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Abstract
The stress-induced mutagenesis paradigm postulates that in response to stress, bacteria increase
their genome-wide mutation rate, in turn increasing the chances that a descendant is able to
withstand the stress. This has implications for antibiotic treatment: exposure to sub-inhibitory
doses of antibiotics has been reported to increase bacterial mutation rates, and thus probably the
rate at which resistance mutations appear and lead to treatment failure.

Measuring mutation rates under stress, however, is problematic, because existing methods
assume there is no death. Yet sub-inhibitory stress levels may induce a substantial death rate.
Death events need to be compensated by extra replication to reach a given population size, thus
giving more opportunities to acquire mutations. We show that ignoring death leads to a systematic
overestimation of mutation rates under stress.

We developed a system using plasmid segregation to measure death and growth rates simulta-
neously in bacterial populations. We use it to replicate classical experiments reporting antibiotic-
induced mutagenesis. We found that a substantial death rate occurs at the tested sub-inhibitory
concentrations, and taking this death into account lowers and sometimes removes the signal for
stress-induced mutagenesis. Moreover even when antibiotics increase mutation rate, sub-inhibitory
treatments do not increase genetic diversity and evolvability, again because of effects of the antibi-
otics on population dynamics.

Beside showing that population dynamic is a crucial but neglected parameter affecting evolv-
ability, we provide better experimental and computational tools to study evolvability under stress,
leading to a re-assessment of the magnitude and significance of the stress-induced mutagenesis
paradigm.

Introduction
One of the most puzzling and controversial microbial evolution experiments of the 20th century
may be the one performed by Cairns and collaborators [8, 7] in which lac− cells are plated on
lactose as the sole carbon source and therefore cannot grow. Revertants toward the lac+ genotype
continuously appear after plating at a rate and timing seemingly incompatible with the Darwinian
hypothesis of selection of pre-existing mutants. In the lac− construct, the lacZ coding sequence is
present but non-functional, because it is out of frame with the start codon. The lac+ revertants are
thus frameshift mutants in which this coding sequence is back in frame with the start codon. Most
of the controversy initially came from the question of whether these reversion mutations where
Lamarckian, in the sense that they would arise at a higher rate when the cells would “sense” that
these mutations would be beneficial [45]. However many additional experiments quickly suggested
that this phenomenon can be explained by more standard Darwinian mechanisms, where genetic
changes are not targeted, but occur randomly and are then selected or not. While two seemingly
conflicting molecular explanations emerged — the stress-induced mutagenesis model and the gene
amplification model —, both are conceptually very similar.

In both explanations, mutations occur randomly and independently of their effect on fitness, but
the specific conditions of carbon starvation increase the rate at which genetic diversity is generated
at the relevant locus (lacI-lacZ sequence). In the stress-induced mutagenesis model [53], the
genome-wide mutation rate is increased as an effect of the stress response triggered by starvation.
In the gene amplification model [2], random duplications of the lacI-lacZ system happen and
are selected because the frameshift mutation is leaky. A small amount of Beta-galactosidase is
still synthesised permitting cryptic growth due to rare expression errors, which compensate the
frameshift. This residual expression becomes bigger with more copies of the leaky system. From
an initial duplication a further increase in copy number will be favored by recombination due to

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 24, 2017. ; https://doi.org/10.1101/224675doi: bioRxiv preprint 

https://doi.org/10.1101/224675
http://creativecommons.org/licenses/by-nc-nd/4.0/


sequence homology. As the copy number of the system increases, a reversion mutation in lacI-lacZ
becomes more likely, because of increased target number.

While it is still not clear whether stress-induced mutagenesis is the sole explanation of the
phenomenon, the attempts to explain the data presented by Cairns and collaborators have lead to
a much better understanding of control over mutation rate in response to the environment. Such
increase of mutation rate under starvation has also been reported in other systems [46, 4, 35]. An
emblematic molecular mechanism permitting this regulation of mutation rate is the SOS response,
suggested in 1970 [38, 42], in which DNA damages are sensed by bacterial cells and lead to the
up-regulation of many genes permitting mutagenic repair and replication of damaged DNA. While
the responsible enzymes were unknown at the time, it has indeed been found subsequently that
the SOS response increases the dosage of polIV and polV [12]. These error prone polymerases
are able to replicate damaged DNA that the classical DNA polymerase polIII could not replicate,
albeit at the price of a higher error rate [56, 49]. This strategy favoring “survival at the price of
the mutation” is only one side of the story. There is a line of evidence suggesting that this higher
error rate is not only an unavoidable trade-off with survival. It is also supposed to be a selected
property to increase mutation rate under stressful conditions, increasing the chances that one of
the descendants obtains a beneficial mutation, which makes it able to better withstand the stress
[20, 39].

