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By incorporating the information of human chromosome inferred
from Hi-C experiments into a heteropolymer model of chromatin
chain, we generate a conformational ensemble to investigate its spa-
tiotemporal dynamics. The heterogeneous loci interactions result in
hierarchical organization of chromatin chain, which obeys compact
space-filling (SF) statistics at intermediate length scale. Remarkably,
the higher order architecture of the chromatin, characterized by the
single universal Flory exponent (ν = 1/3) for condensed homopoly-
mers, provides quantitative account of the dynamical properties of
the chromosome. The local chromosome structures, exemplified by
topologically associated domains (∼ 0.1 − 1 Mb), display dynamics
with fast relaxation time (. 50 sec), whereas the long-range spatial
reorganization of the entire chromatin (& O(102) Mb) occurs on a
much longer time scale (& hour), suggestive of glass-like behavior.
This key finding provides the dynamic basis of cell-to-cell variability.
Active forces, modeled using stronger isotropic white noises, accel-
erate the relaxation dynamics of chromatin domain described by the
low frequency modes. Surprisingly, they do not significantly change
the local scale dynamics from those under passive condition. By
linking the spatiotemporal dynamics of chromosome with its organi-
zation, our study highlights the importance of physical constraints
in chromosome architecture on the sluggish dynamics.

chromatin dynamics | heteropolymer | chromatin architecture | space-
filling organization | active force

The organization of chromosomes, comprised of a long
DNA/chromatin chains, depends on the length scale. On

. 10 nm scale, dsDNA wraps around histone octamers to form
nucleosomes, whose assembly constitutes the chromatin fiber.
Evidence that the fiber is further compacted into higher-order
structures, such as topologically associated domains (TADs)
and chromatin compartments come from the interaction pat-
terns inferred from Hi-C data (1–3).

The three dimensional (3D) structures of chromatin vary
with the developmental stage (4) and cell types, which has
resulted in the appreciation that chromatin structure is im-
portant in its regulatory role. For long range transcriptional
regulation (5–7), two distal genomic loci have to be in proxim-
ity. Hi-C maps of chromatin, measuring mean contact frequen-
cies between cross-linked DNA segments from an ensemble
of millions of fixed cells, suggest its hierarchical organization.
Chromosomes at ∼ 5 Mb resolution are partitioned into alter-
nating A and B type compartments that are enriched with
active and inactive loci, respectively (1). At a higher resolu-
tion the data reveals the formation of TADs, the submegabase
sized functional building blocks of interphase chromosome (2).
While the chromatin chain within TADs is highly dynamic (8),
the boundaries between the TADs are well insulated across
different cell types. Genome-wide Hi-C maps at even higher

resolutions of ∼ O(10) Kb indicate at least 6 subcompartment
types, characterized by distinctive histone markers and chro-
matin loops (3). In addition, fluorescence images give glimpses
of real-time chromatin dynamics in vivo (9–12), allowing us to
decipher the link between structure, dynamics, and function
(13–15).

Advances towards the mechanistic underpinnings of chro-
matin compaction are also being made using theory and compu-
tations. Based on the knowledge of the convergent orientation
of the CTCF-binding motifs, the loop extrusion polymer model
(16, 17) was proposed to explain the formation of TADs and
predict the contact maps of edited genomes upon deletion of
CTCF-binding sites (16, 17). While homopolymer models with
geometrical constraints (1, 18–22) capture the physical basis
of chromosome organization, one can utilize the information
from Hi-C and fluorescence in situ hybridization to sharpen
the model (23–26).

To explore the spatiotemporal dynamics of a chromosome,
we modified a recently developed heteropolymer model, – Min-
imal Chromatin Model (MiChroM) – whose parameters were
trained to reproduce the Hi-C data of Chr10 (chromosome
10) from human B-lymphoblastoid cell (27). The ensemble
of chromosome structures generated from the MiChroM re-
produced the experimental Hi-C maps of all other autosomes
(27). The resulting chromosome structures were characterized
with the paucity of entanglements, phase separation of A/B
compartments, and enrichment of open chromatin chain at
the periphery of chromosome territories (27). Furthermore,
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the multistability of free energy landscape for individual chro-
mosomes (28) rationalizes the cell-to-cell variability observed
in single-cell Hi-C data (7, 29, 30).

