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 Deep-coverage whole genome sequencing at the population level is now feasible and 47	

offers potential advantages for locus discovery, particularly in the analysis rare mutations 48	

in non-coding regions. Here, we performed whole genome sequencing in 16,324 49	

participants from four ancestries at mean depth >29X and analyzed correlations of 50	

genotypes with four quantitative traits – plasma levels of total cholesterol, low-density 51	

lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, and triglycerides. We 52	

conducted a discovery analysis including common or rare variants in coding as well as non-53	

coding regions and developed a framework to interpret genome sequence for dyslipidemia 54	

risk. Common variant association yielded loci previously described with the exception of a 55	

few variants not captured earlier by arrays or imputation. In coding sequence, rare variant 56	

association yielded known Mendelian dyslipidemia genes and, in non-coding sequence, we 57	

detected no rare variant association signals after application of four approaches to 58	

aggregate variants in non-coding regions. We developed a new, genome-wide polygenic 59	

score for LDL-C and observed that a high polygenic score conferred similar effect size to a 60	

monogenic mutation (~30 mg/dl higher LDL-C for each); however, among those with 61	

extremely high LDL-C, a high polygenic score was considerably more prevalent than a 62	

monogenic mutation (23% versus 2% of participants, respectively).  63	
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 Plasma lipids, including total cholesterol, low-density lipoprotein cholesterol (LDL-C), 64	

high-density lipoprotein cholesterol (HDL-C), and triglycerides, are heritable risk factors for 65	

atherosclerotic cardiovascular disease.1,2 Understanding the inherited basis for plasma lipid 66	

levels has led to new treatments and to tests to identify individuals at risk for disease. Advances 67	

in technologies to characterize DNA sequence variants (i.e., Sanger sequencing, genotyping 68	

arrays, exome sequencing) have progressively allowed us to solve monogenic forms of 69	

dyslipidemia and to uncover common DNA sequence variants as well as rare mutations that 70	

contribute to plasma lipid levels in the population. However, due to the inherent limitations of 71	

genotyping arrays and exome sequencing, the non-coding regions of the genome remains 72	

incompletely characterized, particularly for rare mutations. In addition, the relative contributions 73	

of common DNA sequence variants and rare coding mutations to extreme lipid values has not 74	

been delineated. 75	

 It is now possible to directly enumerate the whole genome sequences (WGS) of large 76	

number of individuals. When performed at sufficient depth of coverage (>20-fold coverage per 77	

base), WGS can detect single nucleotide polymorphisms, insertions, and deletions across the 78	

allele frequency spectrum in both non-coding and coding regions. These advances allow us to 79	

test the incremental value of WGS as a tool for locus discovery and also develop a framework to 80	

understand why a specific individual might have an extreme lipid value. Towards these two 81	

goals, we studied whole genome sequences in 16,324 participants of European, African, East 82	

Asian, and Hispanic ancestries with available plasma lipids phenotypes. 83	

 84	

Deep-coverage whole genome sequencing of 16,324 participants 85	

 86	
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Participants of the Framingham Heart Study (FHS), Old Order Amish (OOA), Jackson Heart 87	

Study (JHS), Multi-Ethnic Study of Atherosclerosis (MESA), FINRISK Study (FIN), and 88	

Estonian Biobank (EST) underwent WGS (Fig. 1). Following quality control (Supplementary 89	

Table 1), 16,324 with plasma lipids available were included in analysis (Supplementary Table 90	

2). The mean (standard deviation) age was 51 (15) years and 8,669 (53%) were women. 5,911 91	

(36%) of participants were of non-European ancestry (Supplementary Table 2, Supplementary 92	

Fig. 1A-C. The proportion of individuals on lipid-lowering medications was low (9%).  93	

 WGS target coverage was >30X for FHS, OOA, JHS, and MESA (as a part of the 94	

NIH/NHLBI Trans-Omics for Precision Medicine (TOPMed) research program) and was >20X 95	

for EST and FIN (Supplementary Fig. 2). The mean (standard deviation, SD) attained coverage 96	

for >30X target samples was 37.1(5.4)X and for >20X target was 29.8(5.4)X.  97	

After performing quality control, a total of 189 million unique variants were discovered 98	

across all datasets. Total variant count characteristics varied by cohort due to sample sizes, 99	

relatedness, ethnicity, and population history (Fig. 2). As expected, the MESA cohort, of largely 100	

unrelated individuals of four diverse ethnicities, had the most variants per individual while the 101	

OOA cohort, a founder population of European ancestry, had the fewest variants per individual 102	

(Supplementary Table 3). The median number of variants per individual was 3,391,000, of 103	

which on average 4,878 were observed in only a single individual. 104	

 105	

Common variant association study 106	

We first analyzed common variants, i.e., those that occur often enough that it is practical to test 107	

each variant individually. We considered variants that had MAF > 0.1% within at least one of the 108	

three WGS variant callsets (minor allele count >16 for a callset that included FHS/OOA/JHS, >9 109	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2017. ; https://doi.org/10.1101/224378doi: bioRxiv preprint 

https://doi.org/10.1101/224378
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

for MESA, and >6 for FIN and EST) (Fig. 1). We associated such variants with each of the four 110	

plasma lipids within each callset and performed inverse-variance weighted meta-analysis. 111	

Overall, 32,086,348 variants were included in this analysis. Systemic inflation was not observed 112	

(Supplementary Table 4 and Supplementary Fig. 3A-D). We used a conventional statistical 113	

threshold for genome-wide significance (alpha = 5 x 10-8)3 (Supplementary Fig. 3E-H). We 114	

observed 592, 697, 447, and 522 variants associated with total cholesterol, LDL-C, HDL-C, and 115	

triglycerides, respectively (Supplementary Table 5).  116	

These variants were distributed at 10, 7, 13, and 9 loci previously associated with total 117	

cholesterol, LDL-C, HDL-C, and triglycerides, respectively, and 5 at putative novel lipid loci 118	

