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Abstract 

Vernal pool clam shrimp (Eulimnadia texana) are a promising model due to ease of 
culturing, short generation time, modest genome size, and obligate desiccated 
diapaused eggs. We collected Illumina data (Poolseq) from eleven pooled wild vernal 
pool clam shrimp populations. We hypothesized that restricted gene flow between vernal 
pools, separated by distances of 0.36 to 253 km, in concert with Poolseq data from each 
population, could be used to identify genes important in local adaptation. We adapted 
Bayenv2 to genome-wide Poolseq data and detected thirteen genomic regions showing 
a strong excess of population subdivision relative to a genome-wide background. We 
identified a set of regions that appear to be significantly diverged in allele frequency, 
above what is expected based on the relationships amongst the populations. Regions 
identified as significant were on average 9.5 kb in size and harbored 3.8 genes. We 
attempted to identify correlations between allele frequencies at each genomic region and 
environmental variables that may influence local adaptation in the sequences 
populations, but found that there were too many confounding environmental variables to 
draw strong conclusions. One such genomic region harbored an ortholog of Drosophila 
melanogaster CG10413, a gene predicted to have sodium/potassium/chloride activity. 
Finally, we demonstrate that the identified regions could not have been found with less 
powerful statistics, i.e. FST, or with a less contiguous genome assembly. 
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Introduction 

The clam shrimp Eulimnadia texana has, 
along with other vernal pool shrimp, been 
noted for its unique sex determining system 
(Sassaman and Weeks 1993), its rare (in 
Metazoa) requirement to reproduce via 
desiccated diapaused eggs (Sassaman and 
Weeks 1993), and its unique habitat. Further, 
E. texana is a relative rare androdioecious 
(Sassaman and Weeks 1993) species having 
three common arrangements of sex alleles 
(Sassaman and Weeks 1993) or “proto-sex 
chromosomes” (Weeks et al., 2010).. The 

ability of eggs to remain in diapause for years 
at a time (Brendonck 1996) is especially 
valuable to geneticists because very few 
macroscopic animals exist for which 
populations can be archived for long periods 
without changes occurring in the genetics of 
the population (genetic drift, loss of linkage 
disequilibrium, etc.). In another paper we 
carried out a highly contiguous genome 
assembly of E. texana that resulted in a 
genome assembly with an N50 of 18Mb 
(Baldwin-Brown et al, in review), the 
availability of a high quality reference genome 
allows us to ask novel questions in this 
system.  In this regards, an interesting aspect 
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of E. texana is that they live in isolated vernal 
pools in the desert southwest of the U.S.A. 
The presumably naturally limited migration 
from pool to pool makes E. texana well-suited 
to the study of populations evolving in relative 
genetic isolation. 

Various methods (Frichot et al. 2013; Günther 
and Coop 2013; Weir and Cockerham 1984; 
Nielsen et al. 2005; Voight et al. 2006) have 
been proposed for identifying signals of 
selection in wild populations. A higher FST 
value than expected at some locus conditional 
on some sort of genome-wide average 
indicates that a force outside of genetic drift 
and migration is acting upon variation in an 
area of the genome (Akey et al. 2002). 
Recently, several analogous statistics, 
including Bayenv2’s Bayes factors (Günther 
and Coop 2013) and LFMM’s z-values 
(Frichot et al. 2013), have been developed 
that used Bayesian statistical methods to 
identify the likelihood or probability that a 
given polymorphism’s pattern of allele 
frequencies across sub-populations is 
explained by the genome-wide shared 
ancestry of the populations versus some sort 
of local adaptation. These statistics have an 
advantage over raw FST in that they account 
for existing relationships between populations. 
Although there is no perfect method for 
detecting selection in wild populations, 
several studies (Lotterhos and Whitlock 2014) 
indicate that Bayenv2 and LFMM are 
especially powerful for this type of analysis. 

Pooled population sequencing (Poolseq) has 
been in use essentially since the advent of 
next-generation sequencing (Burke et al. 
2010; Futschik and Schlötterer 2010). 
Poolseq allows for relatively inexpensive 
estimation of genome-wide allele frequency 
differences between populations.  Here we 
use pooled population sequencing of shrimp 
from several pools to carry out population 
genetics analyses of this species, allowing us 
to identify common polymorphisms and 
compute classical population genetics 
parameters such as 𝛩 and 𝜚.  We further used 

these POOLseq data to estimate FST (Weir 
and Cockerham 1984), Bayenv2’s (Günther 
and Coop 2013) XTX and Bayes factors, and 
LFMM’s (Frichot et al. 2013) z-values to 
identify regions of the genome that have 
differentiated due to local adaptation. We 
determine Bayenv2 to be the most 
appropriate method for detecting local 
adaptation from POOLseq data and a high 
quality reference genome, and identify 13 
regions displaying a signature of local 
adaptation.  We further identify correlations 
between these regions important in local 
adaptation and various environmental 
variables that differ between vernal pools. In 
particular, the collection date, male frequency, 
latitude, pH, inbreeding coefficient of the 
population, presence or absence of fairy and 
Triops shrimp, and elevation stand out as 
environmental variables that help explain 
population differences.  