The primary aim of this study is to elucidate the physi-
cal principles underlying the chromatin dynamics, which has
received much less attention. To this end, we imposed the
chain non-crossing constraint on the chromosome structures
generated from MiChroM, and carried out Brownian dynam-
ics simulations. Our study shows that the basic features of
the chromatin dynamics observed in experiments is quantita-
tively determined by the crumpled, hierarchical, and territorial
organization of interphase chromosomes. By incorporating
active forces onto active loci, we also address the extent to
which the activity contributes to the dynamic properties of
the interphase chromatin.

A1     A2     NA     B1     B2     B3A                                                B

Mb

Fig. 1. Conformational ensemble of Chromosome 10 of human B-lymphoblastoid
cells generated from simulations. (A) The contact frequency map from the ensemble
of structures generated using MiChroM (upper right corner) reproduces the overall
checkerboard pattern of Hi-C map (lower left corner). The 6 subcompartment types
assigned to chromosome loci are depicted on the top. (B) The dendrogram represents
the outcome of hierarchical clustering of the heterogeneous ensemble of structures.
The distance between the leaf nodes (structures) k and l is given byDk,l (Eq.1), and
the distance between two clusters K and L is defined as maxk∈K,l∈L {Dk,l}.
Among the clusters whose inter-cluster distance is smaller than Dc = 4.5a, the
centroid structures (kc ∈ K), which minimize

∑
kc,k∈K

Dkc,k , are displayed in

rainbow coloring scheme for the 5 most populated clusters (colored in yellow).

Results and Discussions

Heteropolymer model for chromosome. In MiChroM (27),
each monomer represents 50 Kb of DNA segment. As a conse-
quence, the model describes chromosome organization on large
length scales, a feature that is crucial for dynamics. Based on
the correlation between the distinct patterns of interchromo-
somal contacts and epigenetic information, MiChroM assigns
one of six types of subcompartments (B3, B2, B1, NA, A1,
and A2) to each CG monomer (3). In the Hi-C map, candi-
date binding sites for CTCF (16) or lamin A (12) show much
higher contact frequencies than their local background. As
a result, the interactions between monomers are accounted
for by the potential of a homopolymer, monomer type depen-
dent interactions, attractions between loop sites, and genomic
distance-dependent condensation energies (See Supporting In-
formation (SI)). We confine the chromatin to a sphere with a
volume fraction of 10 %.

To sample the chromatin conformations at equilibrium, we
performed Langevin simulations at low friction (31) (see SI
Text). The resulting conformational ensemble of Chr10 cap-
tures the “checkerboard” pattern of the Hi-C contact map (3)
(Fig. 1A), and reproduces the characteristic scaling of con-

tact probability P (s) ∼ s−1 over the intermediate range of
genomic distance 1 < s < 10 Mb (Fig. S1B). The distribution
of Alexander polynomial, |∆(t = −1)| (32)(Fig. S1D), char-
acterizing chain entanglement, has the highest mode at zero,
indicating that the majority of chromosome conformations are
free of knots. The radial distributions of monomers belonging
to the different type of subcompartment (27, 33) reveal that in
contrast to the condensed and transcriptionally inactive loci,
which are buried in the chromosome interior, open and active
loci are enriched near the surface, presumably improving the
accessibility to transcription factors (Figs. S1E, S1F).

There is substantial heterogeneity in the structures. We
use the distance-based root-mean-square deviation (DRMS,
D),

Dα,β =
√

2
N(N − 1)

∑
i>j

(rαi,j − r
β
i,j)2, [1]

to quantify the similarity between two conformations and
partition them into multiple clusters. In this method, two
chromosome structures, say α and β, that are within a cut-
off value (Dα,β < Dc) are considered similar and grouped
together. We carried out hierarchical clustering by repeating
this procedure by varying the value of Dc to produce a den-
drogram (Fig. 1B); the ensemble is decomposed into many
clusters (see Fig. S2). At Dc[= 4.5a ≈ 〈D〉], distinction be-
tween the structures belonging to different clusters is visually
clear (Fig. 1B), suggesting the cell-to-cell variability seen in the
recent single-cell Hi-C data (7, 29, 30). The partitioning of the
conformations into distinct clusters is a first indication that the
folded landscape of chromosome is rugged. Consequently, we
expect that the underlying dynamics should exhibit glass-like
behavior (22).