(Supplementary Table 6).4-7 Of the variants at known loci, 12 (38.7%) were lead variants in 119	

prior associations, 8 (25.8%) new lead variants were in high linkage disequilibrium (LD) (r2 > 120	

0.8) with prior lead variants, and the remaining 11 (35.5%) new lead variants were in low LD 121	

with prior lead variants.   122	

 At a conventional alpha threshold of 5 x 10-8, we discovered 5 associations at putative 123	

novel lipid loci (Supplementary Table 6). For example, rs3215707 (MAF 2.0%), a 1-bp 124	

deletion at 9p24.1, was associated with HDL-C (+3.3 mg/dL, P = 1.3 x 10-8). rs3215707 occurs 125	

within an intron of PLGRKT and overlies active promoter and strong enhancer histone 126	

modification signals for hepG2 cells (Supplementary Fig. 4). The deletion is not in LD with 127	

SNPs and thus the association was not detectable by prior genome-wide association analyses. 128	

Within each callset, estimated effects were consistent (heterogeneity P = 0.53) and all 129	

demonstrated at least nominal association (P < 0.05) (Supplementary Table 7). 130	

We performed iterative conditional analyses to identify distinct independent associations 131	

among 16 loci jointly reaching P < 5x10-8 for LDL-C, HDL-C, and triglycerides. While only 4 132	
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(25%) loci displayed evidence of allelic heterogeneity at P < 5x10-8, 13 (81.3%) had at least 133	

moderate evidence (P < 1x10-4) of allelic heterogeneity (Supplementary Table 8). Through 134	

conditional analyses for LDL-C, we identified a low-frequency haplotype specific to African 135	

Americans (MAF 0.1% FHS, 0% OOA, 1.0% JHS,) including variants in LD (r2 > 0.8) at a 136	

transcriptional transition region within the first intron of LDLR (rs17242843), LDLR promoter 137	

(rs17249141), and enhancer 4kb upstream from the LDLR transcription start site (rs114197570) 138	

(Supplementary Fig. 5, Supplementary Fig. 6). Presence of these variants resulted in a 28 139	

mg/dL lowering of LDL cholesterol (P = 2x10-11), indicating a gain-of-function effect on LDLR 140	

(Supplementary Fig. 7). 141	

 142	

Rare variant association study of coding variants 143	

Rare variants occur too infrequently to allow association tests of individual variants and thus, 144	

require aggregating rare variants into sets and testing quantitative trait distribution among 145	

carriers of a set versus non-carriers.8 We aggregated coding sequence variants within each gene 146	

that were predicted to lead to loss of function (e.g. nonsense, canonical splice-site, or frameshift) 147	

or annotated as “disruptive” by the ensemble MetaSVM9 in silico approach. The median 148	

[interquartile range] combined MAF per gene was 0.25% [0.090-0.69%] (Supplementary Fig. 149	

8). To account for known bidirectional effects of disruptive mutations in some Mendelian 150	

dyslipidemia genes, we accordingly used a mixed model sequence kernel association test 151	

(SKAT).10,11 Five genes associated with lipids at an exome-wide level (alpha = 0.05 / ~20,000 152	

protein-coding genes = 2.5 x 10-6) (LDLR, PCSK9, and APOE for LDL-C, LCAT for HDL-C, 153	

and APOC3 for triglycerides). Each has been previously established as a cause of Mendelian 154	

forms of dyslipidemia (Supplementary Table 9). 155	
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 156	

Rare variant association study of non-coding variants 157	

Next, we sought to determine whether rare variants in non-coding regions associate with plasma 158	

lipids. We used four approaches to aggregate rare, non-coding variants. (Fig. 3). First, we 159	

aggregated variants within “sliding windows” of 3kb in length.12,13 Second, we connected a non-160	

coding variant to a gene if it resided in a segment annotated as an enhancer (and within 20kb of a 161	

gene) or a region annotated as a promoter (and within 5kb of the transcription start site of a gene, 162	

TSS). Third, using gene expression information we connected a non-coding variant to a gene if it 163	

resided in a region annotated as an enhancer. Finally, we connected a non-coding variant to a 164	

gene based on a model which predicted gene-enhancer pairs using a chromatin-state model that 165	

we previously developed.14 Regulatory annotations were derived from the ENCODE and NIH 166	

Roadmap projects for two cell types - HepG2 and adipose nuclei - relevant to lipoprotein 167	

metabolism. For these analyses, we consider a P < 0.05 / 254,032 groups = 2.0x10-7 as significant 168	

(Supplementary Table 10, Supplementary Table 11). 169	

Using the sliding window approach, we observed suggestive associations for 3kb 170	

windows at the CETP (start chr16:56667000) locus (minimum P = 4x10-6) and at the APOA1-171	

APOC3 (start chr11:117094500) locus (minimum P = 8x10-6) with HDL-C. 17.6% of non-172	

coding sliding windows occurring within 1Mb of known lead lipid variants were at least 173	

nominally (P < 0.05) associated with lipids versus 4.4% in other regions of the genome across all 174	

traits (P difference = 8 x 10-272). 175	

An aggregation of rare non-coding variants at only two genes - LDLR and APOE - 176	

associated with LDL-C and total cholesterol (P < 2x10-7) (Supplementary Fig. 9) 177	

(Supplementary Table 12). The strongest LDLR signal (P = 9.7x10-11) was seen for an analysis 178	
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that connected enhancers and promoters to a gene based on physical proximity (approach #2 179	

above). Closer inspection of the specific variants shows that this signal is driven by the low-180	

frequency haplotype specific to African Americans that was described earlier (Supplementary 181	

