed (Kalra, Kumar, et al., 2011). Based on these findings (Bridge, Kelly,

et al., 2015; Kalra, Kumar, et al., 2011; Cui, Hou, et al., 2010), we expect to find a higher overall

viability of trajectories between the fragments of the breeding range than within the wintering160

range. We further predict that on average, the temporal variation in plausibility of simulated

migratory routes within the breeding grounds should be higher than within the wintering grounds.

Overall, we would like to introduce a new approach for deriving environmentally informed

quantitative null hypotheses for animal movement which can be utilised for estimating migratory

connectivity based on limited observations (summarised in Figure 1).165

Insert Figure 1 approximately here.

Methods

Tracking data and movement model

Tracking data of bar-headed geese were available to us from a broader disease and migration

ecology study implemented by the Food & Agriculture Organization of the United Nations (FAO)170

and United States Geological Survey (USGS). In total, 91 individuals were captured during the

years 2007-2009 in several locations: Lake Qinghai in China (hereafter termed "Lake Qinghai"),

Chilika Lake and Koonthankulum bird sanctuary in India (hereafter termed "India"), and Terkhiin

Tsagaan Lake, Mongolia (hereafter termed "West Mongolia"). All individuals were equipped with

ARGOS-GPS tags which were programmed to record the animals’ location every two hours175

(ARGOS PTT-100; Microwave Telemetry, Columbia, Maryland, USA). The tags collected and

transmitted data for 241±253 (mean± s.d.) days, and in total 169′887 fixes could be acquired over

the course of the tracking period (see also Table 1 & Hawkes, Balachandran, et al., 2011; Takekawa,

Heath, et al., 2009). Individuals that were tracked for less than a complete year were excluded from

the subsequent analyses, which left a total of 66 individuals (Lake Qinghai: 20, India: 20, West180
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Mongolia: 26). We pooled data from all capture sites for the analyses.

Insert Table 1 approximately here.

We used the recently developed the empirical Random Trajectory Generator (eRTG,

Technitis, Weibel, et al., 2016; Technitis, Weibel, et al., in preparation) to simulate the migrations of

unobserved individuals of bar-headed geese. This movement model is conditional, i.e. simulates185

the movement between two end locations with a fixed number of steps based on a dynamic drift

derived from a step-wise joint probability surface. One main advantage of the eRTG is that the

trajectories it simulates retain the geometric characteristics of the empirical tracking data (step

length, turning angle, as well as covariance and auto-correlation of step length and turning angle),

as it relies entirely on empirical distribution functions. Consequently, if a destination cannot be190

reached within the realms of the empirical distributions of e.g. step lengths and turning angles,

the simulation fails rather than forcing the last step towards the destination.

We extended this movement model by incorporating a stochastic switch between the two

main states of bar-headed goose migration, non-stop migratory flights ("migratory state") and

movements during staging periods at stopover locations ("stopover state"). We classified the entire195

tracking data according to the individuals’ movement behaviour to identify these states prior to

extracting the empirical distributions functions for the eRTG. First, we clustered the locations in

the tracking data into four behavioural classes (slow speed & low turning angles, slow speed & high

tuning angles, high speed & low turning angles, and high speed & high turning angles) using an

expectation-maximisation binary clustering algorithm designed for annotating animal movement200

data (EMbC, Garriga, Palmer, et al., 2016). We then re-classified the tracking data into two

behavioural classes, namely high-speed movements (combining the two high speed classes) and

low-speed movements (combining the two low speed classes). Within the high-speed behavioural

cluster, the average speed between locations was 8.4±6.7m/s (mean ± s.d.) whereas the average

speed for the low-speed behavioural cluster was 0.3±1.0m/s (mean ± s.d.). As estimates of speed205

and turning angle are highly dependent on the sampling rate of the data, we removed those parts

of the trajectories that exceeded the average sampling interval of two hours. Subsequently, we

used the low-speed locations for the empirical distribution functions of the staging period of the

two-mode eRTG, and the locations classified as high-speed for the empirical distribution