Subdiffusive dynamics of chromatin loci. We calculated the
ensemble- and time-averaged mean square displacement (MSD)
for chromatin loci using, MSDi(t) = 〈|~ri(t0 + t)−~ri(t0)|2〉t0 =

1
T−t

∫ T−t
0 dt0|~ri(t0 +t)−~ri(t0)|2. The ensemble averaged MSD

is obtained using MSD(t) =
∑N

i=1 MSDi(t)/N . As shown in
Fig. 2A, the diffusion of chromatin loci is characterized by
three different time regimes. At short times (t < 10−2τBD),
the loci diffuse freely with MSD ∼ t. At the intermediate
times, corresponding to the Brownian time t ∼ τBD ∼ a2/D,
each locus starts to feel the neighboring monomers along the
chain. For t > 103 τBD, a subdiffusive behavior of MSD ∼ tβ
with β ≈ 0.4 is observed. This exponent is in line with the
reported values of β = 0.38 ∼ 0.44 (34) and β = 0.4 ∼ 0.7
(12) in live human cells, and is also in reasonable agreement
with the diffusion exponent β = 0.32± 0.03 measured for the
whole genome of ATP-depleted HeLa cells (9).

The exponent β = 0.4 can be rationalized using the fol-
lowing argument. The spatial distance (R) between two loci
separated by the genomic distance, s, satisfies R(s) ∼ sν ,
where ν, the Flory exponent (20, 35), is ν = 1/2 for ideal
chain obeying Gaussian statistics, and ν = 1/3 for space-filling
(SF) chain. Notice that the MSD of an expanded locus of arc
length s scales with time t as ∼ tβ ∼ D(s) × t ∼ Do × t/s,
where the scaling relationship of the diffusion constant of freely
draining chain D(s) ∼ Do/s is used. The use of the relation of
MSD ∼ R2(s) ∼ s2ν allows us to relate s with t as s ∼ tβ/2ν .
It follows that MSD ∼ tβ ∼ t1−β/2ν , giving β = 2ν/(2ν + 1)
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Fig. 2. Subdiffusive behavior of chromatin loci. (A) Ensemble- and time-averaged
MSD of loci with time in a log-log plot (Inset displays the time-averaged MSD for
individual loci, color-coded by a normalized monomer index i/N ). (B) MSD of loci
with different subcompartment types (3)

(34). Thus, we obtain

MSD(t) ∼ t
2ν

2ν+1 . [2]

The SF organization of chromosome implies ν = 1/3, and
hence β = 0.4, which explains our BD simulation result at
t/τBD � 1. A similar argument was used to explain the time-
dependence of MSD(t) found in an entirely different model
(36).

Meanwhile, it has recently been shown using high-
throughput chromatin motion tracking in living yeast that
MSD∼ t0.5 for all chromosomes (10). The yeast chromosomes
obey Gaussian statistics, R(s) ∼ s1/2 and P (s) ∼ s−3/2, in-
dicative of ν = 1/2. Evidently, from Eq.2, MSD∼ t1/2 (10).
Therefore, Eq.2 suggests that the diffusivity of loci is closely
linked to the global architecture of chromatins (34, 37).

Euchromatin versus heterochromatin dynamics. According to
a recent single nucleosome imaging experiment (34), diffusion
of the heterochromatin-rich loci in the nuclear periphery is
slower than the euchromatin-rich loci in the interior. The
time-averaged MSD (MSDi) exhibits substantial dispersion
among different loci (Fig. 2A, inset). Depending on the sub-
compartment types, loci move with different diffusivity (see
Fig. 2b). The A-type loci, which are less condensed and close
to the chromosome surfaces, diffuse faster than the loci of
type B2 and B3. Similarly, transcriptionally active loci move
slightly faster compared with inactive ones. Although the dif-
fusivity is greater for the active loci, they still have the same
β = 0.4, which suggests that the chain architecture is the key
determinant of the diffusion exponent. Below we will show
that even if active forces are incorporated into the dynamics,
the value of β is unchanged.

Correlated loci motion in space and time. For complex sys-
tems like genomes or chromosomes, various correlation func-
tions can be used to quantify the dynamic properties of the
system in space and time.