Methods 

Shrimp collection and rearing 

Clam shrimp populations were sampled from 
New Mexico and Arizona as previously 
described (S C Weeks and Zucker 1999). We 
acquired 11 soil samples, each from a 
different natural clam shrimp pool, to grow 
shrimp for sequencing (Figure 1, 
Supplementary data table 1); additionally, we 
sequenced one laboratory population (EE) 
that is directly descended from the WAL wild 
population, but has been reared in the lab for 
six generations. This population was derived 
from 265 WAL wild individuals, and was 
maintained at a minimum population size of 
250 individuals for 6 generations. We 
hydrated the soil samples, and then collected 
100 individuals (males and females) from 
each population on day 10 of their life cycle. 
These particular clam shrimp populations 
were chosen because ecological data were 
already available for these sites 
(Supplementary data table 1). Clam shrimp 
populations were reared in 50X30X8 cm 
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disposable aluminum foil catering trays 
(Catering Essentials, full size steam table 
pan). In each pan, we mixed 500mL of soil 
with 6L of water purified via reverse osmosis. 
0.3 grams of aquarium salt (API aquarium 
salt, Mars Fishcare North America, Inc.) were 
added to each tray to ensure that necessary 
nutrients were available to the shrimp. Trays 
were checked daily for non-clam shrimp, 
especially the carnivorous Triops 
longicaudatus, and all non-clam shrimp were 
immediately removed from trays. We 
identified the following non-clam shrimp: 
Triops longicaudatus, Daphnia pulex, and an 
unknown species of Anostraca fairy shrimp. 

Library preparation and sequencing 

Illumina libraries 

We produced our gDNA libraries using the 
Nextera Library Preparation Kit. We collected 
100 random individuals from each population 
and pooled the individuals from each 
population to make each of the 12 libraries 
(one library per population). 13 cycles of PCR 
were used during the Nextera protocol, except 
in the case of the LTER and Tank 011 
populations, where 15 cycles of PCR were 
used due to low yield. Each library was 
barcoded (Sup. table 1). Equal aliquots of 
each library were pooled, and the pooled 
samples were size selected on a Pippin (Sage 
Science, Beverly, MA) size selection 
instrument. The pooled libraries were 
sequenced over four runs of paired end 
100bp Illumina sequencing, producing a total 
of 127Gb of data, or 844X of coverage. Full 
coverage statistics for each library are 
included in supplementary table 2. 

Comparison of wild populations 

Genome assembly and annotation 

We used the genome assembly and 
annotation generated by Baldwin-Brown et al. 
2017 (in review). The genome assembly and 
annotation are available, along with all other 

scripts and major data, at the URL listed 
under “Data Availability”. 

Data preparation 

Our pipeline for cleaning Illumina sequencing 
data, aligning to the reference, and calling 
SNPs was as follows: align using BWA (Li 
and Durbin 2009), deduplicate data using 
Picard tools 
(https://sourceforge.net/projects/picard/), and 
call SNPs using GATK (McKenna et al. 2010). 
After SNP calling, we censored SNPs by 
coverage using the following protocol: after 
merging the WAL and EE populations, 
remove all SNPs that have a mapped 
coverage of less than 10 or more than 200 in 
any population (in the two deeply sequenced 
samples, the 200 cutoff was applied to the 
coverages after random down-sampling of 
reads to match the less well covered 
populations), and remove all SNPs that, in 
any population, have a coverage more than 3 
standard deviations from the population’s 
mean coverage. We performed this censoring 
separately for each of the three population 
comparisons examined in the results section. 
This removed a variable number of SNPs 
from the population depending on the 
coverages in each comparison, leaving a total 
of 1.4 million SNPs for further analysis in the 
full 11-population comparison. Command line 
options for Picard tools, BWA, and GATK are 
included in the supplementary texts, and the 
full scripts are available at GitHub (see Data 
Availability). 

Calculation of population genetics 
statistics 

Our simple, genome wide estimate of 𝛩 was 
calculated as: 

𝛩 =
SNPs per base

1
𝑖

!!!
!!!

 

Where 𝛩 is Watterson’s theta (Watterson 
1975) and 𝑛 is the sample size (approximately 
the average coverage of the genome). We 
calculated the genome-wide average 𝛩 per 
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basepair using the entire dataset 
independently for each of our populations, 
and then averaged the result to produce our 
reported 𝛩 value. Note that Watterson’s 
estimator will be inherently biased in cases 
where SNP ascertainment is imperfect, an 
acute problem with Poolseq datasets.  Rare 
alleles are likely to be underrepresented if 
SNP detection employs some sort of 
frequency cut-off in the pool (e.g. alleles at a 
frequency of <2% in the pool), but rare alleles 
will be overestimated if no cut-off is employed 
(and Illumina sequencing errors are 
erroneously called as SNPs). We accounted 
for this error by fitting the neutral site 
frequency spectrum expected by chance (Fu 
1995) to all SNPs with a minor allele 
frequency above 0.1 (given our observed 
coverages, sequencing errors will only very 
rarely reach a frequency of greater than 10%), 
and then using that projected allele frequency 
spectrum to identify the expected number of 
true SNPs in our sample. Fu 1995 notes that 
the expected minor allele count, for coverage 
n and minor allele count class i, is equal to 
𝜙i𝛩, where 𝛩 is an estimator of 4Ne𝜇, and 