functions for the migratory component of the eRTG (see Figure S2). Finally, we derived the step210
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lengths and turning angles from each coherent stretch of data (i.e. only subsequent fixes with a

sampling rate of 2 hours). Following this, we calculated the changes in step length and turning

angle at a lag of one observation, as well as the covariance between contemporary observations of

step length and turning angle. We derived the corresponding empirical distribution functions for

both movement states and prepared them for use in the eRTG functions.215

Finally, we determined the duration of staging periods, and the duration and cumulative

distance of individual migratory legs from the tracking data. We first identified seasonal migration

events between breeding and wintering grounds (and vice versa) in the empirical trajectories

using the behavioural annotation. We then determined migratory legs (sequential locations

classified as migratory state) as well as stopovers (sequential locations classified as stopover state,220

with a duration > 12h). We used two main proxies to characterise migratory legs, namely

cumulative migratory distance as well as duration, and one proxy to characterise staging periods,

namely stopover duration. We calculated these proxies for all individuals and migrations, and

determined the maximum observed distance (d mmax) and duration (T mmax) of a migratory leg. As

we did not distinguish between extended staging (e.g. during moult, or after unsuccessful225

breeding attempts) from use of stopover locations during migration, we calculated the 95%

quantile of the observed stopover durations (T smax) rather than the maximum.

Simulating a bar-headed goose migration with the two-state eRTG When simulating a

conditional random trajectory between two arbitrary locations a and z , the two-state eRTG

initially draws from the distribution functions for the migratory state, producing a fast, directed230

trajectory. To determine the time available for moving from a to z , we assumed the mean

empirical flight speed derived for the migratory state, and calculated the number of required steps

accordingly. While simulating the trajectory, after each step modelled by the eRTG, the cumulative

distance of the trajectory (d m) as well as the duration (T m) since the start of the migratory leg

were calculated. By using d m , T m , as well as the empirically derived d mmax and T mmax, our235

two-state eRTG was based on a binomial experiment with two possible outcomes: switching to the

stopover state with a probability of pm s , or resuming migration with a probability of 1−pm s . We

defined pm s , the transition probability to switch from migratory state to stopover state, as

pm s (t ) =

∑t
i=0(d m )

d mmax
×
∑t

i=0(T m )
T mmax

(1)
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At step t , the simulation of the migratory movement can switch to the unconditional

stopover state, corresponding to a correlated random walk, with a probability of pm s (t ). Likewise,240

the simulation can switch back from stopover state to migratory state with the probability ps m (t ),

which we defined as as

ps m (t ) =

�
∑t

i=0(T s )
T smax

�2

(2)

This process is then repeated until the simulation terminates because: either the trajectory

reached its destination, or the step-wise joint probability surface did not allow for reaching the

destination with the remaining number of steps (resulting in a dead end or zero probability).245

Evaluating the plausibility of simulated migrations

We estimated the plausibility of each simulated trajectory, representing a unique migratory route,

using a measure we called route viability Φ aimed to integrate the ecological context into the

movement simulations. We developed this measure specifically with the stepping stone migratory

strategy of bar-headed geese or similar species in mind, and it is defined by the time spent in250

migratory mode, the time spent at stopover sites, and the habitat suitability of the respective

utilised stopover sites. For this specific measure of route viability, we make two main assumptions:

(1), it is desirable to reach the destinations quickly, i.e. staging at a stopover site comes at the cost

of delaying migration, and (2), the cost imposed by delaying migration is inversely-proportional to

the quality of the stopover site, i.e. the use of superior stopover sites can counterbalance the delay.255

Our argumentation for these assumptions is that during spring migration, the arrival at the

breeding grounds needs to be well-timed with the phenology of their major food resources (Bauer,

Gienapp, et al., 2008). Furthermore, the quality of stopover sites has been shown to be of crucial

importance for other species of geese with similar migratory strategies (Green, Alerstam, et al.,