The evolution of traits that increase mutation rate under stress needs be considered in the
context of second-order selection [51]. Second-order selection relies on the idea that natural se-
lection does not only act on the individual’s phenotype and instant fitness, but also on its ability
to generate fit descendants, leading to selection of properties such as evolvability and mutational
robustness [17]. In parallel to the study of environmental control over the mutation rate, genetic
determinants of mutation rate have also been studied. It has been shown and is widely accepted
that alleles increasing mutation rate, for example defective mismatch-repair or DNA proofreading,
can be selected for the resulting increase in evolvability [9, 47]. On the other hand the possibility
of selection of mechanisms increasing mutation rate under stress but not constitutively has been
subject to a more philosophical debate [10, 43]. While modeling shows such selection is possible
[39], it is hard to distinguish whether an observed increase in mutation rate under a specific stress
is (i) an evolvability strategy, (ii) an unavoidable trade-off of selection for survival, such as repli-
cating damaged DNA to avoid death at the price of making mutations, or (iii) a direct effect of
the stress and not of the stress-response system [34].

But this debate does not affect the evolutionary relevance of the phenomenon, nor the medical
implications concerning the risk of de novo evolution of resistance during antimicrobial treatment.
Here we are interested in the general case of mutation rate in growing stressed populations, and
we especially focus on antibiotic stress, although our findings may be valid for many other biotic
and abiotic stresses. It has been suggested that treatment with sub-inhibitory doses of antibiotics
increases bacterial mutation rate, due to induction of various stress-response pathways [28, 3, 25, 41,
32]. Many molecular mechanisms underlying this stress response have been elucidated, including
the SOS response [3] or the RpoS regulon [25]. Oxidative damages have also been suggested to
play a role in antibiotic-induced mutagenesis [28] and death [16]. Although still controversial [31]
these findings link antibiotic stress to the older question of how bacteria deal with oxidative stress
and how oxidative damages impact mutation rates [36].

However all the evidence for stress-induced mutagenesis relies on accurately measuring muta-
tion rates of bacteria growing in stressful conditions, and comparing them to those of the same
strains growing without stress. Computing such mutation rates under stress is harder than it may
seem, because stress may change population dynamics and may thus invalidate the hypotheses
made by the mathematical models used to compute mutation rate. For example in the case of
sub-inhibitory concentrations of antibiotics when net population growth is positive, death may
nevertheless happen at a considerable rate. Death events, however, are not detected by standard
microbiology methods, and are not taken into account by the mathematical tools used to compute
mutation rate [59, 26, 22].

Such tools indeed only take as inputs the number of observed mutants at a chosen locus and the
final population size, making the underlying assumption that there is no death and that population
size is thus a sufficient information to summarise growth dynamics. The final population size is
used to infer the number of DNA divisions leading to the final observed population from a small
initial inoculum. If there is death, more divisions are needed to reach this population size, thus
giving more opportunities to acquire mutations. The mutation rate will then be over-estimated,
because the number of DNA replications will be under-estimated.

In this work we developed an experimental system to compute death rates in populations grow-
ing under stress, and a computational method to compute mutation rates from fluctuation assays
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Figure 1: Example with death rate 0.8. One cell division ‘detected’ by change in population
size requires actually five ‘real’ cell divisions. Each of these ‘hidden’ DNA replications gives extra
chances to acquire a mutation.

under stress using the computed death rates. We applied this framework to re-estimate mutation
rates of Escherichia coli MG1655 growing under sub-MIC doses of kanamycin (an aminoglycoside),
norfloxacin (a fluoroquinolone) and hydrogen peroxide (an oxidizing agent). All these antimicro-
bials have previously been reported to significantly elevate mutation rate [28, 41]. For norfloxacin
and kanamycin, we find that neglecting death leads to substantial overestimation of mutation rate.
After conservatively correcting for death, the estimated increase of mutation rate due to treat-
ment is largely reduced, and there remains no signal of stress-induced mutagenesis in the case of
kanamycin.

We also show that mutation rate estimation does not only present experimental and mathe-
matical challenges, but is also not the most relevant measure of evolvability meaning the capacity
of a population to generate adaptive genetic diversity. Indeed, some of the studied sub-inhibitory
treatments cause a significant drop in population size due to both bactericidal and bacteriostatic
effects, and thus lead to a smaller genetic diversity despite a higher mutation rate. Ironically,
evolvability can be much more easily estimated from experimental data than mutation rate. In
our experiments, antibiotics and hydrogen peroxide have very different effects on evolvability:
both sub-inhibitory norfloxacin and kanamycin treatments significantly reduce it, while hydrogen
peroxide treatment strongly increases it.