Correlation in time. We first calculated the correlation
function of displacement of the ith and jth loci divided by
waiting time ∆t, which defines the mean velocity correlation
function (11, 38),

C∆t
V,(i,j)(t) = 〈∆~ri(t+ t0; ∆t) ·∆~rj(t0; ∆t)〉t0

(∆t)2 , [3]
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Fig. 3. Temporal correlation of locus dynamics calculated from the simulations.

(A) C
∆t
V,(m,m)(t)[≡ C

∆t
V,(m,m)(t)/C

∆t
V,(m,m)(0)] is a normalized mean velocity

autocorrelation calculated for the midpoint monomer. The lines represent different
lag times, from ∆t = 100 τBD (dark) to 6000 τBD (light). (B) Correlation functions

with rescaled argument, C
∆t
V,(m,m)(t/∆t). The theoretical curves calculated by

assuming the fractional Langevin motion (38, 39) are plotted. The theoretical curve

are: C
∆t
V,(m,m)(t/∆t) =

(
|t/∆t− 1|β + |t/∆t+ 1|β − 2|t/∆t|β

)
/2 with

β = 0.4 (green) and β = 0.5 (white dashed line for the Rouse chain). (C) Mean
velocity cross-correlation between the midpoint (i = m = N/2) and others (j),

C
∆t
V,(m,j)(t) for increasing lag time ∆t = 200, 500, 2000, 3000 τBD from the top

to bottom. (D) Scaling relation of Fourier modes Xk with k: 〈X2
k〉 ∼ k−α with

α = 1.7 for large k and α = 1.1 for small k.

where ∆~ri(t; ∆t) = ~ri(t + ∆t) − ~ri(t) and 〈. . .〉t0 ≡
1/Ts

∫ Ts
0 dt0(. . .), with Ts being the total simulation time,

denotes an average over t0. Regardless of ∆t, the auto-
correlation function C∆t

V,(m,m)(t) calculated for the midpoint
monomer (m = N/2) displays a negative correlation peak
(C∆t

V,(m,m) < 0) at t = ∆t (Fig. 3a), followed by a slow re-
laxation to C∆t

V,(m,m)(t � ∆t) → 0. The curves plotted with
the rescaled time t/∆t nicely overlap onto each other, thus
allowing us to assess the variation among the curves (Fig. 3b).

Based on the interpretation of fractional Langevin motion,
one could posit that the dynamic behavior of chromatin locus
captured in C∆t

V,(m,m)(t) is caused by viscoelasticity of the
effective medium (40). However, even the ideal Rouse chain
in free space (β = 0.5) displays a similar curve C∆t

V,(m,m)(t)
(Fig. 3B). For the Rouse chain in free space, the negative
correlation peak, which arises from restoring forces acting on
the monomer, is solely due to the chain connectivity with the
neighboring monomer along the chain. As Fig.3B shows that
the difference between C∆t

V,(m,m)(t/∆t) with β = 0.4 for the
chromatin model and with β = 0.5 for the Rouse chain is
subtle, and not easy to discern.

The behavior of our chromatin model can be distinguished
from the Rouse chain by calculating the Fourier modes,
~Xk(t) = N−1∑N

n=1 cos (knπ/N)~rn(t). While 〈X2
k〉 ∼ k−2 is

anticipated for the free Rouse chain (41), we find 〈X2
k〉 ∼ k−1.7

for large k values (N/k . 100. See Fig. 3D). The Fourier
modes for chromatin are expected to scale 〈X2

k〉 ∼ k−(1+2ν)
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Fig. 4. Spatial correlation between loci displacements. (A) Spatial correlation of
loci displacements C∆t

s (r) (Eq.4) with varying waiting time (∆t). (B) Correlation

length lc
(

=
∫∞

0
[C∆t
s (r)/C∆t

s (a)]dr
)

as a function of ∆t. Visualized on 3D
chromosome structure are the displacement correlations of chromatin loci probed at
short and large time gap (∆t = τBD and 103 τBD) projected onto the xy-plane. The
color-code on the structures depicts the azimuthal angle of loci displacement. (C) The
displacement vector of loci in the equator plane are color-coded by direction. In each
panel, the displacement vectors ∆~r(t = 0; ∆t) are calculated for ∆t = 1, 100,
1000 τBD. Direction-dependent color scheme is shown on the right.

(34). Thus, the exponent of 1.7 is explained again by the SF
statistics with ν = 1/3.