2002; Drent, Eichhorn, et al., 2007).260

Each simulated multi-state trajectory between two arbitrary locations a and z can be

characterised by a total migration duration τa ,z , which consists of the total flight time τM ,a ,z and

the total staging time at stopover sites τS ,a ,z . The total flight time τM ,a ,z is the sum of the time

spent flying during each migratory leg l , and is thus τM ,a ,z =
∑n

l=0 tM (l ), with tM (l ) corresponding

to the time spent flying during migratory leg l . Similarly, the total staging time τS ,a ,z consists of265
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the staging times at all visited stopover sites, corresponding to τS ,a ,z =
∑n

k=0 tS (k ), where tS (k )

amounts to the staging time at stopover site k . For our metric of route viability, we will consider

the time spent staging at stopover locations τS ,a ,z as a delay compared to the time spent in flight.

This delay is, however, mediated by the benefit b an individual gains at the stopover site, e.g. by

replenishing its fat reserves. We define that this benefit gained by staying at a stopover site k , b (k ),270

is proportional to the time spent at site k , tS (k ), and the habitat suitability of site k , S (k ). This

habitat suitability S should range between [0, 1], which allows our measure of route viability to

range between [0, 1] as well. We further assume the effects of several sequential stopovers to be

cumulative, and thus define the total benefit of a migratory trajectory between locations a and z

with n stopovers as Ba ,z =
∑n

k=0 S (k )× tS (k ). Finally, we define the route viability Φa ,z of any275

trajectory between a and z as:

Φa ,z =
τM ,a ,z

τM ,a ,z +τS ,a ,z −Ba ,z
=

τM ,a ,z

τa ,z −Ba ,z
(3)

In this way, the viability of a trajectory with no stopovers and a trajectory with stopovers of

the highest possible quality (S (k ) = 1) will be equal, and is defined solely by the time the individual

spent in migratory mode (Φa ,z = 1). For trajectories with stopovers in less than optimal sites,

however, the viability of trajectories is relative to both the staging duration and quality of stopover280

sites, and should take values of
τM ,a ,z
τa ,z

<Φa ,z < 1. Using this metric, we assessed simulated

trajectories in a way that is biologically meaningful for bar-headed geese. In the next section we

detail how we calculated the route viability Φ for each simulated migration.

A network of migratory connectivity for bar-headed geese migrations

We simulated migrations of bar-headed geese within the native range of the species which285

naturally occurs in Central Asia (68−107◦N , 9−52◦E ). According to BirdLife International and

NatureServe (2013), both the breeding and wintering range are separated into four distinct range

fragments (see also Figure S1), with minimum distances between range fragments ranging from

79k m to 2884k m . For this study, we investigated how well, in terms of an environmentally

informed measure of route viability and e.g. the number of stopovers required to reach a range290

fragment, these range fragments can be connected by simulated migrations of bar-headed geese.

To choose start- and endpoints for the simulated migrations, we sampled ten random
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locations from each of these range fragments indicated in the distribution data provided by

BirdLife International and NatureServe (2013). We simulated 1000 trajectories for all pairs of range

fragments (100 trajectories per location pair) and counted the number of successes (trajectories295

reach the destination) and failures (trajectories terminate in a dead end). We then assessed all

successful trajectories by counting how many stopover locations were utilised in each trajectory.

We proceeded to calculating the viability of simulated routes in the following way: Initially, we

determined the total duration of the migration of trajectory between locations a and z , τa ,z , the

number of stopover sites used, na ,z , as well as the time spent at each stopover site (tS (k )) for each300

of a total of the na ,z stopovers (corresponding to the number of steps multiplied with the location

interval of two hours). We determined the habitat suitability of stopover locations S (k ) using

habitat suitability landscapes that represented habitat suitability for bar-headed geese during five

periods of the year (see Figure S3): winter/early spring (mid-November - February), mid-spring