Results
Mutation rates are over-estimated when neglecting death
Sub-inhibitory treatments are not necessarily sub-lethal, because minimal inhibitory concentration
(MIC) is defined at population scale. An antimicrobial treatment is sub-inhibitory if the population
grows (i.e. CFU/mL increases, or more crudely culture tubes inoculated at low density are turbid
after 24h). However the death rate can be high, as long as the division rate is higher. Such
death events will not be visible to the observer if only population size (CFU/mL) is tracked over
time (figure 1). To reach a given, observed final population size, the number of cell divisions
has to be higher, if there is death. This means that when computing mutation rate using the
classical approach (described in the materials and methods), the number of cell divisions will be
under-estimated. This is because it is implicitly assumed that there is no death and thus that the
final population size is a good approximation for the number of cell divisions. The mutation rate,
computed as the number of mutational events divided by the number of cell divisions, will then be
systematically over-estimated.

The above statement, that mutation rates are systematically over-estimated when there is
death, is the first intuition motivating our work. We explore this intuition more rigorously further
below using a simulation approach. For an arbitrary chosen value of mutation rate toward a
neutral arbitrary phenotype, we simulate the growth of a population of bacteria inoculated from
a small number of non-mutant cells, with a chosen constant death rate, and track the number of
mutant and non-mutant cells. We then compute the mutation rate based on the final state of these
simulations, using the standard approach (i.e. the fluctuation test as described in the materials
and methods) to test whether we recover the true value of the mutation rate. As shown in figure 2,
the mutation rate is systematically over-estimated when there is death, and the higher the death
rate the higher the over-estimation. This result is robust to changes in other population growth
parameters such as the initial and the final population size, the mutation rate, and the plating
fraction (data not shown).

Population dynamics and death in sub-MIC treatments
In the previous section we show that it is necessary to take death into account when computing
mutation rate. For this, tracking population size (and thus net growth rate) during antibiotic
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Figure 2: Over-estimation of mutation rate when there is death. From simulations of
population growth with known death and mutation rate, we estimate the mutation rate using the
classical method which does not take death into account. For each death rate between 0 and 0.95,
1000 simulations with 24 parallel cultures were performed. For each simulation we plot the ratio
between the computed mutation rate (based on the number of mutants in the final state of the
simulations) and the true mutation rate (used as input of the simulations, here 1 ∗ 10−9). The
orange lines indicate the median values, the boxes indicate the upper and lower quartiles, and the
vertical bars indicate the upper and lower 5 percentiles.

treatment, as classically done by plating and counting colony forming units, is not sufficient. It
is not possible to know whether a decreased net growth rate in the treatment compared to the
untreated control is due to a purely bacteriostatic effect (i.e. the population grows more slowly, but
without death) or to a bactericidal effect (i.e. the bacteria keep dividing, potentially at the same
rate as without antibiotic, but also die). The first scenario will have no effect on the accumulation
of mutants as a function of population size, while in the second scenario turnover implies a higher
number of DNA replications and thus more mutants for a given population size, as explained above.

To disentangle these two effects, we designed a method allowing to compute growth rate and
death rate simultaneously, using a segregative plasmid. The segregation dynamic permits to es-
timate the number of bacterial cell divisions. Combining this information with the change in
population size permits to estimate growth rate and death rate, as explained in the materials and
methods.

