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Abstract 

Studies of host-associated and environmental microbiomes often incorporate longitudinal 

sampling or paired samples in their experimental design. Longitudinal sampling provides 

valuable information about temporal trends and subject/population heterogeneity, offering 

advantages over cross-sectional and pre/post study designs. To support the needs of 

microbiome researchers performing longitudinal studies, we developed q2-longitudinal, a 

software plugin for the QIIME 2 microbiome analysis platform (https://qiime2.org). The q2-

longitudinal plugin incorporates multiple methods for analysis of longitudinal and paired-sample 

data, including paired differences and distances, linear mixed effects models, microbial 

interdependence test, first differencing, and volatility analyses. The q2-longitudinal package 

(https://github.com/qiime2/q2-longitudinal) is open source software released under a BSD-

3-Clause license and is freely available, including for commercial use.  
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Introduction 

Time is an important component in many microbiome studies. Sampling microbial communities 

repeatedly over time provides information on their development (1), their stability (2–4), or their 

response to and recovery from a treatment or disturbance (5–7). The frequency and scale of 

longitudinal sampling can range from pre-post studies, in which individual subjects are sampled 

before and after treatment, to long-term observation studies lasting months or years. Such 

studies benefit from the use of dynamic analytical methods, which evaluate trends over time in 

relation to one or more variables; paired methods, which evaluate the magnitude of change 

within individual subjects; and random effects models, which account for the variation inherent 

to complex biological systems (8). Cross-sectional studies that examine differences in the 

microbiome across environmental gradients (e.g., pH or temperature) can also benefit from 

many of the same techniques. 

Longitudinal study of microbiomes presents several unique challenges. Many microbiome 

datasets (e.g., marker-gene and shotgun metagenome sequences) are compositional (relative 

abundance) data, which violate the assumptions of some conventional statistical methods (9). 

Incorporating phylogenetic distance information into longitudinal analyses can deepen insight 

into relationships between the microbiome and possible health and disease etiologies (10, 11). 

Specialized methods for microbiome analysis are becoming more prevalent as these issues 

become better understood (12, 13). However, many statistical and bioinformatics methods for 

longitudinal analyses of microbiomes can be difficult for non-specialists to implement and 

interpret (e.g., requiring programming skills or statistical knowledge), hindering wider adoption of 

appropriate methods. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2017. ; https://doi.org/10.1101/223974doi: bioRxiv preprint 

https://doi.org/10.1101/223974
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

To address the challenge of applying appropriate longitudinal testing in routine microbiome 

analyses, we developed q2-longitudinal (https://github.com/qiime2/q2-longitudinal), a suite of 

bioinformatics tools for paired and longitudinal microbiome analyses. This software package is a 

plugin for the microbiome bioinformatics platform QIIME 2 (https://qiime2.org/), and thus adopts 

the software architecture, multiple user interfaces (including a graphical user interface), 

provenance tracking, and other user benefits offered by QIIME 2. Many of the analyses 

provided in q2-longitudinal wrap pre-existing tools, streamlining their use and reducing the 

burden for users to install, run, and interpret. Other analyses adapt standard statistical 

approaches for microbiome data (non-parametric tests are used by default, but parametric 

equivalents are supported for some plugin actions). All analyses are provided as easy-to-use 

pipelines, generating publication-ready tables and plots that are generated by q2-longitudinal, 

adding additional value relative to using the underlying tools directly. 

Results and discussion 

To demonstrate the methods currently available in q2-longitudinal, we present a re-analysis of 

data from the early childhood and the microbiome (ECAM) study (1). This study tracked the 16S 

rRNA gene microbiota composition of 43 infants in the U.S. sampled at regular intervals from 

birth to two years of age, and associations between antibiotic use, delivery mode, and 

predominant diet on microbiota composition and development. 

Paired differences between two time points 

Longitudinal and paired-sample studies (e.g., pre-post studies) frequently test whether an 

experimental measurement, such as sample diversity or the abundance of a microbial species, 

differs between paired samples collected at two different time points. For continuous 
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measurements, such as alpha diversity metrics (e.g., species richness within a sample), we can 

perform paired difference tests that compare the paired differences across subjects. Paired t-

tests or Wilcoxon signed rank tests performed on these differences determine whether a 

population’s distribution changed in a consistent direction between the two time points. For 

comparing measurements or differences in measurements over time between groups, ANOVA 

or Kruskal-Wallis tests can be applied on the values or differences, respectively. These methods 

are implemented in q2-longitudinal’s “pairwise-differences” action.  