(mid March - mid April), late spring/summer (mid April - mid August), early autumn (mid August -305

mid September), and late autumn (mid September - mid November). We identified these periods

using a segmentation by habitat use (van Toor, Newman, et al., 2016, for details see Section A in

the Electronic Supplementary Material (ESM)). The segmentation by habitat use uses animal

location data and associated environmental information to identify time periods for which habitat

use is consistent. Habitat suitability models derived for these time periods should thus reflect310

differences in habitat use by bar-headed geese throughout the year. We used time series of

remotely sensed environmental information and random Forest models (Breiman, 2001) to derive

habitat suitability models corresponding to these five time periods, and predicted the

corresponding habitat suitability landscapes (section A in the ESM). Following the prediction of

habitat suitability landscapes for winter/early spring, mid-spring, late spring/summer, early315

autumn, and late autumn, we annotated the all stopover state locations of the simulated

trajectories with the corresponding habitat suitability. We then calculated the benefit b gained by

using a stopover location k using the mean suitability for each of the stopover locations, S (k ), and

the duration spent at stopover locations, τS (k ).

To calculate the route viability Φa ,z , we also required an estimate for duration of migration if320

a simulation were exclusively using the migratory state τM ,a ,z , without the utilisation of stopover

sites. We used a simple linear model to predict flight time as a function of geographic distance

which we trained on the empirical data derived from the migratory legs (see Section B in the ESM
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for details). By basing the linear model on the empirical migratory legs rather than mean flight

speed, the estimate for τM retains the inherent tortuosity of waterbird migrations. For each325

simulated trajectory, we then calculated the geographic distance between its start- and endpoint,

and predicted the expected flight time τM ,a ,z . Finally, we calculated route viability Φa ,z for all

trajectories using equation 3, repeating the process for every of the five suitability landscapes

derived from the segmentation by habitat use. This resulted in five different values of Φa ,z for

every simulated trajectory, corresponding to winter/early spring, mid-spring, late spring/summer,330

early autumn, and late autumn, respectively.

Calculating migratory connectivity as average route viability We calculated migratory

connectivity between range fragments as the average route viability Φavg. of all trajectories

connecting two range fragments. We calculated this average by using non-parametric

bootstrapping on the median route viability Φavg. (using 1000 replicates), and also computed the335

corresponding 95% confidence intervals (CI) of the median route viability Φavg.. We did this for

each of the five time periods represented in the suitability landscapes, and also computed an

overall migratory connectivity by averaging all five habitat suitability values for each stopover site

prior to calculating Φ.

We wanted to compare migratory connectivity within the breeding range and migratory340

connectivity in the wintering range to test our first hypothesis stating that migratory connectivity

should be higher within the breeding range. To do so, we differentiated between route viability

among breeding range fragments (Φb r e e d i ng ), among the wintering range (Φw i n t e r i ng ), and

between breeding and wintering range fragments (Φmi x e d ). We computed the median and 95%

CIs of route viability with non-parametric bootstrapping with 1000 replicates, using the average345

habitat suitability of all five suitability landscapes for all trajectories within the breeding range, all

trajectories in the wintering range, and all trajectories connecting breeding range fragments with

wintering range fragments.

To test our second hypothesis, stating that variation in migratory connectivity throughout

the year should be higher in the breeding range than in the wintering range, we calculated the350

standard deviation of route viability for the five suitability landscapes in the breeding range and in

the wintering range. We did this by again, by differentiating trajectories in the wintering range,

trajectories in the breeding range, and trajectories connecting breeding range fragments with
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wintering range fragments. We computed route viability Φ for each of the five suitability

landscapes for all trajectories, and pooled the corresponding values for Φlate winter/early spring,355

Φmid-spring, Φlate spring/summer, Φearly autumn, and Φlate autumn for the wintering range, for the breeding

range, and for trajectories connecting breeding range fragments with wintering range fragments

separately. We then used a non-parametric bootstrapping (1000 replicates) on the standard

deviation over the five time periods, and determined the corresponding 95% CIs on the standard

deviation.360

Calculating route viability for empirical migrations Following this, we annotated the stopover

locations of empirical migrations with the habitat suitability of the corresponding time period,

and calculated the route viability for these migratory trajectories in the same way as described

above. We then used non-parametric bootstrapping on the median route viability for all empirical

migrations (Φemp., total), only spring migrations (Φemp., spring) and only autumn migrations365

(Φemp.,autumn), and computed 95% CIs for the median of Φemp., total, Φemp., spring, and Φemp., autumn.