Our ultimate goal is to reliably estimate mutation rates of bacteria treated with sub-inhibitory
doses of antimicrobials. To this end we quantify population dynamics and compute mutation rates
toward a chosen neutral phenotype (resistance to rifampicin, conferred by substitutions in the gene
rpoB) in populations exposed to sub-inhibitory doses of other antimicrobials. Our mutagenesis
protocol is inspired by the standard fluctuation test with additional measurements of plasmid
segregation to compute death rate, as detailed in the material and methods. The population
dynamics are quantified as a combination of two variables: CFU at various time points (e.g. 0h,
3h, 6h and 24h after treatment starts), and relative death rate (compared to birth rate) between
pairs of two successive time points. We represent these population dynamics in figure 3 for the
chosen sub-inhibitory antimicrobial treatments. We use kanamycin at 3ug/mL, norfloxacin at
50ng/mL, and hydrogen peroxide (H2O2) at 1mM, allowing direct quantitative comparisons with
the data from Kohanski and collaborators [28]. We find that for norfloxacin, there is a strong
death rate in all phases of growth, and a strong impact of the treatment on final population size.
For H2O2, death is only detectable in stationary phase and the treatment is mostly bacteriostatic
during growth. For kanamycin, the dynamics are more complex, because an initially high death
rate leads to a strong decline of population size during the first 6 hours of growth, followed by a
recovery leading to a final population size close to the one reached in untreated controls. During
this second phase of growth following the bottleneck at 6 hours, death rate is still substantial.
This clearly shows that none of the three studied treatments are fully sub-lethal, and thus that
the implicit hypothesis of no death made when using the standard methods of computation of
mutation rate (as in Kohanski, DePristo, and Collins [28]) does not apply.
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Figure 3: Growth and death dynamics of populations treated with sub-MIC antimi-
crobials. Each panel shows data for treatment with a different antimicrobial. Blue dots (left
axis), joined by straight lines, represent population sizes measured by plating, expressed as colony
forming units per mL of culture. Red lines (right axis) represent relative death rates, computed
from plasmid segregation data, corresponding to the average number of death event per division
event between two successive time points. Each line corresponds to a fully independent biological
replicate, performed on a different day with a different batch of medium, and comprising at least 4
replicate populations. Time points 3 and 6 hours were horizontally shifted by a small offset value
to avoid overlapping lines. Death rates higher than 4 were set to 4, plus or minus a small offset
value to avoid overlapping lines.
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Figure 4: Change in mutation rate when treating with a sub-MIC dose of kanamycin,
H2O2 or norfloxacin. The uncorrected mutation rate is the one that would be computed based
on our data when death is not taken into account. Each point corresponds to a fully independent
biological replicate comprising 24 parallel populations, from which population dynamics and muta-
tion rates are estimated. All the computed mutation rates are normalised by the average mutation
rate computed in absence of treatment. We performed a paired t-test to estimate whether the
corrected mutation rate is significantly lower than the uncorrected one (* p < 0.05, ** p < 0.01).

Mutation rate in sub-MIC treatments
We developed computational tools to quantify mutation rate taking into account the measured
population dynamics, accounting for death. Our software, ATREYU (Approximate bayesian com-
puting Tentative mutation Rate Estimator that You should Use) is described in the materials and
methods. It takes as input any arbitrary population dynamics, described as a list of population
sizes (i.e. CFU/mL for several time points) and an associated list of death rates between pairs
of consecutive time points. This input is thus exactly what is shown in figure 3. We apply this
method to analyse the results of our mutagenesis protocol, to quantify whether and by how much
sub-inhibitory treatments with kanamycin, norfloxacin or hydrogen peroxide increase mutation
rate. We show the effect of treatment on mutation rate in figure 4. We also plot the uncorrected
mutation rate estimate assuming no death as would be obtained by methods such as FALCOR
[26], bzRates [22], or rSalvador [59]. Clearly, not taking death into account leads to a strong over-
estimation of the mutation rate for both kanamycin and norfloxacin. In the case of kanamycin,
correctly computing the mutation rate removes all signal for stress-induced mutagenesis. In the
case of norfloxacin, this signal is strongly lowered, from a 14-fold to a 6-fold increase. For H2O2,
the signal is less affected, which can be attributed to death rate being only significant in stationary
phase. This confirms that neglecting death leads to a systematic over-estimation of mutation rates,
and that taking into account the full population dynamics is necessary and leads to significantly
different patterns depending on the antimicrobial and its effect on growth and death.

The link between evolvability and mutation rate depends on population
dynamics
The quantification of mutation rate in different conditions is not sufficient to answer the question
whether sub-inhibitory antibiotic treatments increase the likelihood of emergence of a resistant
mutant and thus the probability of treatment failure. Indeed, mutation rate is expressed per DNA
division, but, as we have shown in the previous section, antibiotic treatment may significantly
change the number of susceptible cells and the number of replications that these cells have under-
gone. Intuitively, if a treatment multiplies mutation rate by 10 but divides population size by 100,
it is not likely to lead to an increased genetic diversity. This intuition has also been given in Couce
and Blázquez [11, figure 2, page 535], but has been largely ignored in the literature as it was not
the main message of this review. Conversely, a treatment that does not affect mutation rate and
only slightly affects carrying capacity but causes death and turnover may result in a significantly
increased genetic diversity.

We first show the effect of sub-inhibitory treatment on final population size in figure 5. While
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Figure 5: Population size reached after 24h in treated and untreated conditions. Each
point corresponds to a fully independent biological replicate. For each of these biological replicates,
average population size is estimated by plating appropriate dilutions of at least 6 replicate popu-
lations on non-selective medium. The dashed black line indicates the average size of the untreated
populations. We performed an unpaired t-test to estimate whether treated population sizes are
significantly different than untreated ones (** p < 0.01).

H2O2 does not affect final population size, there is a strong effect of 1-2 orders of magnitude
for norfloxacin, and a significant but smaller effect of around 50% reduction for kanamycin. This
supports our intuition that at least for norfloxacin, the few-fold increase in mutation rate we report
in the previous section is probably uncorrelated to any increase in genetic diversity.