Fig. 10) (Supplementary Table 12). The strongest APOE signal (P = 8.1x10-26) was observed in 182	

the model connecting enhancers to a gene by gene expression (approach #3 above). Accounting 183	

for the strongest common variant association at the locus (rs7412, the APOE e2 isoform allele), 184	

this signal attenuates to non-significance (P = 1.8x10-2), suggesting that the non-coding variants 185	

are driven by the APOE e2 isoform. Beyond these two results, we found no additional signals for 186	

a burden of non-coding variants. 187	

 188	

Contribution of monogenic and polygenic models to extreme LDL-C values  189	

With the availability of sequence in both coding and non-coding regions in the same samples, we 190	

estimated the simultaneous contribution of monogenic and polygenic determinants to extreme 191	

LDL-C in individuals of European (EA) and African (AA) ancestry. We defined ‘extreme’ as the 192	

top or bottom 5th ancestry-specific percentile of LDL-C. Analyses were conducted in FHS and 193	

MESA-EA subjects (extremes defined as LDL-C >183 mg/dl or LDL-C <72.9 mg/dl) and JHS 194	

and MESA-AA subjects (extremes defined as LDL-C >198.6 mg/dl or LDL-C <71 mg/dl), 195	

separately.  196	

Among participants with extremely high LDL-C, we searched for mutations in any of six 197	

Mendelian genes previously linked to high LDL-C (LDLR, APOB, PCSK9, ABCG5, ABCG8, and 198	

LDLRAP1) (Supplementary Table 13).  199	

To determine polygenic contribution, we implemented a systematic approach to derive, 200	

test, and validate a new ‘genome-wide’ polygenic score for LDL-C using mutually independent 201	
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datasets. A polygenic score provides a quantitative assessment of the cumulative risk associated 202	

with multiple common risk alleles for each individual. Scores for each individual participant are 203	

created by adding up the number of risk alleles at each variant and then multiplying the sum by 204	

the literature-based effect size.  205	

We derived a genome-wide polygenic score based on the association statistics of all 206	

available common (MAF ≥ 0.01) SNPs with LDL-C, as determined by our previously published 207	

genome-wide association study.7  The correlation between the variants was assessed using the 208	

European reference population from the 1000 Genomes study.17 The LDPred computational 209	

algorithm was then used to construct genome-wide polygenic scores.15 This Bayesian approach 210	

calculates a posterior mean effect size for each variant based on a prior (association with LDL-C 211	

in a previously published study) and subsequent shrinkage based on the extent to which this 212	

variant is correlated with similarly associated variants in a reference population. The underlying 213	

Gaussian distribution additionally considers the fraction of causal (e.g. non-zero effect sizes) 214	

markers. Because this fraction is unknown for any given disease, LDpred uses a range of 215	

plausible values to construct different polygenic scores. We also applied various r2 and p-value 216	

thresholds to the previously published results. As a comparison to the expanded polygenic 217	

scores, we generated an additional polygenic score restricted to lead variants (P < 5x10-8) at 218	

distinct genomic loci, weighted by discovery beta (restricted score). The best score was 219	

determined based on maximal model fit (R2) from a linear regression models in a health-care 220	

biobank of 25,534 unrelated individuals (Nord-Trøndelag Health Study, HUNT)16 221	

(Supplementary Table 14).  222	

For LDL-C, a genome-wide polygenic score incorporating 2 million single nucleotide 223	

polymorphisms with LDpred provided the best model fit (Supplementary Table 15). We 224	
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applied this polygenic score separately within the WGS samples in FHS, JHS, and MESA. We 225	

labelled individuals as high polygenic score if they fell in the top 5th percentile of race-specific 226	

scores (Table 1).  227	

Among EA participants, a monogenic mutation was associated with an odds ratio of 228	

10.92 (95% CI 3.71-32.14) for extremely high LDL-C whereas a high polygenic score associated 229	

with an odds ratio of 7.65 (95% CI 5.56-10.52). In EA individuals, those who carried a 230	

monogenic mutation had 30 mg/dl higher LDL-C (when compared with non-carriers; P = 2.1x10-231	

4) and those who had a high polygenic score had 33 mg/dl greater LDL-C (when compared with 232	

all others; P = 1.7x10-57). Of 287 EA participants with extremely high LDL-C, 2% carried a 233	

monogenic mutation and 23% had a high polygenic score.   234	

Among AA participants, a monogenic mutation was associated with an odds ratio of 7.43 235	

(95% CI 3.01-18.35) for extremely high LDL-C whereas a high polygenic score associated with 236	

an odds ratio of 3.2 (95% CI 2.1-4.89). In AA individuals, those who carried a monogenic 237	

mutation had 41 mg/dl higher LDL-C (when compared with non-carriers; p = 2.3x10-7) and those 238	

who had a high polygenic score had 17 mg/dl greater LDL-C (when compared with all others; P 239	

= 6.4x10-10). Of 217 AA participants with extremely high LDL-C, 3% carried a monogenic 240	

mutation and 13% had a high polygenic score.   241	

We replicated the association between a high polygenic score and extremely high LDL-C 242	

in an independent sample, the ARIC cohort. Among ARIC-EA individuals, a high polygenic 243	

score was associated with an odds ratio of 7.35 (95% CI 5.95-9.10; P < 2x10-16) for extremely 244	

high LDL-C and 42.8 mg/dl (95% CI 40.0-47.5; P < 2x10-16) higher LDL-C compared with 245	

individuals without a high polygenic score. Among ARIC-AA participants, a high polygenic 246	

score was associated with an odds ratio of 2.7 (95% CI 1.77-4.09; P < 3.3x10-6) for extremely 247	
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high LDL-C and a 23.2 mg/dl (95% CI 15.0-31.5; P = 3.8x10-8) higher LDL-C compared with 248	

individuals without a high polygenic score. 249	

We analyzed the monogenic and polygenic contribution to extremely low LDL-C in EA 250	

and AA participants and found similar patterns where monogenic mutations as well as a 251	

polygenic score conferred similar effect sizes (Table 1). 252	

 253	

Discussion  254	

 Here, we performed whole genome sequencing in 16,342 ethnically diverse individuals 255	

and analyzed the incremental value of WGS for locus discovery and for clinical interpretation. 256	