Results

Route viability of empirical and simulated migrations

The simulations resulted in a total of 30730 simulated trajectories, of which 8945 trajectories

connected breeding range fragments (simulation success rate: 74.5%), 5393 trajectories connected370

wintering range fragments (simulation success rate: 44.9%), and the remaining 16392 trajectories

connected breeding and wintering range fragments (simulation success rate: 51.2%; see Figure

S4). While all these trajectories were successful in connecting origin and destination (i.e. did not

result in a dead end), they differed profoundly in their route viability Φsimulated, which ranged

between 0.014 and 0.59. We found that simulated migrations had a higher route viability for late375

spring and summer than for autumn (Figure 2).

The range of route viability for simulated migrations was comparable to that of the

empirical migrations (Φemp., total : 0.01 − 0.38). Overall, we found that route viability of empirical

migrations was higher for spring migrations (Φemp., spring : [0.0614; 0.1070]; 95% CIs on the median)

than for autumn migrations (Φemp., autumn : [0.0270; 0.0514]; 95% CIs on the median). This was380

caused both by differences in the habitat suitability of utilised stopover locations and the
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differences in migration duration between spring and autumn migrations. We found that

bar-headed geese on average stayed longer at stopover locations during autumn than during

spring migrations (spring: 6.8±14.2 days, autumn: 11.8±12.2 days; mean ± s.d.).

Insert Figure 2 approximately here.385

Route viability of simulated migrations in the species’ range

We separated the simulated trajectories into movements within the breeding range, movements

within the wintering range, and movements resembling seasonal migrations between the breeding

and wintering range. Here, we found that viability of trajectories was highest within the breeding

range (95% CIs for median Φbreeding : [0.0676; 0.0684]; 95%-quantiles of median390

Φbreeding : [0.1469; 0.1546]), and lowest within the wintering range (95% CIs for median

Φwintering : [0.0590; 0.0596]; 95%-quantile of median Φwintering : [0.1090; 0.1147]), predicting that

movements between range fragments should occur more often within the breeding than in the

wintering areas. The median route viability for migrations between breeding and wintering range

fragments was intermediate (95% CIs for median Φmixed : [0.0618; 0.0622]; 95%-quantile of median395

Φmixed : [0.1224; 0.1296]). These patterns are reflected in the simplified network of average

migratory connectivity Φavg. (Figure 3). We also identified the single trajectory with the maximum

route viability between range fragments rather than the median (Figure S5). This network of

maximum migratory connectivity shows that migrations that connect the breeding and wintering

ranges have the highest route viability. Finally, the number of stopover locations of movements400

was proportional to the geographic distance between range fragments (Figure S6).

Insert Figure 3 approximately here.

Temporal variability of within-range migratory connectivity

We found that the spatial patterns of migratory connectivity varied across the suitability

landscapes derived from the five habitat suitability landscapes representing five periods of405

consistent habitat suitability (Figure 4; see also Figure S3 for details on the temporal

correspondence of the time periods). For the suitability landscapes derived for winter/early

spring, mid spring, and late spring/summer, the estimated connectivity predicts that bar-headed

goose migrations are most likely to occur between the wintering and breeding range, and within
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the breeding range. For early autumn, connectivity patterns predict that movement should be410

most likely between breeding and wintering areas. For late autumn , we also observed that

connectivity predicts movement within the wintering range of the species. We also calculated the

95% CIs for the overall migratory connectivity values for each time period (Figure 2), which

predicts the highest median route viability for the periods from winter/early spring

(mid-November - February) as well as from late spring/summer (mid April - mid August). We also415

compared the standard deviation of route viability across suitability landscapes and found the

highest variation for the breeding range (95% CIs for s.d. of Φbreeding: [0.0124; 0.0133]) and the

lowest variation for the wintering range (95% CIs for s.d. of Φwintering : [0.0041; 0.0046]). Again, the

trajectories between breeding and wintering range fragments showed intermediate values (95%

CIs for s.d. of Φmixed : [0.0084; 0.0089]).420

Insert Figure 4 approximately here.