We expect the generation of genetic diversity to depend on (i) the number of cells alive, (ii) the
population dynamics of these cells, and (iii) their mutation rate. Addressing the effect of stress
on mutation rate as done in the previous section is necessary for a proper understanding of the
bacterial stress response and of DNA repair mechanisms. Nevertheless mutation rate is not the
relevant measure to understand the effect of stress on the generation of genetic diversity and thus
on evolvability.

As a simple quantification of the generation of genetic diversity and thus of evolvability, we
measure the number of mutants at a neutral locus, here the base-pair substitutions conferring
resistance to rifampicin in the gene rpoB.

We plot in figure 6 the absolute number of rifampicin resistant mutants in the final population
for all treatments and for untreated control. Evolvability is reduced by a few-fold by kanamycin
treatment as expected, since this treatment decreases population size without increasing mutation
rate. While norfloxacin and hydrogen peroxide both induce a small increase in mutation rate,
they interestingly have strongly opposite effects on evolvability. Treatment with H2O2 increases
evolvability by more than one order of magnitude, while treatment with norfloxacin reduces it by
a similar amount. This is due to the very different effect these antimicrobials have on population
dynamics: while H2O2 does not affect final population size, norfloxacin causes a strong decrease
in population size due to both bactericidal and bacteriostatic effects.

So independently of the question whether antibiotics increase mutation rate, we show that
the sub-MIC treatments we studied do not in any way increase evolvability. Thus the standard
rationale, that these sub-inhibitory treatments would increase the risk of emergence of resistance
and treatment failure because of a higher generation of genetic diversity [5], does not hold.

This effect is largely due to a strong reduction of population size, which implies a loss in genetic
diversity. Population size is however not the only factor affecting evolvability. We may also ask
how much the measured turnover in our experiments contributes to evolvability. To answer this
question, we simulate the same population dynamics as observed for each treatment, but without
death: Each population reaches the same final population size as measured in our experiments, with
the same mutation rate as computed, but with no death. This is similar to what would happen if
the antibiotics only had a bacteriostatic effect. For each simulation, we quantify evolvability using
the same measure as previously, i.e. the absolute number of mutants for our phenotype of interest
in the final population. We compare this simulated evolvability without turnover with the actual
measured evolvability in figure 7. For kanamycin and norfloxacin, turnover significantly increases
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Figure 6: Evolvability of untreated and treated populations. For each treatment, we
estimate evolvability as the number of rifampicin resistant mutants in the population after 24h of
growth. The dashed black line represents the average evolvability of the untreated populations.
Each point is a fully independent biological replicate comprising 24 replicate populations in which
the number of rifampicin resistant mutants is averaged. We performed an unpaired t-test to
estimate whether evolvability of treated populations is significantly different than this of untreated
ones (** p < 0.01).

evolvability by a few-fold.

Conclusions
In summary our results show that (1) mutation rate is systematically over-estimated in sub-
inhibitory treatments because of death, (2) mutation rate is not a good predictor of the generation
of genetic diversity or evolvability, (3) population size and turnover play a key role in evolvability,
and (4) treatment with sub-inhibitory doses of norfloxacin or kanamycin significantly decreases
evolvability, measured as the generation of genetic diversity at population scale. These results
are in apparent disagreement with the conclusions of previous studies on antibiotic induced mu-
tagenesis. This discrepancy is due to both miscalculation of mutation rates (because neglecting
population dynamics) and misconceptions about the link between mutation rate and evolvability
in these classical papers.

Discussion
Understanding genetic and environmental control of evolvability is central for the understanding of
microbial adaptation to constantly changing environments. Evolvability is defined as the capacity
of a population to generate adaptive genetic diversity. This can be decomposed in two variables:
the amount of genetic diversity generated by a population (often inaccurately attributed to the
mutation or recombination rate only), and the fraction of this diversity that is adaptive. We are here
interested in the former. Genetic control over the amount of generated genetic diversity has been
studied for a long time in the field of mutation rate evolution [9, 51]. The existence of constitutive
mutator alleles in bacteria has been discovered before the mechanisms of DNA replication [54],
and the selection pressures leading to their transient increase in frequency have been elucidated
through both theoretical and experimental studies [47, 37]. Observing the evolution and fixation of
such mutator alleles from non-mutator lineages in a long-term evolution experiment [44] plausibly
facilitated the acceptance of these theories. On the other hand, plastic, environment-dependent
control over the generation of genetic diversity has been a controversial paradigm shift in bacterial
evolution [20].