As an example of “pairwise-differences”, we will test alpha diversity differences between 

sampling times in the ECAM study. During early childhood, gut bacterial species richness and 

other alpha diversity metrics increase dramatically from the basal levels observed at birth (1). 

We can use paired difference testing to demonstrate this effect, and to assess whether alpha 

diversity changes in subjects at different rates according to delivery mode. Paired differences in 

Shannon diversity at birth and 12 months of age are significant in subjects who are vaginally 

delivered (Wilcoxon false discovery rate-corrected p = 0.002) but not in cesarean-delivered 

subjects (p > 0.05) (Figure 1A). This is a potentially important finding: as alpha diversity 

generally increases dramatically over this period, the observation that cesarean-delivered 

subjects’ Shannon diversity does not increase may indicate that early disturbances (i.e., 

perinatal antibiotic use or bypassing microbial exposure in the birth canal) lead to stalled 

development of the microbiota in cesarean-delivered subjects (1). 

In addition to alpha diversity metrics, changes in sample ordination (e.g., on a principal 

coordinate plot), relative abundance (e.g., of a taxon, sequence variant, or operational 

taxonomic unit), or clinical data such as body mass index are other relevant candidates for this 

test. Raw difference data can also be easily exported in formats that are convenient for use in 

R, or other frameworks supporting more customized statistical tests.  
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Figure 1. Paired difference (A) and paired distance tests (B) between birth and 12 months of 

age in vaginally delivered and cesarean delivered subjects. A, Bacterial Shannon diversity. B, 

Unweighted UniFrac distance. Boxplots show quartile distribution of differences or distances 

between each subject’s diversity at month 12 and month 0. 

 

Paired distances between two time points 

Longitudinal experiments and paired-sample experiments may also measure the degree of 

similarity or dissimilarity (beta diversity) between an individual’s microbiota community structure 

at two separate time points. This test is similar to the pairwise-differences described above, but 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2017. ; https://doi.org/10.1101/223974doi: bioRxiv preprint 

https://doi.org/10.1101/223974
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

in this case we examine the distances between sample pairs using a measure of community 

structure dissimilarity, such as UniFrac distance (14) or community distance metric. Statistical 

testing is performed with Wilcoxon rank sum tests or one-sample t-tests to determine whether 

one group’s microbiota differs across time (e.g., between pre- and post-treatment). This can be 

an important assessment of microbiota stability, discerning the impact of a disturbance or 

intervention on community structure or composition. This method is implemented in q2-

longitudinal’s “pairwise-distances” action.  

As an example of “pairwise-distances”, we will compute unweighted UniFrac distances between 

sampling times in the ECAM study. During the first few years of life, the microbiota changes 

rapidly before eventually stabilizing around 3 years of age (1). We can use paired distances to 

examine how this progression differs between infants delivered vaginally or by cesarean 

section. At 12 months of age, cesarean-born subjects’ microbiota compositions are more 

different from birth (i.e., unweighted UniFrac distances are greater) than vaginally born subjects’ 

microbiota (p = 0.010) (Figure 1B). This could indicate either greater instability in these subjects, 

or simply a larger change since birth as the microbiota of cesarean-delivered infants transitions 

to an age-typical community structure from a less typical starting point (1). Additional time points 

between birth and one year of age can help us to differentiate between these two possibilities 

with a more detailed longitudinal analysis.  

Analyzing longitudinal trajectories  

Longitudinal experiments frequently measure observations over many time points, in which case 

paired differences or distances are inadequate to assess how the trajectory of a given metric 

changes over the course of an observation period. Investigators are often interested in 

measuring the impact of multiple factors on the trajectory of the dependent variable of interest; 

for example, the impact of a treatment and a subject’s sex on alpha diversity or species 
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abundance measurements. When the longitudinal measurements are continuous, an approach 

commonly used to address such questions is linear mixed effects (LME) models (8). LME 

models examine the relationship between one or more independent variables (effects) and a 

single longitudinal response, where observations are made across dependent samples, e.g., in 

repeated-measures experiments. For example, a simple LME may include an intercept and 

slope term as both fixed and random effects. The fixed intercept and slope can be interpreted as 

the regression line for the average subject, while the random effects reflect individual departures 

from the average line for each subject. An attractive feature of the model is that it allows the 

investigator to explicitly model heterogeneity in the initial value and slope across subjects. This 

is important for longitudinal microbiome studies where we expect heterogeneity in the temporal 

pattern across individuals. Fixed effects are factors that may reflect group or time and assess 

the overall effect of the factor on the response. Random effects reflect variation in these effects 

across subjects. LME models are implemented in the “linear-mixed-effects” action in q2-

longitudinal. 