𝜙! =
1

1 + 𝛿!,!!!
1
𝑖
+

1
𝑛 − 𝑖

 

Here, 𝛿i,n-I represents Kroneker’s delta, which 
is equal to one if i=n-i, and is otherwise equal 
to zero. For each population, we computed 
the expected 𝜙i based on the average 
coverage of that population, and then found 
the value of 𝛩 that minimized the difference 
between the observed and expected number 
of SNPs with a minor allele frequency greater 
than 10%. From there, we multiplied the 
observed number of SNPs with a minor allele 
frequencing greater than 10% by 1/[the 
expected proportion of SNPs with a minor 
allele frequency of greater than 10%] to arrive 
at a project SNP count.   

We calculated 𝜚 by first estimating the short-
distance linkage disequilibrium using LDx 
(Feder, Petrov, and Bergland 2012). We then 
estimated 𝜚 by modeling decay of linkage 

disequilibrium (r2) with distance in basepairs 
using a non-linear model, as in (Marroni et al. 
2011) (supplementary text). See results for 
more detail on 𝜚. 

Fourfold Degenerate Sites 

We generated a custom Python script for 
identifying fourfold degenerate sites for use in 
Bayenv2. This script identified sites based on 
the codon contents of the CDS in all 
Augustus-identified candidate genes. 
Candidate sites are not considered fourfold 
degenerate if even one transcript disagreed 
with that assessment. Fourfold degenerate 
sites were used for Bayenv2’s covariance 
matrix generation step because fourfold 
degenerate sites have been shown to be 
under selection less often than any other 
class of genomic site (Z. Yang and Bielawski 
2000). 

Identifying differentiation 

We calculated FST via the Weir and 
Cockerham method (Weir and Cockerham 
1984) using a custom R script. We calculated 
pairwise FST  for each pair of wild populations, 
and then reported the mean at each locus. 
We also calculated Bayes factors using 
Bayenv2 (Günther and Coop 2013) both for 
population differentiation and ecological factor 
correlation. We did not use Bayenv2’s option 
to incorporate pooled sequencing variation 
into the Bayes factors because we could not 
get the program to finish when using that 
setting (supplementary text). In the case of 
population differentiation, we did not use the 
pooled sequence option because it hasn’t 
been correctly formulated (Günther and Coop 
2013). 

Fitting Q-Q plot distributions 

We fitted gamma distributions to the genome-
wide collection of each of the 11-populations 
differentiation statistics (FST , the Bayenv2 
and LFMM statistics, and SweeD’s CLR 
values) using R’s optim function. We allowed 
up to 1000 iterations of fitting and ensured 
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that this limit was above what was needed for 
convergence in all cases. The allowed range 
for each of the fit parameters was [0.1,300]. 
We censored the bottom 10% and top 20% of 
data points from each distribution for the 
purposes of fitting in order to test whether 
observed extreme values would match the 
distribution obtained purely from the center of 
the distribution. optim minimizes a computed 
summary statistic for the fit of the distribution; 
in our case, we minimized the sum of the 
squared deviations between the observed and 
expected cumulative density statistics. We did 
not fit the lower tail of the observed data 
because some of the statistics have a 
mathematical lower bound not easy to 
accommodate with the gamma distribution 
(e.g., FST can take on negative observed 
values); more importantly, we also did not fit 
the upper tail of the observed data, as this is 
where we expect loci showing an excess of 
differentiation to diverge from the null 
distribution describing the remainder of the 
data. 

Sliding window calculations 

We performed windowed analyses by 
averaging values across SNPs with all 
statistics except LFMM’s z-values, which were 
combined in windows using the Fisher-
Stouffer method, as detailed in the manual for 
LFMM (Frichot et al. 2013). We note that the 
Fisher-Stouffer method assumes 
independence of the values of the combined 
statistics, which is not necessarily true in this 
case due to linkage disequilibrium, so the p-
values produced by this method should not be 
regarded as exact. In any case, we largely 
disregard LFMM’s results due to coverage as 
discussed below, and window averaged 
statistics are not used in any of the values 
reported here, but are merely used in plotting 
where indicated. We used 25-SNP windows in 
all cases except LFMM, where 100-SNP 
windows were used. We chose all of these 
based on visual examination of the statistics – 
these window sizes appeared to reduce noise 
while making peaks more visible. 

Significance 

We consistently use a genome-wide false 
positive threshold of 0.05 where possible, 
(i.e., with LFMM and SweeD). With XTX and 
Bayes’ factors, computational limitations led 
to a significance threshold based on 4 million 
SNPs, or a significance threshold of 0.36; 
thus, the significance thresholds should be 
taken with a grain of salt. We generated this 
neutral distribution using simulation 
machinery from Gautier 2015 (Gautier 2015). 
This machinery uses a covariance matrix 
produced by Bayenv2, plus information on 
sampling and coverage, to generate the 
distribution of allele frequencies that we would 
expect if the sequenced populations are 
evolving neutrally and are related in the way 
that the covariance matrix describes. We 
generated 20 times the number of SNPs 
assayed throughout this paper (about 20 
million) and used the maximum value as our 
significance threshold, giving a false detection 
rate of approximately 1 in 20, or 0.05. In the 
case of XTX and Bayes factors, we used the 
maximum value of 4 million SNPs. 