Discussion & Conclusions

Using previously collected tracking data of bar-headed geese and the novel empirical Random

Trajectory Generator, we were able to successfully develop a model that can simulate the migratory

movements of bar-headed geese. Our extension of the eRTG with a stochastic switch between a425

migratory state and a stopover state was sufficient to capture the overall migratory strategy of this

species. With this model for bar-headed goose migrations, we inferred the migrations of

unobserved individuals between all fragments of the species’ distribution range, and used an

environmentally informed measure of route viability to derive average estimates of migratory

connectivity between range fragments. We put this simplified predictive network of migratory430

connectivity to a simple test using predictions derived from the literature. Indeed, we found that

the average route viability, as an indicator of migratory connectivity, was higher within the species’

breeding range (Φbreeding) than in the wintering areas Φwintering, confirming the expectations from

the literature (Cui, Hou, et al., 2010; Kalra, Kumar, et al., 2011; Bridge, Kelly, et al., 2015). While

bar-headed geese are thought to be philopatric to their breeding grounds (Takekawa, Heath, et al.,435

2009), the post-breeding period seems to be a time of great individual variability and extensive

movements (Cui, Hou, et al., 2010). This has also been observed for other Anatidae species (e.g.,

Gehrold, Bauer, et al., 2014), as due to the temporary flightlessness during moult the choice of
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suitable moulting sites is critical to many waterfowl species. As the average route viability within

the breeding range and during the summer months is high, we think that unsuccessfully breeding440

bar-headed geese and individuals in the post-breeding period are not limited by sufficiently

suitable stopover locations when moving between breeding range fragments. Furthermore, our

results confirmed that the temporal variability of migratory connectivity was higher in the

breeding areas north of the Himalayas than in the subtropical wintering areas.

We think that simulating trajectories with multiple movement states and an element of445

randomness can be useful to infer the movements of unobserved individuals. Here, we simulated

migratory trajectories under the assumption that the movements of the tracked individuals are

similar to those of other individuals. While this limits the informative value for an estimate of

migratory connectivity, we think that through repeated simulations, it is possible to explore the

routes of unobserved individuals according to the movement behaviour observed in empirical450

data on the same temporal scale. Indeed, average route viability corroborated previous studies on

the within-range movements for bar-headed geese even without additional filtering .

Consequently, we think that in combination with relevant environmental and ecological

information, the simulation of unobserved migrations using a model like our two-state eRTG can

provide a sensible and quantitative null hypothesis for the migrations of bar-headed geese or455

species with similar strategies. While we determined the route viability using only the habitat

suitability of the stopover locations, apart from the some measures of migratory duration, we

think that other correlates such as wind support or altitude profile could easily be incorporated for

the migratory state. Similarly, the transition probabilities that mediate the switch between

movement modes can be extended to include environmental conditions. In general, we think that460

our stochastic switch performed reasonably well in replicating the movement behaviour observed

from recorded tracks. We used simple functions to determine transition probabilities due to the

gappy nature of the data and long fix interval (two hours). If a larger sample size were available,

the functions we used (see equations 1 and 2) could be replaced by a probability distribution

function that more adequately represents the decision-making of bar-headed geese. Alternatively,465

algorithms such as state-space models could be integrated to simulate animal movement with a

more complex configuration of movement states (Morales, Haydon, et al., 2004; Patterson,

Thomas, et al., 2008). Overall, we think that with modifications specific to the species of interest,

the approach described in this study could be adapted for other scenarios of animal movement.
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One important application for our or similar approaches could be to support470

capture-mark-recapture data, especially when tracking data for multiple individuals are hard to

acquire. Simulations from a multi-state movement model informed by the movements of few

representative individuals could be used to infer alternative routes connecting the re-sightings of

individually marked animals. A corresponding relevant measure of route viability could then be

used to explore the alternative strategies from an ecologically informed perspective. In such a475

study, it could also be of interest to use Bayesian approaches to approximate ideal routes using the

environmental context.