It has been proposed for a long time that various stresses can increase mutation rates in bacteria
[46, 4], including those triggered by antimicrobial treatments [28, 3, 25, 41, 32]. Several molecular
pathways have been shown to be implicated in this phenomenon, the emblematic one being the
SOS response [38]. In this work we have shown that the effect of stress on mutation rate can
not be computed properly with the existing tools, because the underlying mathematical models
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Figure 7: Contribution of turnover to evolvability. For each treatment, we plot the measured
evolvability of the populations (red triangles, purple dots and blue squares) and the estimate that
was obtained if the same population size was attained without cell death and with the same
mutation rate (violin plots, 100 replicate simulations for each biological replicate). The median
of all simulations for a given treatment is represented as an horizontal bar. For each treatment
we performed an unpaired t-test to test whether the evolvability with death is different than the
evolvability without death (** p < 0.01).

make the assumption that there is no stress, or more precisely, that the stress does not affect
population dynamics. We develop experimental and computational tools to measure population
dynamics and compute mutation rates under stress, and apply them to the question of mutagenesis
due to antibiotic treatment. We have shown that the intuition that low doses of antibiotics are
dangerous because they lead to a higher generation of diversity is based on a misinterpretation of
valid experimental data for two reasons: (1) the increase in mutation rate is overestimated due
to overly simplistic assumptions, and (2) a higher mutation rate does not lead to a higher genetic
diversity if population dynamics are affected (e.g. if population size is reduced).

The question of emergence of resistance alleles due to low doses of antibiotics (reviewed by
Andersson and Hughes [1]) can however not be entirely addressed by measuring the generation of
genetic diversity. The study of evolution can be decomposed in two parts: generation of diver-
sity, and natural selection acting on this diversity. While we have shown that treatment with a
sub-inhibitory dose of norfloxacin does not increase but rather strongly decreases the amount of
generated genetic diversity, it has also been reported that resistance alleles can be maintained and
enriched by selection even at very low antibiotic concentration [24]. Such selection of pre-existent
alleles may be a much more valid reason for concern about sub-inhibitory treatments. However,
the literature is not as unanimous regarding bacteria residing within a patient with an immune
system, rather than in a test tube [14]. It has for example been suggested that treating with a lower
dose of antibiotics could slow down the selection of existing resistance alleles by decreasing their
fitness advantage compared to the sensitive, wild type strain, without compromising the success
of the treatment [40, 13]. Combining our results with these papers calls for a reevaluation of the
evolution of antibiotic resistance at low doses of antibiotics.

The question of the potentially adverse effects of low doses of antibiotics has been of long-
standing interest in the medical community, as is evidenced by the famous quote from Alexander
Fleming’s Nobel lecture [18], “If you use penicillin, use enough”. However, given the time of this
research (penicillin was discovered in 1928 and thus 15 before Luria & Delbrück), one should not
be surprised that this often cited out-of-context advice relies on a rather Lamarckian reasoning in
terms of educating rather than selecting for resistance:

Then there is the danger that the ignorant man may easily underdose himself and
by exposing his microbes to non-lethal quantities of the drug make them resistant. Here
is a hypothetical illustration. Mr. X. has a sore throat. He buys some penicillin and
gives himself, not enough to kill the streptococci but enough to educate them to resist
penicillin. . . [18]

Our findings are also relevant outside of the context of evolution during antibiotic treatment.
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As we mentioned, mutagenesis in bacteria under nutritional stress was a key development in the
understanding of the bacterial stress response and DNA repair, with a recent regain of interest
[29, 35]. Our experimental system can a priori not be applied to study starving bacteria, for
two reasons: (1) our plasmid segregation method only gives sufficient signal in non-stationary
populations, and (2) many of the observations on starvation-induced mutagenesis are dependent
on the presence of some spatial structure (for example bacterial colonies on an agar plates [7, 46,
4]). In this second case the population dynamics become much more complex and are unlikely
to be realistically approximated by a single relative death rate parameter. But the exact same
questions remain to be elucidated in this field: how many cell divisions happen in these starving
colonies? In batch cultures, is stationary phase really stationary, or is there some turnover and
recycling as recently suggested [48]? And more importantly, where does death come from: is it
an unavoidable, externally caused phenomenon; or is there an internal component, such as an
altruistic programmed cell death [50], or just traits selected in other environments that give a
maladaptation to certain stresses [23]?

Zooming out from evolutionary microbiology, mutagenesis research in bacteria shows an in-
teresting parallel with recent advances in cancer research. For a given cell growth dynamics
(organogenesis, from stem cells to an organised population of somatic cells), a higher mutation
rate (expressed per cell division) will boost the accumulation of mutations and thus the risks of
cancer. This increase in mutation rate can be genetic, such as in the case of hereditary non-
polyposis colon cancer caused by a deficiency of mismatch repair [6], or environmental, such as
exposure to carcinogenic compounds [55, 27, 15]. All of this is now part of textbook science on
cancer, and is similar to increase in mutation rate in bacterial populations due to genetic (mutator
alleles [54]) or environmental factors (stress-induced [20] or stress-associated [34] mutagenesis).