Cross-correlations of mean velocity between the midpoint
(i = N/2) and other loci (j 6= N/2) show how the correlation
of our chromatin model changes with time (Fig.3C). In con-
trast to the viscoelastic Rouse polymer model (39), the mean
velocity cross-correlation reveals non-uniform and undiminish-
ing correlation pattern, which suggests that the chromosome
structure is maintained through heterogeneous loci interac-
tions defying complete equilibration, an indication of glassy
dynamics.

Correlation in space. Recently, displacement correlation
spectroscopy (DCS) using fluorescence, employed to study
the dynamics of a single nucleus, revealed that a coherent
motion of the µm-sized chromosome territories could persist
for µs to tens of seconds (9). In order to provide structural
insights into these findings, we studied the spatial correlation
of the chromosome structure. The spatial correlation between
chromatin loci from our simulations can be evaluated using

C∆t
s (r) =

〈∑
i>j

[∆~ri(t; ∆t) ·∆~rj(t; ∆t)]δ(ri,j − r)∑
i>j

δ(ri,j − r)

〉
t

. [4]

C∆t
s (r) quantifies the displacement correlations between loci

separated by the distance r over the time interval ∆t. C∆t
s (r)

decays more slowly with increasing ∆t. The correlation length
calculated using lc =

∫∞
0 [C∆t

s (r)/C∆t
s (a)]dr, shows how lc

increases with ∆t (Fig.4B). To paint an image of displacement
correlation over the structure, we project displacements of the
monomers near the equator of the confining sphere (−a ≤ z ≤
a) onto the xy plane, and visualize the dynamically correlated
loci moving parallel to each other by using similar colors (see
Fig. 4C). If ∆t < 100 τBD, the spatial correlation of loci

dynamics is short-ranged and the displacement vectors appear
to be random. But, with a longer waiting time (∆t > 500
τBD), we observe multiple groups of coherently moving loci
that form substantially large domains (∼ 5a ≈ 0.75 µm).
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Fig. 5. Lifetimes of chain conformations. (A) Time evolution of the root
mean square distance between a pair of loci ri,j(t) at time t relative
to its initial value (ri,j(0)) averaged over all pairs, defined by δ(t) =√

2
∑

i>j
(ri,j(t)− ri,j(0))2/N(N − 1). (B) Normalized intermediate scat-

tering function Fk(t)/Fk(0), with different values of wave number k, calculated from
BD simulation trajectories of the chromosome. (C) The chain relaxation time (τ ) for
different wave number k is estimated by evaluating τk =

∫∞
0

[Fk(t)/Fk(0)]dt.

Scale-dependent chromatin relaxation time. We explored the
dynamical stability of chromosome structure at varying length
scales. We calculated the time-evolution of the averaged mean
square deviation of the distances between two loci with re-
spect to the initial value (see Fig. 5A and the caption for the
definition of δ(t)). Within our simulation time (τmax = 4×104

τBD), the largest value δmax(= 4.0± 0.3 a) is smaller than the
value, δc = 4.5 a, chosen to define different conformational
clusters in Fig.1B. An extrapolation of δ(t) to δ(τc) = δc gives
an estimate of τc ≈ 105 τBD ≈ 1.4 hours, which is a long
time scale considering that most cells of adult mammals spend
about 20 hours in the interphase (42).

From the definition of, δ(t), it follows that limt→∞〈δ(t)〉 =
δeq. Here, δeq is finite, and 〈· · · 〉 is an ensemble average,
meaningful only if equilibrium is reached. We estimate δeq
assuming that the long time limit of the mean deviation of
the distance between two loci is approximately the mean end-
to-end distance between the loci. Thus, limt→∞〈(rij(t) −
rij(0))2〉 ∼ R2

ij where Rij is the mean end-to-end distance
between ith and jth loci. For |i − j| � 1, we expect that
R2
ij ∼ a2|i− j|2ν . Consequently, δeq can be calculated using

δ2
eq = 2

N(N−1)
∑N−1

s=1 (N−s)R2(s) = 2a2

N(N−1)
∑N−1

s=1 (N−s)s2ν .
For N = 2712, and with ν = 1/3 we estimate δeq ≈ 9.4 a,
which is greater than the value (δmax ≈ 4.0 a) reached at the
longest times in the simulations (Fig. 5A). An upper bound
for δeq is 16.4 a (see SI). These considerations suggest that
the chromosome dynamics is far from equilibrium on the time
scale of a single cell cycle.