In the case of 25-SNP windows we cannot 
use the simulation machinery of Gautier to 
generate a null distribution.  This machinery 
simulates independent SNPs conditional on 
the among population covariance matrix, but 
sliding windows in real datasets are typically 
over SNPs in LD with one another. As a 
result, the 25-SNP average for real data has a 
much larger variance than the same statistic 
calculated over independent SNPs; hence, 
much of the genome would be interpreted as 
“significant” by a sliding window calculation. 
To obtain a significance cut-off for 25-SNP 
window averaged XTX, we identified by eye 
the location in a Q-Q plot (see above for Q-Q 
plotting details) where the empirical values 
diverged from the line of best fit, and used 
that as a significance threshold. This 
“inflection point” from the Q-Q plot method 
generally agrees with the single SNP 
threshold obtained via simulation. 
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BLAST annotation 

We annotated all gene functions using blastp 
to align the E. texana genes to the D. 
melanogaster NCBI protein database, and 
vice versa. We regard the mutual best hits 
(those pairs that had e-values below 10-5 in 
both directions, and that paired in both BLAST 
directions) as the annotations in which we 
were most confident. In the 13 peaks of high 
interest discussed below, we annotated the 
genes that did not have mutual best BLAST 
hits in Drosophila melanogaster by taking the 
most significant BLAST hit for each gene 
(identified using blastp against the D. 
melanogaster nr protein database) and 
assigning that putative identity to the gene of 
interest. 

Environmental variable descriptions 

Some measured environmental variables 
require special description. “Date” is the date 
of collection of the soil. “Percent males” refers 
to the fraction of individuals that were male in 
hydrated samples. Surface area and volume 
were calculated based on measurements 
taken on-site at these pools. Streptocephalus 
mackeni and Thamnocephalus platyurus refer 
to the presence or absence of these species 
of Anostraca fairy shrimp, and “Fairy shrimp” 
refers to all fairy shrimp where the species 
was unknown 

Results 

Population Genetic Statistics 

We collected pooled population sequencing 
data from our 12 populations (11 natural 
populations, and 1 lab population, EE, 
descended from the WAL natural population) 
(Fig. 1), calculated allele frequencies at each 
SNP using GATK (McKenna et al. 2010), and 
used the resulting allele frequency estimates 
for subsequent analyses. We first used a 
simple hierarchical clustering tree to look at 
genome-wide relationships among the 
populations (Fig. 1). The populations EE and 

WAL, being directly related by only 6 
generations of laboratory maintenance, 
should be quite similar to one another; many 
of the natural populations appear to be as 
closely related to each other as EE and WAL 
are and even the most distant populations are 
less than twice as diverged. This observation 
contradicts the conventional wisdom that 
vernal pool clam shrimp populations rarely 
exchange migrants. 

Supplementary Figure 1 plots the observed 
minor allele frequency spectrum and the 
expected allele frequency spectrum under 
neutrality for a 𝛩 that matches the frequency 
distribution for SNPs at a frequency greater 
than 10% (see the methods for a description 
of this correction). Although we calculated 𝛩 
independently for each of our 12 sequenced 
populations, supplementary figure 1 displays 
the result produced if all alleles from all 
populations are aggregated for ease of 
viewing. The results in each population are 
qualitatively the same. The figure shows that 
the expected neutral allele frequency 
spectrum contains a large number of rare 
alleles that are failing to be identified by our 
SNP calling pipeline, almost undoubtedly 
because our pipeline includes an allele 
frequency cut-off to be considered a true 
positive SNP. We accounted for this under-
identification of SNPs by re-computing 𝛩 
using only high frequency SNPs and inferring 
the existence of additional rare SNPs under 
the assumption of neutrality and Wright-Fisher 
sampling (Fu 1995). This produced an 
averaged over populations estimate of 𝛩 per 
basepair of 0.00387. This value of 𝛩 is fairly 
typical for invertebrates, and is close to the 
estimated 𝛩 for Drosophila melanogaster of 
0.0053 (Andolfatto and Przeworski 2001). 