Tomasetti and Vogelstein [52] recently reported that the number of stem cell divisions is a
strong predictor of cancer risk per organ. This is in parallel with our findings, which show that
the number of cell divisions is central to predict the generated genetic diversity in a population of
cells. Tomasetti and Vogelstein caused a big controversy by concluding that cancers would thus
mostly be due to “back luck” (i.e. unavoidable consequence of the large number of cell divisions)
rather than to environmental factors (e.g. exposure to mutagenic chemicals). We show here that
the generation of genetic diversity depends on both mutation rate and cell population dynamics,
which is in line with many studies that have criticised the interpretation of the data made by
Tomasetti and Vogelstein.

The challenge of understanding evolvability in bacterial population is thus strikingly similar to
the one of understanding cancer, in the sense that the outcome depends on a complex interplay
of extrinsic and intrinsic factors acting at different scales. In the case of bacteria, additional
complexity stems from the fact that the same treatments may both impact the number of cell
divisions (death and turnover) and the mutagenicity of each division. The picture is further
complicated by the difficulty to disentangle the direct effects of the drug from the effects of the
stress-response triggered by the drug. But fortunately, while separating and measuring each factor
requires complex experimental methods and mathematical tools, measuring evolvability on neutral
loci is simpler at least in bacteria. We hope that our study will encourage researchers in the field
to question more not only the appropriateness of the tools they use for mutation rate estimation
and the assumptions implicitely made by using these tools, but also the pertinence of the variable
they choose to report.

Materials and Methods
Experimental setup
Our mutagenesis protocol is directly inspired by the one used by Kohanski and collaborators [28]
(which is in turn similar to that of Luria and Delbrück [33]) with the inclusion of a segregative
plasmid to compute death rate, as explained further below. A culture of Escherichia coli MG1655
(with plasmid pAM34) is inoculated from a freezer stock and grown overnight in LB supplemented
with 0.1mM IPTG and 100ug/mL of ampicillin (to ensure maintenance of pAM34). After the
culture reaches stationary phase (at least 15 hours of growth), it is washed 3 times in normal saline
(9g/L NaCl) to remove traces of IPTG, and then diluted 10,000 times in a 500mL baffled flask
containing 50mL of LB (to maximize oxygenation). After 3.5 hours of growth, the culture is inoc-
ulated at ratio 1/3 in 24 culture tubes containing a total volume of 1mL of LB supplemented with
one of the studied antimicrobials at sub-inhibitory concentration (3ug/mL kanamycin, 50ng/mL
norfloxacin, 1mM hydrogen peroxide, or untreated control). After 24h of growth at 37oC, the

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 24, 2017. ; https://doi.org/10.1101/224675doi: bioRxiv preprint 

https://doi.org/10.1101/224675
http://creativecommons.org/licenses/by-nc-nd/4.0/


cultures are plated at appropriate dilutions on 3 different LB agar medium: LB only to count the
total number of bacteria (CFU), LB supplemented with 100ug/mL ampicillin + 0.1mM IPTG to
count the number of bacteria bearing a copy of the segregative plasmid, and LB supplemented
with 100ug/mL rifampicin to count the number of mutants toward the phenotype of interest. Ad-
ditionally to this 24h time point, cultures are also plated on LB and LB + ampicillin + IPTG at
intermediate time points (3h and 6h) to have a more accurate quantification of plasmid segregation
dynamics and thus a better time resolution for the estimation of death rate. The plates are incu-
bated between 15h and 24h for LB and LB ampicillin IPTG, and exactly 48h for LB rifampicin,
before counting colonies.

Measuring death using plasmid segregation
pAM34 is a colE1 derivative whose replication depends on a primer RNA put under the control
of the inducible promoter pLac [21]. Under the presence of 0.1 − 1mM IPTG (non-metabolisable
inducer of the lactose operon), the plasmid is stably maintained in every cell. When IPTG is
removed from the growth medium, the plasmid is not replicating anymore, or not as fast as
the cells divide, and thus is stochastically segregated at cell division. The decrease in plasmid
frequency between two time points then permits to compute the number of bacterial cell divisions
that occurred between these two time points. Combined with the change in population size, this
allows to compute average death rate and growth rate between these two time points.

pAM34 also carries a betalactamase. The number of plasmid-bearing bacteria can thus be
counted by plating an appropriate dilution of the culture on LB supplemented with 0.1mM IPTG
(to ensure maintenance of the plasmid within colonies founded by a plasmid-bearing cell) and
100ug/mL ampicillin (to only permit growth of colonies founded by a plasmid-bearing cell). The
total number of bacteria is determined by plating an appropriate dilution of the culture on LB.