The scale-dependent relaxation dynamics of the chromatin
domain is quantified using the time evolution of intermediate
scattering function Fk(t) (43, 44) calculated at different length
scale (∼ 2π/k) (Fig. 5B).

Fk(t) =
〈〈 1

N

∑
m

ei
~k·~rm(t+t0)

∑
n

e−i
~k·~rn(t0)

〉
|~k|

〉
t0
, [5]

where 〈〈. . .〉|~k|〉t0 is an average over t0 and over the direction
of vectors ~k with magnitude k(= |~k|). Fk(t) shows that the
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Fig. 6. Effects of active force on chromosome organization and dynamics. (A) MSD
of active and inactive loci compared with those under passive condition. Log-log
plot is shown in the panel on the right. (B) Distribution of active (A1) and inactive
(B3) loci with (a) and without (p) active force. In the presence of active force, the
segregation of active and inactive loci is more evident. (C) Relaxation times estimated
from the intermediate scattering functions. The wave number k was mapped to the
corresponding number of loci inside the volume defined by the wave number. The
red star symbols, the relaxation times in the presence of active forces, are depicted
for the comparison with those under passive condition. (D) Correlation lengths for
varying ∆t calculated using the loci displacement correlations under passive (Fig.4A)
and active (Fig. S4) conditions are compared.

chromatin chains are locally fluid-like (2π/k . a), which is
reminiscent of the recent analysis on the structural deformation
of TADs (8), but their spatial organizations on intermediate to
global scales (2π/k � a) are characterized by slow relaxation
dynamics. This scale-dependent relaxation time is reminiscent
of a similar finding in random heteropolymers (45).

Relaxation time (τ) of a subdomain, whose size is ξ = 2π/k,
is estimated using τk =

∫∞
0 [Fk(t)/Fk(0)]dt, which can in

turn be related to the number of segments comprising the
subdomain as ξ ∼ 2π/k ∼ s1/3. Since the chromosome domain
loses memory of the initial conformation by spatial diffusion,
the relaxation time τ is expected to obey τ ∼ ξ2/Deff ∼
(s1/3)2/(D0/s) ∼ s5/3. The relaxation times estimated from
our chromosome model indeed scales with the domain size as
τ ∼ s5/3 (cyan symbols and solid line in Fig.6C).

Effects of active forces on chromosome dynamics. Thus far,
the findings from our simulations are based on using only
passive forces in dictating chromatin dynamics. It could be
argued that such a model neglects the most critical component
of living systems. Live cells abound in a plethora of activities
such as replication, transcription, and error-correcting dynam-
ics. While these processes produce local directionality, when
mapped onto the phenomenological description, the effects
of vectorial forces on the surrounding environment at time
scale longer than the correlation time of active noises can be
assumed isotropic. We study how an increased noise strength
(〈~Ri(t) · ~Rj(t′)〉 = 6Di0δijδ(t− t′)→ 12Di0δijδ(t− t′)) (46, 47)
on the A1 and A2 monomers occupying 40 % of loci population
for Chr10, which are classified as the active loci based on the
epigenetic information (3), affects the dynamical properties of
entire chromosome.

In the presence of active forces, while the diffusion exponent
(β in MSD∼ tβ) is unaltered, the average MSD of A1 loci

exhibits ∼ 70 % increase relative to the passive case (Fig. 6A).
The disproportionate increase in the mobility of A and B type
monomers promotes the phase segregation of the two monomer
types (Fig.6B, and see SI Movies 1 and 2). The active forces
push A-type monomers towards the surface of the chromosome,
and B-type monomers are pulled towards the center to offset
this effect.

In terms of Fourier modes, the active forces mainly influence
the chain relaxation described by the low frequency modes.
For the high frequency modes or at local length scales (k &
2π/3a), the intermediate scattering function is practically
indistinguishable between active and passive cases (Fig. S3).
The chromatin domains in the presence of active forces, on
average, relax faster when the domain size is greater than the
sub-Mb. A comparison of the relaxation times in Fig.6C under
passive and active conditions highlight this difference.