To demonstrate the use of the “linear-mixed-effects” action, let us revisit the question of alpha 

diversity changes during early life in the ECAM cohort. As samples were collected at roughly 

monthly intervals from these subjects, we can use LME to track the change in alpha diversity 

over time and in the context of multiple experimental variables; here we examine time and 

delivery as fixed effects, and apply a random intercept and slope as random effects (Figure 2, 

Table 1). Over the course of approximately 2 years, Shannon diversity significantly changes by 

age (months) (p < 0.001). Delivery mode and delivery mode X time interaction are both 

significant effects (p < 0.001). The statistically significant delivery mode effect provides evidence 

for a higher mean Shannon diversity at baseline for women undergoing Cesarean compared 

with vaginal delivery. However, the statistically significant mode X time interaction shows that 

the rate of change is higher for vaginal versus Cesarean delivery. Interestingly, these two 
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features result in the crossing of the two trajectories demonstrating higher Shannon diversity 

after approximately 6 months of age. Delivery mode thus appears to be an important factor 

impacting gut microbiota diversity over the first two years of life, as previously described (1). 

 

 

Figure 2. Scatterplots of Shannon diversity as a function of child age (months) and delivery 

mode. Linear regression trend lines are plotted for each group.  

Table 1. Linear mixed effects model results for Shannon diversity in the ECAM study. Parameter 

estimates (coef.), standard error, Z score, and P value for each model parameter. 

 Variables/Parameters Estimates Std.Err. z P Value 

Intercept 2.635 0.128 20.58 < 0.001 

delivery[T.Vaginal] -0.414 0.17 -2.434 0.015 

month 0.065 0.011 5.943 < 0.001 

Fixed Effects 

month:delivery[T.Vaginal] 0.061 0.014 4.241 < 0.001 

Intercept 0.244 0.106   Random Effects 

Slope -0.016 0.008   
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Residual Error  0.001 0.001   

 

Visualizing sample volatility 

The temporal stability or volatility of a metric between individual subjects or groups of subjects 

can be an important measurement, indicating periods of disruption, disease, or abnormal 

events. Microbial volatility — the variance in microbial abundance, diversity, or other metrics 

over time — can be a marker of ecosystem disturbance or disease (4, 15, 16), and hence 

provides another important metric for comparison between experimental groups. We can 

visualize these fluctuations using control charts, which show how a variable changes over time 

in individuals or groups. These charts display “control limits” three standard deviations above 

and below the mean and "warning limits" two standard deviations above and below the mean to 

identify observations that deviate substantially from the mean. Observations at these time points 

could indicate aberrant conditions, e.g., due to disturbance or even sample contamination. 

Spaghetti plots, illustrating the longitudinal trajectory of each individual, support visual 

assessment of individual subjects’ stability, identifying aberrant individuals and time points. 

Control plots with optional spaghetti plot overlays are supported in q2-longitudinal with the 

“volatility” visualizer (Figure 3A). Using these “volatility charts” to track Shannon diversity in the 

ECAM study, we see that vaginally and cesarean-delivered infants exhibit similar degrees of 

variance in Shannon diversity over time, but these groups exhibit divergent means immediately 

following birth and following one year of life (Figure 3A). 
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Figure 3. Volatility charts of Shannon H in ECAM subjects over time (A), rate of change (first 

differences) in Shannon H over time (B), and difference from baseline (C). Thick lines with error 

bars represent mean Shannon H (± standard deviation) for vaginally and cesarean-delivered 

subjects. Faded “spaghetti” lines represent the longitudinal trajectory for each individual subject. 