We replicated associations for 28 common variant loci previously associated with lipids in much 257	

larger genome-wide association analyses. We identified an association for a low frequency 1-bp 258	

deletion at 9p24.1 with HDL-C. While we replicated burden associations of rare coding 259	

mutations at known Mendelian lipid genes, we did not detect any burden associations of rare 260	

non-coding mutations through four different approaches. Lastly, we developed a new genome-261	

wide polygenic score and showed that such a score confers an effect size on LDL-C similar to 262	

carrying a monogenic mutation, but is also notable for a much greater frequency. 263	

 These results permit several conclusions. Using whole genome sequencing as a discovery 264	

tool, the incremental yield of new loci was modest. In particular, despite a genome-wide search 265	

using four different aggregation approaches and regulatory annotations from two relevant tissues, 266	

we identified no burden-of-rare-variant signals in non-coding regions. Mutation target size and 267	

natural selection pressure is smaller in non-coding regions when compared with coding regions; 268	

based on these considerations, power calculations have suggested that sample sizes may need to 269	

considerably larger to identify rare variant burden associations in non-coding regions.8  270	
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 Of great interest, we observed that the relative contribution of polygenic score to 271	

extremely high LDL-C is considerably greater than monogenic mutations. For example, in EA 272	

individuals, both high polygenic score and a monogenic mutation confer similar effects (~30 273	

mg/dl higher LDL-C) but a high polygenic score in present in 23% of participants with 274	

extremely high LDL-C whereas a monogenic mutation is present in only 2%. In most individuals 275	

who carry diagnosis of familial hypercholesterolemia, no monogenic mutation is identified with 276	

clinical exome sequencing17,18; for a large fraction of these ‘mutation-negative’ familial 277	

hypercholesterolemia, high polygenic scores may be operative. 278	

Important caveats and limitations should be considered. First, appropriate definitions of 279	

statistical significance for WGS association analyses have not been harmonized in the field. The 280	

convention of alpha=5x10-8 comes from the assumption of performing 1,000,000 independent 281	

tests. Based on our findings and simulations from others3, 10-9 may be more appropriate for 282	

analyses across diverse ethnicities to allele frequency 0.1%. Second, power is somewhat 283	

diminished with our rare variant meta-analysis approach to combine P values with Fisher’s 284	

method. Given known diverse coding mutations within Mendelian genes with bidirectional 285	

effects and the inability to assume unidirectional effects within the non-coding space, we 286	

employed a SKAT statistical framework. Prior approaches leveraging covariance matrices for 287	

SKAT meta-analysis were computationally inefficient for the dataset and multiple grouping 288	

strategies.19,20 Thus, our approach is conservative. Third, the polygenic scores described here 289	

were derived from genome-wide association studies performed largely in EA ancestry 290	

participants.7  Because allele frequencies, linkage disequilibrium patterns, and effect sizes of 291	

common polymorphisms vary by ancestry, the predictive capacity of polygenic score was 292	

attenuated in non-European ancestry individuals.21. This is an important limitation for the field 293	
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that requires efforts to characterize common genomic variation influencing complex traits among 294	

non-Europeans. 295	

 In summary, we present a large-scale WGS analysis of plasma lipids in 16,324 ethnically 296	

diverse participants. Common, non-coding variants and rare, coding variants contribute to 297	

plasma lipid variation; however, association signals for rare, non-coding mutations were not 298	

detectable.  299	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2017. ; https://doi.org/10.1101/224378doi: bioRxiv preprint 

https://doi.org/10.1101/224378
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 14	

TABLES/FIGURES 300	

Fig 1. Schematic of genomic variant discovery and analyses. 301	

Variants were jointly discovered in three distinct sets: 1) FHS, JHS, and OOA; 2) MESA; and 3) 302	

EST and FIN. Cohorts included in analyses are denoted by color-coded icons. Allele frequency 303	

space assessed are indicated for analyses. 304	

EST = Estonia, FHS = Framingham Heart Study, FIN = Finland, JHS = Jackson Heart Study, 305	

MESA = Multi-Ethnic Study of Atherosclerosis, OOA = Old Order Amish 306	

 307	

Fig 2. Deep-coverage whole genome sequencing identifies genomic variation across the 308	

allelic spectrum. 309	

Variant counts by allele count/frequency bin within each of the cohorts. Variants were jointly 310	

discovered in three distinct sets: 1) FHS, JHS, and OOA; 2) MESA; and 3) EST and FIN. 311	

AC = allele count, EST = Estonia, FHS = Framingham Heart Study, FIN = Finland, JHS = 312	

Jackson Heart Study, MAF = minor allele frequency, MESA = Multi-Ethnic Study of 313	

Atherosclerosis, OOA = Old Order Amish 314	

 315	

Fig 3. Schematic of non-coding rare variant analyses. 316	

Four grouping schematics of rare non-coding variants (MAF < 1%). The sliding window 317	

approach tiles across the genome at fixed widths, only including variants overlying annotations 318	

consistent with enhancers, promoters, and DHS in non-exonic regions. All other approaches 319	

attempt to map non-coding putative functional genomic regions with discrete genes as the 320	

analytical unit. Overall, they are based on: 1) promoter, enhancer, and DHS annotations near a 321	
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gene’s transcription start site, 2) co-occurrence of enhancer and DHS annotations with HepG2 322	

gene expression, and 3) H3K27ac marks within Hi-C contact regions mapped to genes. 323	