We used the result of LDx to estimate 
average linkage disequilibrium at various 
distances up to about 400bp, then identified 
the recombination rate based on decay of 
linkage disequilibrium according to (Marroni et 
al. 2011). We estimated the population 
average “rho”, ϱ, per basepair (the population- 
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adjusted recombination rate per basepair) to 
be 0.0036 or a genomewide estimate of ϱ of 
436,000.   Under population genetic theory, 
the expected value of theta is equal to 4Ne𝜇, 
assuming a mutation rate (𝜇) of 2.8×10-9 (the 
Drosophila melanogaster mutation rate per 
site per generation, from Keightley et al. 
2014), we estimate the effective population 
size of the clam shrimp to be 𝛩/(4×𝜇) = 
3.45×105. Since the expectation of ϱ is 
similarly 4Nr (where r is the size of the 
genome in Morgans), we estimate r to be 0.33 
(or 33 cM). Assuming this estimate of r is 
correct, it seems quite low. An apparent map 
size of 33cM is consistent with a lack of 
recombination in amphigenic hermaphrodites, 
which can represent 80-90% of individuals in 
many clam shrimp populations (Weeks et al. 
1999b), suggesting a male map size closer to 
300cM, consistent with Drosophila. That said, 
our estimates of ϱ need to be interpreted with 
some caution, linkage disequilibrium was 
estimated using only short reads, and is thus 
only estimated out to ~450bp.  It is 
conceivable that longer range LD paints a 
different picture and/or does not follow the 
predicted decay rate (W. G. Hill and Weir 
1988). 

Genome-wide Selection Detection 

Pairwise population differentiation 
comparisons 

We initially compared the WAL and EE 
populations. Since the EE population is a 
direct descendant (6 generations in the 
laboratory at ≥250 individuals per generation) 
of the WAL population, there are several 
reasons that a pairwise comparison of WAL 
and EE is of interest.  First, if minimal 
differences between WAL and EE exist, then 
they can be combined to increase coverage of 
WAL in the 11-population analysis. Second, if 
we observe substantial regional differentiation 
between these two populations, this would be 
strong evidence of selection due to 
domestication in the EE population (that is, 
selection due to being reared in laboratory 
conditions). And third, the level of 
differentiation between the WAL and EE 
populations, which have a known history, 
could inform inferences about the history and 
relatedness of the wild populations. Under 
neutrality, FST is expected to be exponentially 
distributed with a lambda that can be 
calculated from the empirical FST distribution 

 
Figure 1: A map of the sampling locations for the 11 study populations and a UPGMA tree depicting 
the relatedness of the populations based on genome-wide allele frequency estimates. Colors 
correspond between the map and the tree. All populations were taken as soil samples from field sites 
in New Mexico and Arizona. The “EE” strain is a laboratory strain descended from WAL. 
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(Elhaik 2012). We computed FST for this pair 
of populations and used a Q-Q plot to 
compare the observed distribution of FST to an 
exponential distribution; however, rather than 
generating the theoretical distribution by 
computing lambda based on mean FST as in 
Elhaik 2012, we fit our exponential distribution 
the middle 70% of the data using optim in R. 
(Sup. Fig. 2, see methods). Q-Q plots have 
great utility for genome-wide datasets where 
one expects a summary statistic from the vast 
majority of the genome to have a distribution 
consistent a null hypothesis, with the statistics 
from a small subset of SNPs distributed 
differently.  The vast majority of data points 
will fall along a straight line consistent with the 
quantiles of the null distribution, with larger 
values of the observed summary statistic 
deviating sharply upward from that same 
straight line (see McCarthy et al. 2008 and 
Pearson and Manolio 2008 for reviews of how 
to interpret Q-Q plots in the context of 
genome-wide association studies where they 
have had a large impact).  In the case of FST, 
the large majority of the SNPs should have 
FST statistics distributed according to an 
isolation by distance model, with a small 
subset of SNPs exhibiting higher FST statistics 
suggestive of local adaptation. Q-Q plots of 
FST (Sup. Fig. 2, first panel) indicate that, 
while there is a small bias toward higher allele 
frequency differences between WAL and EE 
compared to the theoretical expectation, the 
deviation is small; however, the fit of an 
exponential in this case does not seem to be 
a very accurate representation of the shape of 
the data. Normal and gamma distributions, fit 
with and without logging, had equally poor fits 
(data not shown). We suspect part of the 
difficulty in fitting FST statistics to a simple 
exponential distribution is due to observed FST 
statistics occasionally being negative. 

The second panel of supplementary figure 2 
represents the same Q-Q plot arrangement as 
the first panel, but uses a 25-SNP-windowed 
average of FST rather than raw FST. In this 
case we fit a normal distribution in place of an 
exponential distribution, since the mean of 

many independent identically distributed 
exponential random variables converges on a 
normal (Stuart and Ord. Kendall’s Advanced 
Theory of Statisitics:  Vol 1 Distribution 
Theory, 6th ed.  1994.  New York: Halsted 
Press). As with the first panel, the genome 
can be construed as falling on a mostly 
straight line with the exception of two points. 
Both of these points appear to be SNPs that 
have escaped quality filtering but are 
misleading: one resides on the edge of a 
small contig and is more than 200kb from the 
next non-censored SNP, while the the other 
appears to be one of only two non-censored 
SNPs on its 36kb contig.  Since there is little 
evidence that the WAL and EE populations 
are different from one another, we chose to 
pool them for all subsequent analyses. It is 
noteworthy that the null distributions we 
tested do not seem to be excellent fits to the 
observed, and indeed we tried many other 
distributions and found that the fit was no 
better; we propose that this is due to the 
complex properties of the FST statistic, which 
has been noted elsewhere to have maximum 
and minimum values that vary from locus to 
locus (Jakobsson et al. 2013). 