Similarly, the effect of active forces on the correlation length
(lc) is evident only at large waiting time (∆t). We find that
(lc) increases with ∆t under the passive condition, whereas
a decrease of lc is observed for large ∆t under active force
(Fig.6D). There is no distinction between the effects of passive
and active forces on lc for small ∆t; however, they deviate
from each other for ∆t & 103τBD ≈ 50 sec (Fig.6D). It is
noteworthy that a similar dependence of correlation length
with ∆t has been discussed in DCS measurement on genome-
wide dynamics of live cell (9). Compared to thermal noise,
active noise randomizes the global structure of chromatin
chain more efficiently, which shortens the correlation length
at sufficiently large lag time.

Conclusions

Our study highlights the importance of chromosome architec-
ture in determining the subdiffusive behavior and dynamic
correlations between distinct loci. Most notably, we have
shown that structure alone explains many of the dynamical
features observed in living cells (9). In other words, chromo-
some organization dictates its dynamics. Remarkably, sev-
eral static and dynamic properties of the model, including
R(s) ∼ sν , P (s) ∼ s−3ν , X2

k ∼ k−(1+2ν), MSD∼ t2ν/(2ν+1),
and τ ∼ s2ν+1, are fully explained by the SF organization
characterized by the single universal Flory exponent ν = 1/3,
offering a unified perspective on both the structure and dy-
namics of chromosomes.

The relaxation time (τ) of the chromatin domain spans
several orders of magnitude depending on its size (s), satisfying
the scaling relation τ ∼ s5/3 (Fig.6C). To be more concrete,
while local chromatin domains of size s . Mb, which include
TADs and subcompartments, continuously reorganize on the
time scale of t < 103τBD ∼ 50 seconds, it takes more than
hours to a day for an entire chromosome chain (& 100 Mb)
to lose memory of its initial conformation. This timescale
associated is expected to grow even further at higher volume
fractions (22). It is likely that under in vivo conditions, with
46 chromosomes segregated into chromosome territories, the
time scale for relaxation can be considerable.

The effects of active forces on chromatin dynamics (9, 48)
deserve further discussion. While active forces enhance chain
fluctuations and structural reorganization, the effect on chro-
matin domain manifests itself only on length scales greater
than 5.5 a (≈ 0.8 µm), and on a time scale greater than 50
sec (Fig.6D). This is closely related to the active cytoskeletal
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network using microrheology measurements (49), where the
effect of myosin activity is observable only at low frequencies
in the power spectrum of the response function. Of course, the
active forces in live cell nuclei is not a scalar, and it remains a
challenge to model their vectorial nature in the form of force
dipole or vector force in the context of chromatin dynamics
(46). Vector activities would render loci with super-diffusive
motion (MSDi ∼ tβ with 1 < β < 2) dominant, and could in
principle elicit a qualitative change in the dynamical scaling
relations. However, the dynamic scalings discussed in this
study (e.g., MSD∼ t0.4) are in good agreement with those ob-
served in interphase chromatins (9, 12, 34). In terms of power
generated in a cell, the passive (thermal) power Wp ∼ kBT/ps
is many orders of magnitude greater than the active power
(e.g., molecular motors, Wa ∼ 20 kBT/10 ms (42)). At least
in the interphase, the gap between the total passive and active
power is substantial, because the number of active loci (Na)
is smaller than the number of passive loci (Np), satisfying
the relation NpWp � NaWa. The robustness of the diffusion
exponent indicates that the total contribution of the scalar and
vector activities during the interphase is negligible compared
to thermal agitation, and does not entirely offset the effects of
chromosome architecture on the dynamics.

Taken together, our study unequivocally shows that chromo-
some architecture alone, captured by the single Flory exponent,
determines much of the loci dynamics during the interphase.

Materials and Methods

To build the chromosome 10 model of human lymphoblastoid cell,
we employed the potential in MiChroM. The coarse graining of
chromatin leads to N = 2712 loci with the diameter of each a ≈ 150
nm. Thus, 50 Kb of DNA is in a single locus. The inverse mapping
of the Hi-C map to the ensemble of chromosome structures was
carried out by sampling the conformational space using low-friction
Langevin simulations (31). The generated structures follow the
characteristic scaling of the contact probability, P (s) ∼ s−1, and
reproduce the spatial distribution of A/B compartment as well as
the plaid pattern noted in Hi-C experiments. To study the dynamics
of chromatin, we used Brownian dynamics. The Brownian time
τBD ≈ 50 ms in physical time. The details of the energy function
and simulation algorithm are provided in the SI.
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