DHS = DNase hypersensitivity site, MAF = minor allele frequency 324	

 325	

Table 1. Delineating the monogenic and polygenic contributions to extremely high or low 326	

LDL cholesterol concentrations. 327	

(a). Effect of monogenic mutation or polygenic score on odds for extremely high or low LDL-C. 328	

Values are represented as OR [95% CI] for association with given trait. (b). Effect of monogenic 329	

mutation or polygenic score on LDL-C in mg/dl. Values are represented as beta [95% CI] in 330	

mg/dl for LDL-C. Multi-variable associations were performed with sex + age + age2 (effects not 331	

listed) with monogenic carrier status + high polygenic score using logistic (a) and linear 332	

regression (b). Polygenic risk score was derived from 2 million variants using LDpred. High 333	

polygenic score was defined as membership in the top 5th percentile of the ancestry-specific 334	

score distribution.  EA, European American; AA, African American.   335	
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Fig 1. Schematic of genomic variant discovery and analyses. 336	

  337	
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Fig 2. Deep-coverage whole genome sequencing identifies genomic variation across the 338	

allelic spectrum. 339	

  340	
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Fig 3. Schematic of non-coding rare variant analyses. 341	
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Table 1. Delineating the monogenic and polygenic contributions to extreme LDL 343	

cholesterol concentrations. 344	

(a). Effect of monogenic mutation or polygenic score on odds for extremely high or low LDL-C  345	

Extremely High LDL-C 

Ancestry Ntotal Nextreme 
Monogenic 

carrier 
(Nextreme) 

High 
polygenic 

score 
(Nextreme) 

Monogenic 
carrier 

OR 
(95% CI) 

Monogenic 
carrier 
p-value 

Monogenic 
carrier 

PAF 

High 
polygenic 

score 
OR 

(95% CI) 

High 
polygenic 

score  
p-value 

 

Top 5th 
percentile 

of 
Polygenic 

score 
PAF 

EA 5910 284 5 64 10.92 
(3.71,32.14) 1.4x10-5 1.60 7.65 

(5.56,10.52) 5.7x10-36 19.6 

AA 4380 217 7 29 7.43 
(3.01,18.35) 1.4x10-5 2.79 3.2 

(2.1,4.89) 6.7x10-8 9.2 

Extremely Low LDL-C 

Ancestry Ntotal Nextreme 
Monogenic 

carrier 
(Nextreme) 

Low 
polygenic 

score 
(Nextreme) 

Monogenic 
carrier 

OR 
(95% CI) 

Monogenic 
carrier 
p-value 

Monogenic 
carrier 

PAF 

Low 
polygenic 

score 
OR 

(95% CI) 

Low 
polygenic 

score 
p-value 

Bottom 5th 
percentile 

of 
Polygenic 

score 
PAF 

EA 5910 286 6 82 21.73 
(6.2,76.15) 1.5x10-6 2.00 10.38 

(7.69,14.02) 1.5x10-52 25.9 

AA 4380 218 11 32 13.83 
(6.25,30.62) 9.4x10-11 4.68 3.7 

(2.46,5.58) 3.9x10-10 10.7 

 346	
(b). Effect of monogenic mutation or polygenic score on LDL-C in mg/dl 347	
 348	

Monogenic mutation or high polygenic score 
Ancestry Ntotal Monogenic 

carrier 
(N) 

High 
Polygenic 

score 
(N) 

 

Monogenic 
carrier 

Beta mg/dl 
 

Monogenic 
carrier 

SE 
 

Monogenic 
carrier 
p-value 

 

High 
Polygenic 

score 
Beta mg/dl 

 

High 
Polygenic 

score 
SE 

 

High 
Polygenic 

score 
p-value 

 
EA 5910 18 297 29.98 8.07 2.1x10-4 33.07 2.05 1.7x10-57 
AA 4380 25 220 41.05 7.93 2.3x10-7 16.96 2.74 6.4x10-10 

 
Monogenic mutation or low polygenic score 
Ancestry Ntotal Monogenic 

carrier 
(N) 

Low 
Polygenic 

score 
 

(N) 

Monogenic 
carrier 

Beta mg/dl 
 

Monogenic 
carrier 

SE 
 

Monogenic 
carrier 
p-value 

 

Low 
polygenic 

score 
Beta mg/dl 

 

Low 
polygenic 

score 
SE 

 

Low 
polygenic 

score 
p-value 

 
EA 5910 12 297 -47.25 9.55 7.7x10-7 -35.00 2.00 7.9x10-67 
AA 4380 28 220 -41.41 7.47 3.1x10-8 -20.41 2.74 1.1x10-13 

 349	
  350	
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METHODS 397	

Study participants 398	

Please refer to Supplementary Text for study participant details. 399	

Whole genome sequencing, variant calling, and genotyping 400	

 Sequencing was performed at one of four sequencing centers, with all members within a 401	

cohort sequenced at the same center. For the TOPMED phase 1 data, 4,148 FHS individuals and 402	

1,095 OOA individuals were sequenced at the Broad Institute of Harvard and MIT (Cambridge, 403	

MA), while 3,266 JHS individuals were sequenced at University of Washington Northwest 404	

Genomics Center (Seattle, WA). 4,601 MESA individuals were additionally sequenced at the 405	

Broad Institute of Harvard and MIT as part of TOPMED Phase 2.  1,180 Finnish FINRISK 406	

individuals and 2,281 Estonian Biobank participants were sequenced at the Broad Institute of 407	