We next examined the two high coverage 
lines, LTER and Tank011. These two 
populations were sequenced much more 
deeply than the others, and thus have much 
more accurate estimates of allele frequency at 
every SNP in the genome (i.e., 206X average 
coverage for LTER and Tank011 compared to 
48X average coverage for the other nine 
populations).  We generated Q-Q plots of FST 
for this pair of lines according to the same 
scheme used to compare WAL and EE (Sup. 
Fig. 3).  We had many of the same problems 
fitting single SNP FST and sliding window FST 
as with WAL and EE, with the fits exhibiting 
similar properties. Based on single SNPs (first 
panel) FST statistics fall along a straight line, 
with the exception of values of FST greater 
than 0.5 where the statistic seems to max out, 
suggesting very little signal at single SNPs. In 
comparison with the relatively subtle 
divergence from the expectation line observed 
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with the WAL vs. EE FST Q-Q plot, this plot 
shows a dramatic divergence at the upper 
end of the distribution, though it appears to 
level off as FST approaches 0.5. Likewise, 
there is a much more dramatic upward trend 
in the 25-SNP windowed Q-Q plot for LTER 
vs. Tank 011 than for WAL vs. EE.  Like the 
single SNP FST distribution at very large 
values of average FST the curve for the 25-
SNP window also flattens, again likely due to 
the FST statistic saturating. Overall there is 
some indication of greater than expected 
population differentiation for some regions of 
the genome. This being said, the power of FST 
to detect differences between populations 
seems to be weak if both windowing and 
200X sequence coverage is necessary in 
order to identify a signature of local 
adaptation (that FST also saturates is an 
addition problem). We later show that FST 
seems to do a poor job of identifying local 
adaptation when we consider all 11 
populations, and is perhaps not the most 
suitable statistic for detecting local adaptation. 

Site frequency spectrum derived inference 
of selection 

From here, we moved on to analyzing all 11 
populations together. The WAL and EE 
populations were pooled, and LTER and 
Tank011 were each down-sampled to ~48X 
coverage. We began by performing a scan for 
selection based on site frequency spectra 
using SweeD. SweeD identifies variation in 
the site frequency spectrum (specifically, a 
lack of rare alleles) and takes this as evidence 
of a selective sweep in the recent past. We 
ran SweeD both for each individual population 
and for all populations together, but owing to 
the similarity between the results, and the fact 
that we believe the results are not highly 
informative, here we present only the full 11-
population result. We plotted SweeD’s 
composite likelihood ratio (CLR) using a 
Manhattan plot (Sup. Fig. 4). We know that 
the site frequency spectrum is not accurately 
represented by the SNPs that we have 
identified using Poolseq (see the section on 

population genetics and supplementary figure 
1 for more detail), thus SweeD should 
produce many false positive calls under these 
conditions. Since rare SNPs are difficult to 
distinguish from errors, many rare SNPs are 
never called, leading to an allele frequency 
spectrum that is skewed toward common 
alleles. Because SweeD identifies selection 
by finding regions of the genome whose site 
frequency spectra deviate dramatically from 
neutrality, we should expect and do indeed 
find that a large portion of the genome 
appears be under selection. Thus, the results 
of SweeD should be treated with skepticism in 
this case, and perhaps in other cases where 
pooled sequencing data has been used to 
ascertain SNPs. 

Population differentiation in all 11 wild 
populations 

We next carried out an analysis to identify 
population differentiation using all 11 natural 
populations. We chose to use FST and 
Bayenv2’s XTX statistic to scan for 
differentiation. For Q-Q plotting, we generated 
a theoretical distribution by fitting a two 
parameter gamma distribution to the middle 
70% of the empirical data, as described in the 
methods. Q-Q plots of experimental FST vs. 
the exponential distribution (Fig. 2) do not 
demonstrate any evidence of population 
differentiation. The Q-Q plot for FST suggests 
little signal that could be used to detect 
regions of local adaptation. On the other 
hand, XTX seems to identify a subset of SNPs 
(with log10(XTX) statistics greater than ~1.45; 
Fig. 2) as being involved in local adaptation. 
The increased power in XTX compared to FST 
is perhaps unsurprising as it takes into 
account the level of relatedness amongst the 
populations. A simple UPGMA tree comparing 
the populations based on genome-wide allele 
frequencies (Fig. 1) indicates that several of 
the populations are very similar to each other. 
In fact, knowing that “EE” is directly 
descended from “WAL” and separated by only 
6 generations of laboratory breeding, the 
UPGMA tree makes it evident that some of 
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the populations are nearly identical in terms of 
allele frequencies. Thus, XTX, which takes 
into account the relationships between the 
populations, should perform better when 
attempting to identify differentiated loci. 
Additionally, when we compute a 25-SNP-
window average of XTX (Fig. 2), we arrive at a 
qualitatively very similar result: strong linearity 
with the gamma distribution until log10(XTX) is 
greater than approximately 1.40. 