Horizontal lines represent the mean (solid midpoint) and two (dotted line) and three standard 

deviations from the mean (dashed line) computed across all samples. Sample sizes differ 

between subplots because some subjects in panel A were sampled more than once per month, 

and other subjects are missing samples for a particular month; replicates are dropped for first 

differencing, and missing samples affect the two adjacent time points. Note that x- and y-axis 

scales differ across the three plots to highlight difference in the scale that is most informative for 

each analysis. 

Computing first differences to track rate of change 

Another way to view time series data is by assessing how the rate of change differs over time. 

We can do this through calculating first differences, which represent the magnitude of change 

between successive time points. If Yt is the value of metric Y at time t, the first difference at time 
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t, ΔYt=Yt−Yt-1. This transformation is performed in the “first-differences” method in q2-

longitudinal.  

Figure 3B illustrates the first differences plot corresponding to longitudinal measurements of 

Shannon diversity shown in Figure 3A. Vaginally and cesarean-delivered infants show similar, 

high degrees of variance in rate of change in Shannon H, hovering around the mean ΔY = 

0.121, indicating a very steady average rate of change over 28 months of life, with the exception 

of the first month of life when diversity slightly drops in both groups (Figure 3B). Such a constant 

difference is consistent with a linear relationship between time and Shannon H on the original 

scale (Figure 3A). 

The “first-differences” method has an optional “baseline” parameter to instead calculate 

differences from a static point (e.g., baseline or a time point when a treatment is administered: 

ΔYt=Yt−Ybaseline). Calculating baseline differences can help tease apart noisy longitudinal data 

to reveal underlying trends in individual subjects, such as some outlier subjects in the ECAM 

dataset (Figure 3C). In other cases, difference from baseline or treatment times could highlight 

significant experimental factors related to changes in diversity or other dependent variables. 

A similar method implemented in q2-longitudinal is “first-distances”, which instead identifies the 

beta diversity (between-sample) distances between successive samples from the same subject 

based on a distance matrix. The output of first-distances is particularly empowering, because it 

allows us to analyze longitudinal changes in beta diversity using actions that cannot operate 

directly on a distance matrix, such as linear mixed effect models, or plotting with volatility charts 

(Figure 4). When applied to longitudinal changes in unweighted UniFrac distance (14) in the 

ECAM dataset, we see that vaginally and cesarean-delivered infants exhibit similar rates of 

phylogenetic transition (Figure 4A). This is marked by a dramatic shift in the first month of life, 

followed by gradual stabilization in the rate of change but a very large degree of variance. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2017. ; https://doi.org/10.1101/223974doi: bioRxiv preprint 

https://doi.org/10.1101/223974
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

These groups only diverge in the first month of life (when cesarean-born infants exhibit a higher 

degree of change within individuals) and after two years of life (when sample sizes and 

statistical power are lower). Consistent with the close similarity between delivery modes, LME 

models indicate no significant differences between delivery modes, though month and intercept 

(p < 0.001) are both significant factors.  

The “first-distances” method also has a “baseline” parameter for calculating distance from a 

static time point (Figure 4B), similar to the “first-differences” baseline parameter. This can be a 

useful approach for assessing how a subject differs from the start/end of a study, or from 

another static time point (e.g., to highlight fluctuations in community structure/composition 

related to a treatment) (Figure 4B).  

 

 

Figure 4. Volatility charts of longitudinal change in unweighted UniFrac distances between 

successive samples collected from the same subject in the ECAM dataset (A) and distance from 

baseline for each subject (B). Thick lines with error bars represent mean distance (± standard 

deviation) for vaginally and cesarean-delivered subjects. Faded “spaghetti” lines represent the 

longitudinal trajectory for each individual subject. Horizontal lines represent the mean (solid 
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midpoint) and two (dotted line) and three standard deviations from the mean (dashed line) 

computed across all samples. Sample sizes differ between subplots because some subjects are 

missing samples for a particular month, resulting in fewer subjects eligible for first differencing at 

that month and the subsequent time point. Note that x- and y-axis scales differ across the three 

plots to highlight difference in the scale that is most informative for each analysis. 