Harvard and MIT (Cambridge, MA). 408	

TOPMED phase 1 BAM files provided by the sequencing centers were harmonized by 409	

the TOPMed Informatics Research Center (IRC) before joint variant discovery and genotype 410	

calling across studies. In brief, sequence data were received from each sequencing center in the 411	

form of bam files mapped to the 1000 Genomes hs37d5 build 37 decoy reference sequence.  412	

Processing was coordinated and managed by the ‘GotCloud’ processing pipeline.22 413	

The two sequence quality criteria were used in order to pass sequence data on for joint 414	

variant discovery and genotyping are: estimated DNA sample contamination below 3%, and 415	

fraction of the genome covered at least 10x 95% or above. DNA sample contamination was 416	

estimated from the sequencing center read mapping using software verifyBamId.23  417	

The genotype call sets used for analysis are from “freeze 3a” of the variant calling 418	

pipeline performed by the TOPMed Informatics Research Center (Center for Statistical Genetics, 419	
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University of Michigan, Hyun Min Kang, Tom Blackwell and Goncalo Abecasis). The software 420	

tools used in this version of the pipeline are available in the following repository:  421	

https://github.com/statgen/topmed_freeze3_calling. Variant detection from each sequenced (and 422	

aligned) genome is performed by vt discover2 software tool.24 The variant calling software tools 423	

are under active development; updated versions can be accessed at http://github.com/atks/vt or 424	

http://github.com/hyunminkang/apigenome. 425	

WGS for MESA, FINRISK, and the Estonian Biobank was performed using the Illumina 426	

HiSeqX platform at the Broad Institute of Harvard and MIT (Cambridge, MA). DNA samples 427	

are informatically received into the Genomics Platform's Laboratory Information Management 428	

System via a scan of the tube barcodes using a Biosero flatbed scanner. All samples are then 429	

weighed on a BioMicro Lab's XL20 to determine the volume of DNA present in sample tubes. 430	

Following this the samples are quantified in a process that uses PICO-green flourescent dye. 431	

Once volumes and concentrations are determined the samples are then handed off to the Sample 432	

Retrieval and Storage Team for storage in a locked and monitored -20Co walk-in freezer. 433	

Libraries were constructed and sequenced on the Illumina HiSeqX with the use of 151-bp 434	

paired-end reads for WGS and output was processed by Picard to generate aligned BAM files (to 435	

hg19).25,26 Samples were tracked by automated LIMS messaging. Samples were fragmented with 436	

acoustic shearing and libraries were prepared with a KAPA Biosystems kit. Libraries were 437	

normalized to 1.7 nM. Cluster amplication was performed using Illumina cBot and flowcells 438	

were sequenced in HiSeq X. Variants were discovered using the Geome Analysis Tookit 439	

(GATK) v3 HaplotypeCaller according to Best Practices.27 Variants from MESA samples were 440	

were generated in one callset. Finland and Estonia samples were jointly called in a separate 441	

callset. 442	
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Whole genome sequence quality control 443	

The following three approaches were used by the TOPMed Genetic Analysis Center to 444	

identify and resolve sample identity issues: (1) concordance between annotated sex and 445	

biological sex inferred from the WGS data, (2) concordance between prior SNP array genotypes 446	

and WGS-derived genotypes, and (3) comparisons of observed and expected relatedness from 447	

pedigrees. 448	

 The variant filtering in TOPMed Freeze 3 were performed by (1) first calculating 449	

Mendelian consistency scores using known familial relatedness and duplicates, and (2) training 450	

SVM classifier between the known variant sites (positive labels) and the Mendelian inconsistent 451	

variants (negative labels). Two additional hard filters were applied: (1) Excess heterozygosity 452	

filter (EXHET), if the Hardy-Weinberg disequilbrium p-value was less than 1x10-6 in the 453	

direction of excess heterozygosity. An additional ~3,900 variants were filtered out by this filter, 454	

and (2) Mendelian discordance filter (DISC), with 3 or more Mendelian inconsistencies or 455	

duplicate discordances observed from the samples. An additional ~370,000 variants were filtered 456	

out by this filter.  Functional annotation for each variant was provided in the INFO field using 457	

snpEff 4.1 with a GRCh37.75 database.28  Analysis used hard-call genotypes, without genotype 458	

likelihoods. Genotypes with a depth < 10 were excluded. 459	

 Additional measures for quality control of TOPMed Phase I Freeze 3 and quality control 460	

for MESA, Finland, and Estonia were performed using the Hail software package.29 Samples 461	

were filtered by contamination (>3.0% for all, except >5.0% for Finland and Estonia), chimeras 462	

>5%, GC dropout >4, raw coverage (<30X for all, except <19X for Finland and Estonia), 463	

indeterminant genotypic sex or genotypic/phenotypic sex mismatch. 464	
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 Variants for MESA, Finland, and Estonia were initially filtered by GATK Variant 465	

Quality Score Recalibration. Additionally, genotypes with GQ<20, DP<10 or >200, and poor 466	

allele balance (homozygous with <0.90 supportive reads or heterozygous with <0.20 supportive 467	

reads) were removed. And variants within low complexity regions were removed across all 468	

samples.30 Variants with >5% missing calls, quality by depth <2 (SNPs) or <3 (indels), 469	

InbreedingCoeff <-0.3, and pHWE <1x10-9 (within each cohort) were filtered out. 470	

Annotation 471	

 Variants were annotated with Hail using annotations from Ensembl’s Variant Effect 472	