We next generated Manhattan plots for single 
SNP FST, single SNP XTX, and 25-SNP 
windowed XTX (figure 3). For FST we set a 
genome-wide significant threshold from an 
exponential distribution with L = 1/mean(FST).  
For single SNP XTX we used a simulated set 
of read count value as controls to set a 
genome-wide significance threshold of 0.36 
(i.e., a single false positive SNP roughly every 
3 genome scans), a more accurate 
determination of this threshold was largely 
dictated by computation limitations.  The 
threshold of 37.7 (or log10(XTX) = 1.6) 
determined in this manner agrees with one 
obtained by simply taking the inflection point 
from the Q-Q plot of figure 2. For the 25-SNP 
windowed XTX analysis, SNPs in a window 

are not independent of one another, and we 
cannot simply take the average of 25 unlinked 
SNPs from our simulated read count 
experiment to set a threshold, as that would 
be anti-conservative. Instead we determined 
significance from the inflection point of the Q-
Q plot at a log10(XTX) of 1.4. FST (panel A) 
stands out here as having no peaks that 
indicate local adaptation. 

On the other hand, the XTX statistic reveals 
numerous large peaks (plus a handful of 
smaller peaks) in the Manhattan plot of panel 
B. Upon closer inspection of these peaks, we 
noted that they were characterized by their 
contents: a subset of SNPs, scattered 
throughout a small region, with extremely high 
XTX values, and a relatively large number of 
SNPs with average XTX values (see Sup. 
Figs. 5-10). Based on this, we concluded that 
we could detect the regions with a large 
number of supporting polymorphisms by 
taking a power-transformed average of the 
data. Such an average would put extra weight 
onto high values, and could identify regions 
that contained large numbers of elevated 
values. We arbitrarily chose an 8th-power-
transformed average of a 1000-snp window, 

 
Figure 2: Quantile-quantile plots of two statistics used to identify regions with high population 
differentiation in the clam shrimp genome. Left: mean pairwise 𝐹!", logged. Center: Bayenv2 𝑋!𝑋, 
logged. Right: Bayenv2 𝑋!𝑋 25-SNP-window average, logged. All three datasets are plotted against a 
two-parameter gamma distribution fit to the middle 70% of the observed data (methods). The straight 
line is a linear regression fit between observed and expected statistics for the same middle 70% of the 
data. The bar charts along the sides of the graph are histograms of the data along their respective 
axes.  From the histograms of the observed statistics it is apparent that large departures from the line 
of best fit in the tails is driven by a very small fraction of the total loci. 
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with a cutoff (after back-transforming) of 24 
(Sup. Fig. 13). We manually excluded regions 
at the edges of chromosomes, as well as 
regions that were embedded in overall high-
XTX portions of contigs (i.e., those without a 
discernable peak), and those that were 
significant, but appeared to be so in only a 
few windows. See Sup. Fig. 13 and its 
description for details of the exclusions. From 
this, we identified 13 peaks that we number 1-
13 in the Manhattan plot of panel B. These 
peaks extend well above our significance 
threshold, and consist of tens to hundreds of 
SNPs in regions small enough to contain one 
to three gene candidates. The 25-SNP sliding 
window average of XTX (panel C) seems to 
produce a result broadly consistent with the 
single SNP Manhattan plot, with some peaks 
becoming more pronounced (i.e., peak 4). We 
note that there is nothing special about the 
25-SNP window size, as it was chosen 
arbitrarily based on the ability to resolve the 
peaks clearly, and qualitatively similar results 

are obtained with different windows. Since the 
windowed analysis does not seem to identify 
more peaks than the single SNP analysis we 
focus further discussion on the un-windowed 
XTX statistics. 

We identify a total of 501 single significant 
SNPs, with 676 genes and 198 annotated 
genes (i.e., genes with a mutual BLAST hits 
to D. melanogaster) within 5kb. GOrilla (Eden 
et al. 2009) indicates that genes related to 
external visual stimuli are overrepresented in 
this set (Sup. Table 3). Of the 501 single 
SNPs above the significance threshold, 407 
(or 81%) are associated with the 13 
numbered regions, which appear as sharp 
peaks in the Manhattan plot. Further, the 
SNPs in the 13 numbered regions are 
associated with only 50 genes (22 being well 
annotated). Thus, based on the XTX test 
statistic, a small, localized fraction of the 
genome seems to account for much of the 
signal of local adaption. Figure 4 examines 

Region Contig Range (bp) Width (bp) Maximum XTX 

1 1 7960415:7961229 814 52.6524 

2 1 11807825:11808199 374 47.6688 

3 1 18205259:18209499 4240 70.4348 

4 1 28626427:28634469 8042 75.102 

5 1 41068868:41081593 12725 71.9472 

6 3 5849714:5855825 6111 65.5048 

7 4 2920923:2921932 1009 64.5828 

8 4 8446194:8447185 991 53.1936 

9 5 2113388:2117449 4061 59.1548 

10 5 3903600:3908963 5363 61.8584 

11 7 1318370:1320640 2270 96.1406 

12 14 369627:420280 50653 89.70358 

13 14 791617:817899 26282 67.7304 

Table 1: Major significant regions according to the 11-way XT X population differentiation analysis 
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two such peaks in detail, and Supplementary 
Figures 5-10 the other eleven. Table 1 further 
details the boundary of each peak.  From 
Figure 4, it is clear that resolution of these 
peaks is quite narrow, with peak widths in the 
range of 1-15kb, and most peaks containing 
less than 5 genes. We identified the probable 
identities of genes in the thirteen regions and 
compiled a table (Sup. Table 4) of these 
genes along with their exact locations relative 
to the peaks. Several peak associated genes 
have well-documented functions, including 
Rumpelstiltskin, okra, Cp1, SNS, Dscam2, 
pyridoxal kinase, and Ublcp1. 