Quantifying shared features with first-distances 

The first-distances method also allows us to track longitudinal change in the proportion of 

features that are shared between an individual’s samples. This can be performed by calculating 

pairwise Jaccard distance (proportion of features that are not shared) between each pair of 

samples with QIIME 2’s “diversity” plugin, and using first-distances to extract distances between 

successive samples (Figure 5A), or from baseline (Figure 5B). Applying this method to the 

ECAM dataset indicates that the intestinal microbiome becomes gradually more stable in the 

second year of life, as successive measurements exhibit less feature turnover and less variance 

in distance (Figure 5A). Distance from baseline remains high and volatile throughout the course 

of observation, indicating few shared taxa (Figure 5B).  

The “baseline” parameter in first-distances and first-differences also provides the ability to track 

longitudinal change from a separate set of (non-longitudinal) samples. For example, we can 

track the number of shared features between the stool microbiota of infants and their mothers’ 

stool microbiota near the time of birth in the ECAM dataset (Figure 5C). Jaccard distance 

between sequence variant profiles indicates that very few variants are shared with a child’s 

mother during the first year of life, but distance decreases into the second year of life, when a 

higher proportion of sequence variants are shared between mother-infant dyads (Figure 5C). 

This indicates that as infants age they accumulate more microbiota characteristic of an adult gut 

ecosystem, as shown previously (1). 
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Using the “baseline” parameter to track longitudinal change from a static point opens many 

opportunities for comparisons common to some microbiome experimental designs. Other 

applications could include comparing similarity between the microbiota of human patients or 

gnotobiotic animals receiving fecal microbiota therapy and the composition of donor samples, 

between fermentations and their inocula, or between intact and disturbed environments during 

recovery from disturbance. 

 

 

Figure 5. Volatility charts of longitudinal change in Jaccard distances between genus-level 

taxonomic compositions of successive samples collected from the same subject in the ECAM 

dataset (A), distance from baseline for each subject (B), and distance from their mother’s stool 

16S rRNA sequence variant composition near birth (C). Thick lines with error bars represent 

mean distance (± standard deviation) for vaginally and cesarean-delivered subjects. Faded 

“spaghetti” lines represent the longitudinal trajectory for each individual subject. Horizontal lines 

represent the mean (solid midpoint) and two (dotted line) and three standard deviations from the 

mean (dashed line) computed across all samples. Sample sizes differ between subplots 

because some subjects are missing samples for a particular month, resulting in fewer subjects 

eligible for first differencing at that month and the subsequent time point. Note that x- and y-axis 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2017. ; https://doi.org/10.1101/223974doi: bioRxiv preprint 

https://doi.org/10.1101/223974
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

scales differ across the three plots to highlight difference in the scale that is most informative for 

each analysis. 

Longitudinal analyses of feature data 

Any action in q2-longitudinal that operates on sample metadata can also accept a feature table 

as input (i.e., abundance table of features per sample, e.g., sequence variants, taxa, genes, or 

metabolites), including “pairwise-differences”, “first-differences”, “volatility”, and “linear-mixed-

effects”. To demonstrate these operations, we generated volatility charts and LME tests to track 

longitudinal changes in the relative abundance of genus Bacteroides in the ECAM study data. 

Volatility charts show that Bacteroides relative abundances are higher in vaginally delivered 

infants during the first year of life (Figure 6), as shown in the original study (1). A LME model of 

abundance vs. time and delivery mode with a random intercept and slope indicates a significant 

effect of both time and delivery mode on Bacteroides abundances (p < 0.001) (Table 2). The 

delivery mode X time interaction term is small and non-significant suggesting that the rate of 

change in relative abundance is constant across the two modalities. 

 

Figure 6. Spaghetti plot of longitudinal change in Bacteroides relative abundance in each 

subject in the ECAM dataset. Thick lines with error bars represent mean distance (± standard 
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deviation) for vaginally and cesarean-delivered subjects. Faded “spaghetti” lines represent the 

longitudinal trajectory for each individual subject. 

 

Table 2. Linear mixed effects model results for Bacteroides relative abundance in the ECAM 

study. Parameter estimates (coef.), standard error, Z score, and P value for each model 

parameter. 