Predictor31 for protein-coding annotations and Reg2Map HoneyBadger2-intersect for regulatory 473	

annotations at DNase I regions –log10(P) >= 10 474	

(https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/). 475	

Traits 476	

 Conventionally measured plasma lipids, including total cholesterol, LDL-C, HDL-C, and 477	

triglycerides, were included for analysis. LDL-C was either calculated by the Friedwald equation 478	

when triglycerides were <400 mg/dl or directly measured. Given the average effect of statins, 479	

when statins were present, total cholesterol was adjusted by dividing by 0.8 and LDL-C by 480	

dividing by 0.7, as previously done.32 Triglycerides were natural log transformed for analysis. 481	

Single variant association analysis 482	

 Single variant analysis was performed in EPACTS with Efficient Mixed-Model 483	

Association eXpedited (EMMAX) for associating each variant site with each lipid outcome 484	

within each jointly called variant call file (VCF).10 The results were meta-analyzed for each trait 485	

using the METAL software. All analyses were adjusted for age, age2, sex, cohort, and an 486	

empirically derived kinship matrix to account for both familial and more distant relatedness. For 487	
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the TOPMed Phase I VCF, which included OOA, LDL-C and total cholesterol analyses were 488	

also adjusted for APOB p.R3527Q and triglycerides and HDL-C analyses were also adjusted for 489	

APOC3 p.R19Ter. To ensure robust results, we only performed single variant analysis for 490	

variants with a MAF > 0.1%. Variants were meta-analyzed across all three VCFs using 491	

METAL.33 Summary statistics only for variants with MAF > 0.1% for the given VCF were 492	

included in the meta-analysis. Statistical significance alpha of 5x10-8 was used for these 493	

analyses. 494	

 For loci with at least one variant with P<5x10-8 within the TOPMed Phase I VCF, 495	

iterative conditional association analysis was performed. Iterative conditioning was performed 496	

until P>1x10-4 was attained. 497	

Rare variant association analyses 498	

Coding 499	

 We first identified rare (MAF <1%) mutations for each VCF within coding sequences. 500	

After Variant Effect Predictor31 annotation, we identified loss-of-function (e.g. nonsense, 501	

canonical splice-site, and frameshift) and disruptive missense (by MetaSVM9).  502	

Sliding window 503	

 We also performed rare variant association tests within the non-coding space 504	

(Supplementary Figure 7). As before, we performed a “sliding window” approach aggregating 505	

3kb (overlapping by 1.5kb) windows and considering rare variants occurring within enhancer or 506	

promoter elements at DNase I hypersensitivity sites. 507	

Proximity to transcription start sites  508	

 For non-coding tests, we next attempted to link rare non-coding variants with genes for 509	

association testing using regulatory annotations for HepG2 and adipose nuclei from ENCODE 510	
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and NIH Roadmap. Given prior observations showing enrichment of functional promoter 511	

variants at LIPG with HDL-C extremes34, we similarly aggregated variants near transcription 512	

start sites (TSS). Prior studies have shown that approximately 80% of cis-eQTLs fall within 513	

100kb of TSS.35 To increase likelihood that of mapping regulatory variants to the nearest gene, 514	

we were more restrictive and included variants overlapping promoter sequences +/- 5kb and 515	

enhancer sequences +/- 20kb of TSS at DNase I hypersensitivity sites. 516	

Linking enhancers to genes by gene expression 517	

 We also linked chromatin state defined enhancers with genes using data from the 518	

Roadmap Epigenomics project36 and the method presented previously37 with a few small 519	

modifications.38 The method predicts links using chromatin state information, position of the 520	

enhancer relative to the TSS, and the correlation of multiple chromatin marks with gene 521	

expression across cell types. Here we used the correlation with gene expression of the signal of 522	

five chromatin marks: H3K27ac, H3K9ac, H3K4me1, H3K4me2, and DNaseI hypersensitivity. 523	

The gene expression data was the RPKM expression data for protein coding exons across 56 524	

reference epigenomes from the Roadmap Epigenomics project (available in the file 525	

57epigenomes.RPKM.pc from http://compbio.mit.edu/roadmap; Universal Human Reference 526	

was excluded). The chromatin mark signal was the -log10(P) tracks averaged to a 200-bp 527	

resolution. As input to our code we used the version of those tracks first averaged at 25-bp 528	

resolution using the ‘Convert’ command of ChromImpute.39 In computing correlation between a 529	

specific chromatin mark signal and gene expression we used the Pearson correlation and omitted 530	

from the calculation samples lacking both chromatin mark signal and gene expression data. We 531	

made predictions separately for each of the 127 reference epigenomes and locations assigned to 532	

chromatin states, 6_EnhG, 7_Enh, and 12_EnhBiv, of the 15-state core 5-marks ChromHMM 533	
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model.36,40 We restricted our predictions to chromatin state assignments on chr1-22 and chrX. 534	

We considered linking 200-bp bins within 1MB of a TSS of each gene as annotated in the file 535	

Ensembl_v65.Gencode_v10.ENSG.gene_info available from http://compbio.mit.edu/roadmap.36 536	

If a gene had multiple TSS, then we only used the outermost TSS.   537	

The method for linking is based on determining for each combination of cell type, 538	

chromatin state, and position relative to the TSS the estimated probability the set of correlations 539	

we observed would come from the actual data compared to randomized data. To this end we 540	

created a training set of actual observed correlations (positive examples) and correlations 541	

computed after randomizing which gene expression values were assigned to which genes 542	

(negative examples) separately for each combination of cell type, chromatin state, and position 543	

relative to the TSS. Each entry in the training set has five features corresponding to correlations 544	

for each of the considered chromatin marks. There is a positive and a corresponding negative 545	

entry for each instance of the specified chromatin state in the specified cell type at the specified 546	

position relative to the TSS or within 5kb of it (for smoothing purposes). We trained a logistic 547	

regression classifier to discriminate actual correlations with randomized correlations. We used 548	

the logistic regression library implemented in the Weka package version 3.7.3 with the 549	

regularization parameter set to 1.41 For considering linking a specific instance of a chromatin 550	

state assignment in a specific cell type and position relative to the TSS of a gene we applied the 551	

corresponding classifier. Let p denote the probability the classifier gives of being in the positive 552	

class of the actual observed correlations. We retained those links for which p/(1-p) was greater 553	

than or equal to 2.5. The method we used here is implemented in the code LinkingRM.java. For 554	

the analyses presented here we used those links for the primary enhancer state, 7_Enh.  555	