Because mutational dynamics does not depend on time, we chose to compute relative death
rate (ratio of death rate and growth rate as functions of time), which is the average number of
death events per division event.

The link between plasmid segregation, death and number of divisions between two time points
can be expressed mathematically as follows.

If we have:

• F : the frequency of cells bearing at least a copy of the plasmid, measured by plating on LB
+ ampicillin + IPTG

• N : the total number of cells, measured by plating on LB

• res: the rate of residual replication of the plasmid relative to the division rate in absence of
IPTG

• g: the number of generations, i. e. the average number of duplications each genome present
at final time did undergo

• d: the relative death rate (temporal death rate divided by temporal division rate)

The plasmid is diluted/segregated at each division following the equation

Ffinal = Finitial ∗ (1 + res

2 )g

So we can estimate
g = log2(Ffinal/Finitial)/log2(1 + res

2 )

Without any death, we would have

gno−death = log2(Nfinal/Ninitial)

The difference between the true number of generations g computed from plasmid frequency and
this number of generations gno−death computed based on the assumption that there is no death,
permits to estimate relative death rate:

Nfinal = Ninitial ∗ 2(1−d)∗g

This yields
d = 1 − log2(Nfinal/Ninitial)

g
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and thus
d = 1 − log2(Nfinal/Ninitial)

log2(Ffinal/Finitial)
∗ log2(1 + res

2 )

The only remaining free parameter to estimate is res, which is estimated by performing growth
kinetics without antibiotic treatment (in LB medium) and thus without (or with negligible) death.
We then have

g = gno−death

and thus
log2(1 + res

2 ) = log2(Ffinal/Finitial)
log2(Nfinal/Ninitial)

from which we can fit the value of the segregation parameter log2( 1+res
2 ) based on the values of F

and N estimated by plating.

Computing mutation rate taking death into account
Most modern measures of mutation rate rely on the same standard protocol, the fluctuation test
[19], directly inspired by the Luria and Delbrück experiment [33]: several cultures are inoculated
with a small population of non-mutant bacteria, are grown overnight and then plated on selective
media (to count the number of mutants in the final population) and on non-selective media (to
count the total number of bacteria in the final population). The number of mutants r in the final
population (or rather its distribution over several replicate populations) is used to estimate the
number m of mutational events happening during growth. One should note that these two numbers
are not equivalent, because one mutational event can lead to several mutants in the final population
if it happens early during growth, making this part of the computation complicated for intuition
although good mathematical tools are available. The total number of bacteria N is assumed to be
very close to the number of cell divisions (and thus the number of genome replications) because
the initial number of bacteria is much smaller. Mutation rate can thus be estimated as µ = m/N .

The many existing software packages used to compute m from the observed distribution of
r use an analytical expression of the probability generating function (pgf) of the number of mu-
tants in the final population [30]. The only free parameter is the number of mutational events
(equivalent to the value of the mutation rate per division when scaled with population size). This
parameter is estimated from plating data using the maximum likelihood principle. The most used
implementation of this idea is FALCOR (Fluctuation AnaLysis CalculatOR) [26], available on a
webpage http://www.keshavsingh.org/protocols/FALCOR.html.

Other software packages implementing the same ideas have been developed more recently,
including for example (r)Salvador [59] and bzRates [22], which also implement a few alternative
assumptions such as fitness impact (cost or benefit) of the focal mutation, or a more accurate
correction for plating efficiency than the one suggested by FALCOR [58].

However to this day, no available software permits to compute mutation rate when there is
death. Some papers derived analytical expression of the pgf of the number of mutants in the final
population in conditions where there is death [57], but this has to our knowledge never been applied
to real data nor implemented in a software package. In theory such computations could easily be
implemented in a tool similar to FALCOR (web server) or rSalvador (software package). However
the basic assumption of the derived formula is that death rate is constant. This assumption is the
price to pay for an analytical expression for the pgf, and is unfortunately not appropriate in our case
given the observed death kinetics (see figure 3). On the other hand, given the computational power
available today, we believe that analytical computations are not always necessary. In our case, while
the measured population dynamics do not allow to derive an analytical expression of the pgf, it
is straightforward to simulate many times such population dynamics with an arbitrary mutation
rate, and to obtain an empirical distribution of the number of mutants. Running these simulations
for any possible value of the mutation rate parameter then permits Bayesian inference: we look for
the simulated mutation rate that gives the closest distribution to the one experimentally observed.
Such methods are classically referred to as Approximate Bayesian Computing. We implemented
such simulations in a Python program, and use this software as the heart of our data analysis.
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