Furthermore, we think that our results highlight the importance of integrating temporal

changes in habitat use of moving animals into measures of landscape connectivity. This was

already pointed out by Zeigler and Fagan (2014), who argued that the ecological function of480

landscape connectivity through animal movement is not only determined by where, but also when

the environment provides the conditions that allow an individual to move from a to z . In our

study, estimates of migratory connectivity were affected by changes in the predicted habitat

suitability of stopover locations, whereas in other cases, changes in vegetation density throughout

the year or the temporary freezing of waterbodies can be imagined to change connectivity485

between distant sites. Using time series of environmental information in combination with an

approach segmenting a species utilisation of the environment for moving, as shown here, could

help with the identification of temporal patterns of landscape connectivity. Accounting for such

temporal changes in connectivity could also help better understand how for example diseases can

spread through through a metapopulation (e.g. white-nose syndrome, Blehert, Hicks, et al., 2009;490

Turner, Reeder, et al., 2011, or Influenza A viruses in birds, Gaidet, Cappelle, et al., 2010; Newman,

Hill, et al., 2012).

Overall, models that incorporate a species’ movement behaviour and its utilisation of the

environment can provide sensible estimates for landscape connectivity, and possibly for a wider

range of applications. We think that our approach provides a starting point for complementing495

tracking efforts with ecologically relevant estimates of a species’ potential to migrate through a

landscape and act as a link between patches, populations, and ecosystems.
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Tables

Table 1. A summary of the catching sites and corresponding sample sizes. The number of tracking
days and GPS fixes are listed as a mean per individual.

Capture site Year Sample size First fix taken Tracking days GPS fixes
of (individuals) median; median
capture [25%; 75% quantile] [25%; 75% quantile]

Lake Qinghai 2007 13 Mar 25 – 31 303 [207; 411] 1670 [682; 2565]
2008 10 Mar 30 – Apr 4 396 [260; 845] 2211 [1341; 3573]

India 2008 17 Dec 10 – 18 129 [92; 401] 2060 [1578; 2714]
2009 7 Jan 27 – Feb 06 134 [53; 448] 1321 [1107; 3800]

West Mongolia 2008 19 Jul 13 – 15 122 [90; 190] 537 [366; 1312]
2009 14 Jul 05 – 08 105 [100; 128] 421 [330; 473]
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Figure Captions

Figure 1. General concept for our approach of environmentally informing simulated stepping-
stone migrations: I) Empirical tracking data are IIa) used to derive an informed eRTG to simu-
late conditional movement between sites of interest, and IIb) combined with environmental cor-
relates to derive predictions of relevant measurements of landscape permeability (here: suitability
of stopover sites). III) Finally, the simulated conditional trajectories are evaluated based on charac-
teristics of the trajectory and permeability using an informed measure of route viability.

Figure 2. The route viability Φ of empirical and simulated migrations. Here we show Φ for spring
and autumn migrations, as well as theΦ for the simulated trajectories across all five suitability land-
scapes (Seg. 1: winter/early spring, Seg. 2: mid-spring, Seg. 3: late spring/summer, Seg. 4: early
autumn, Seg. 5: late autumn). The black bars show the 95% CIs for the respective medians, and the
grey dots and violin plots show the observed (empirical trajectories) and densities for the observed
route viability (simulated trajectories).

Figure 3. The median route viability Φ between range fragments of bar-headed geese. We sum-
marised Φ for all pairwise range fragment trajectories using the median route viability. The thick-
ness of edges represents the sample size. Blue polygons show the native breeding area of the species,
green polygons the native wintering range. Long edges are curved for sake of visibility.

Figure 4. This figure shows the temporal dynamics of the route viability Φ by showcasing the pre-
dicted movements for each of the five suitability landscapes separately. The visible edges of the
network have a median route viability Φ that is higher than 75% of the ecological likelihood for the
complete network. The respective time periods associated to these networks is displayed in Figure
S3.
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Figures
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