HiC/enhancer links to genes 556	
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To connect noncoding variants with putative target genes, we predicted functional gene-557	

enhancer pairs using a chromatin state-based model we previously developed.14  This model 558	

assumes that the impact of an enhancer on gene expression is determined by the product of its 559	

intrinsic “Activity” (for which we use quantitative DNase-Seq and H3K27ac ChIP-Seq levels as 560	

a proxy) and the “Contact Frequency” at which the enhancer physically encounters its target 561	

promoter in the nucleus (for which we use Hi-C data as a proxy). We previously found such an 562	

Activity by Contact (ABC) model accurately identifies enhancers whose perturbation leads to 563	

changes in gene expression in the human MYC locus14, and we have since found that the same 564	

model can identify enhancers across other gene loci and cell types (C. Fulco, E. Lander, and J. 565	

Engreitz, in preparation). We extended our previously published model to predict enhancer-gene 566	

connections in the liver, using DNase-Seq and H3K27ac ChIP-Seq data from a hepatocarcinoma 567	

cell line (HepG2) previously generated by the ENCODE project.42 To define putative regulatory 568	

elements, we expanded DNase-Seq peak calls from ENCODE by 500 bp on either side and 569	

merged overlapping peaks.14 For each element, we calculated Activity as a function of the 570	

normalized read count of H3K27ac and DNase-Seq. Because high-resolution Hi-C data is not 571	

available for HepG2 cells, we estimated the Contact probability between putative regulatory 572	

elements and genes using the average profile across deeply sequenced Hi-C libraries from 7 573	

different cell types43 as previously described14. For each putative enhancer-gene pair, we 574	

calculated an “ABC score” equal to the Activity × Contact of the putative enhancer normalized 575	

by the sum of Activity × Contact across all other putative elements within 5 Mb of the target 576	

gene. We tuned free parameters in this model (such as the relative weight of DNase-Seq and 577	

H3K27ac data and a pseudocount to add to Hi-C data) and chose a threshold cutoff using a set of 578	

experimentally measured enhancer-promoter connections in two cell types (C. Fulco, E. Lander, 579	
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and J. Engreitz, in preparation). This analysis defined, for each expressed gene, a set of elements 580	

predicted to regulate that gene in HepG2 cells. These sets of elements were used for gene-level 581	

variant burden tests. 582	

Statistical test 583	

We tested the association of the aggregate of the aforementioned groupings with each 584	

lipid trait using the mixed-model Sequence Kernal Association Test (SKAT) implementation in 585	

EPACTS to account for bidirectional effects.10 Analyses were adjusted for age, age2, sex, cohort, 586	

and empiric kinship. P values were meta-analyzed using Fisher’s method. Statistical significance 587	

for each gene-based test was 0.05 / 20,000 tests = 2.5x10-6. 588	

Lipid extremes analysis 589	

Traits 590	

 We first defined LDL-C extremes as the top and bottom ancestry-specific 5th percentiles 591	

from the data (LDL-C > 183 mg/dl or > 198.6 mg/dl for EA and AA, respectively; LDL-C < 72.9 592	

mg/dl or <71 mg/dl for EA and AA, respectively). 593	

Monogenic determinants 594	

 We catalogued mutations in Mendelian genes previously linked to extreme LDL-C 595	

(Supplementary Table 13). We included variants that were previously linked to Mendelian 596	

dyslipidemia in ClinVar (“pathogenic” or “likely pathogenic” with no “benign”) or loss-of-597	

function, and had an allele frequency <1% (autosomal dominant) or <10% (autosomal recessive). 598	

Genotypes were only considered based on expected inheritance pattern (autosomal dominant or 599	

autosomal recessive). 600	

Polygenic score derivation 601	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2017. ; https://doi.org/10.1101/224378doi: bioRxiv preprint 

https://doi.org/10.1101/224378
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 31	

 We evaluated three distinct approaches to generate weighted polygenic scores using prior 602	

genome-wide association analysis summary statistics7: 1) only lead variants at genome-wide 603	

significant loci, 2) varying P and linkage disequilibrium r2 thresholds (defined by 1000G CEU) 604	

using PLINK44, and 3) all variants but adjusting weights according to P and r2 (by 1000G CEU) 605	

with LDpred varying rho15. To minimize errors from strand flips, A/T and C/G SNPs were 606	

excluded. The scores were calculated as additive sums of risk allele counts for included SNPs 607	

multiplied by weights (discovery effect estimates for 1) and 2), or adjusted by LDpred for 3)). 608	

 Polygenic scores were generated within the HUNT cohort, the training set.16 Lipid values 609	

were extracted from the electronic health record; absence of lipid-lowering therapy was 610	

prioritized. For each trait, the model with the best fit, as measured by R2, was chosen to applying 611	

to the testing set, TOPMed samples.  612	

Statistical analysis 613	

 In a multivariable model, we associated likelihood of membership within the extreme tail 614	

of a trait with monogenic mutation carrier status, high (top 5th percentile) or low (bottom 5th 615	

percentile) polygenic score, age, age2, and sex, separately in European American (EA from FHS 616	

and MESA-EA) and African American (AA from JHS and MESA-AA) samples. We also ran 617	

linear regression models with continuous LDL-C and the independent variables listed above.  618	

  619	

 620	

  621	
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