 Variables/Parameters Estimates Std.Err. z P Value 

Intercept 0.022 0.035 0.637 0.524 

delivery[T.Vaginal] 0.184 0.046 3.972 < 0.001 

month 0.011 0.003 4.496 < 0.001 

Fixed Effects 

month:delivery[T.Vaginal] -0.005 0.003 -1.438 0.151 

Intercept 0.019 0.033   Random Effects 

Slope -0.001 0.002   

Residual Error  0 0   

 

Temporal microbial interdependence 

Within microbial communities, microbial populations do not exist in isolation but instead form 

complex ecological interaction webs. Whether these interdependence networks display the 

same temporal characteristics within subjects from the same group may indicate divergent 

temporal trajectories. To address this experimental question, q2-longitudinal implements the 

non-parametric microbial interdependence test (NMIT) (12). NMIT examines the longitudinal 

relationship between microbial features in a subject (e.g., taxa, sequence variants, or 
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operational taxonomic units) to measure the similarity between individuals. The q2-longitudinal 

“nmit” method outputs a distance matrix containing the pairwise distances (microbial 

interdependence similarity) between individual subjects, which can then be assessed with other 

QIIME 2 methods such as PERMANOVA (17) tests to determine whether subject distances 

partition by phenotype or metadata categories, or principal coordinate analysis to visualize 

subject similarities. 

Given the association of cesarean section with profound disturbances to the gut microbiome 

compared to vaginal delivery in the ECAM study (1), it can be expected that temporal microbial 

interdependence will be similarly impacted. Using NMIT to compute microbial interdependence 

and PERMANOVA (implemented in q2-diversity (https://github.com/qiime2/q2-diversity)) to test 

for an effect of delivery mode on between-subject distances, we find that delivery modes exhibit 

significantly different temporal microbial independence networks (p = 0.001) (Figure 7). 

 

 

Figure 7. Temporal microbial interdependence distances between vaginally delivered subjects 

and other subjects in the ECAM study. Vaginally delivered subjects are more similar to each 

other than to cesarean-delivered subjects. 
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Conclusions 

Longitudinal designs for microbiome studies provide valuable information about time trends in 

biological activity. In addition, these designs allow investigators to distinguish between within- 

and between-subject variation, an important issue in characterizing heterogeneity in temporal 

patterns across experiments.  

The q2-longitudinal package supports a variety of paired-sample and longitudinal tests relevant 

to studies of host-associated and environmental microbiomes. This includes methods for paired 

difference and distance testing, LME, microbial interdependence, analyses of volatility, and a 

variety of functions for generating publication-ready figures.  Additional functions will be added 

to this plugin as they are developed (e.g., methods for tracking longitudinal volatility and shared 

species counts), and we welcome collaboration from other developers who would like their 

methods accessible through q2-longitudinal (get in touch on the QIIME 2 Forum at 

https://forum.qiime2.org/). This plugin is included in the QIIME 2 Core Distribution, and 

installation instructions and tutorials for the Core Distribution can be accessed at 

https://qiime2.org. 

Materials and methods 

The q2-longitudinal package (https://github.com/qiime2/q2-longitudinal) is written in 

Python 3 and is accessible as a QIIME 2 plugin (https://qiime2.org). As a plugin in the QIIME 2 

Core Distribution, users automatically have access to q2-longitudinal simply by installing QIIME 

2, and can interact with the plugin using a variety of user interfaces  (command line, Python API, 

and graphical user interfaces are included in the Core Distribution). The actions in this plugin 

utilize scipy (https://scipy.org), numpy (18), and pandas (19) for data manipulation and statistical 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2017. ; https://doi.org/10.1101/223974doi: bioRxiv preprint 

https://doi.org/10.1101/223974
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

testing, and matplotlib (20) and seaborn (https://zenodo.org/record/12710) for plotting. Tutorials 

and other information about the q2-longitudinal plugin are available at https://qiime2.org. This 

package is released under a BSD-3-Clause license and is freely available, including for 

commercial use.  

Test data 

We use study data from the ECAM study (1) to demonstrate the features of q2-longitudinal. Raw 

sequence data (study id: 10249) were downloaded from Qiita (http://qiita.microbio.me) and 

analyzed with QIIME 2. Raw sequences were quality-filtered using DADA2 (21) to remove phiX, 

chimeric, and erroneous reads. Sequence variants were aligned using MAFFT (22) and used to 

construct a phylogenetic tree using FastTree 2 (23). Beta diversity was estimated using 

unweighted UniFrac distance (14). All other analyses were performed using q2-longidutinal. 

 

Analysis data and notebooks used to generate all results in this study are available at 

https://github.com/caporaso-lab/longitudinal-notebooks. 
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