The apparent high localization ability of the 
XTX statistic in some cases suggests 
individual SNPs of importance. Within the 13 

regions exhibiting peaks of significance 
several (cf. regions 1,2,5,7,8,9,11) are narrow 
enough that one or a small number SNPs 
stand out as being much more significant than 
their neighbors (Fig. 4, Sup. Figs. 5-10). We 
noted a single, highly significant SNP in 
regions 1, 2, 4, 5, 7, 8, 9, 11, 12, and 13 (Sup. 
table 5), and identified the likely location of 
these SNPs relative to nearby genes using 
SNPdat (Doran and Creevey 2013). 
Additionally, we observed that the 2nd most 
significant SNP in region 12, and the 2nd and 
3rd most significant SNPs in region 11 were 
distinct from the surrounding SNPs, and 
resided in genes. Looking at these 13 SNPs, 
five SNPs were intronic, five SNPs were in the 
coding sequence, and three SNPs were 
intergenic. 

 
Figure 3: Manhattan plots of support for an excess of differentiation among the 11 populations. Plots 
are as follows: A: mean pairwise 𝐹!"; B: Single SNP Bayenv2 𝑋!𝑋 statistic; C: 25-SNP window 
Bayenv2 𝑋!𝑋 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐.  Identified peaks are numbered 1-13 and are referred to as such throughout 
this work. Red lines correspond to significance thresholds set as described in the methods. 
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We found no examples of the generation of a 
premature stop codon or a synonymous CDS 
substitution in these 13 SNPs, but several 
examples of coding sequence changes. 
Regions 4 and 5 each had a coding change, 
and regions 11 and 12 each had a coding 
change at the second-most-significant SNP in 
their peaks. Region 11 additionally had a 
nonsynonymous mutation at its third most 
significant SNP. These five SNPs, 
respectively, reside in genes that align in a 
BLAST search to the following genes: 
rumpelstiltskin, pyridoxal kinase, CG10413, 
CG7627, and branchless. Some of these 
gene orthologs have essential functions that 
could be associated with major phenotypic 
effects in mutants: rumpelstiltskin is 
associated with mRNA 3ʹ-UTR binding and 
axis specification in embryos (Jain and Gavis 
2008), and pyridoxal kinase is the enzyme 

that produces metabolically active vitamin B6 
(Meisler, Nutter, and Thanassi 1982). 
Perhaps most interestingly, CG10413 is 
associated with sodium-potassium-chloride 
transport, which is likely to be important to 
fitness in a vernal pool organism because of 
the variable salinity of a drying pool of water. 
We tried aligning the most promising genes, 
CG10413 and rumpelstiltskin, to human, D. 
melanogaster, Caenorhabditis elegans, and 
Mus musculus orthologs identified via Flybase 
using the T-Coffee suite (Notredame et al. 
2000). They showed no evidence of highly 
conserved protein domains, but because we 
were comparing them to very distant relatives, 
this does not rule out the possibility of 
conservation of their domains in comparisons 
with more closely related species. 

 
Figure 4: Manhattan plots of single SNP 𝑋!𝑋 values indicating excess differentiation among the 11 
populations for the regions 11 and 4 as indicated in figure 3. The plots indicate the signal is highly 
localized, often suggesting a single gene (CG10413 for locus 11, and rump or okra for locus 4). The 
red rectangle in each upper plot indicates the region shown in the corresponding lower plot. The “C” 
and “R” indicators in the titles indicate the contig and region number. “Freq” refers to the allele 
frequency in each population as a deviation from the mean for that locus. 
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In several cases the handful of SNPs driving 
the signal of a peak are associated with one 
or two populations harboring outlier allele 
frequencies relative to flanking regions. For 
example, at the most significant SNP for 
region 11 (Fig. 4, C7, R11 lower panel) the 
allele frequency of the LTER population is a 
clear outlier; it appears that LTER is driving 
the signal in this region. Indeed, all of the 
populations except LTER have an allele 
frequency of zero at this SNP. A manual 
examination of the alignments of the Illumina 
data does not reveal any evidence of poor 
alignment or repetitive elements in this region. 
On the other hand, the second-most-
significant SNP appears to have a large 
amount of variation in the allele frequencies 
between the populations, with no evidence 
that the LTER population differs dramatically 
in allele frequency from the other populations. 
Because XTX takes into account the 
relationships of the populations, it is possible 
for it to identify differentiated regions that 
would be missed by directly examining the 
allele frequencies. Thus, we cannot conclude 
from allele frequencies alone that LTER is 
driving the association.  It is of note that we 
never see long, dozen or more, SNP 
haplotypes in these figures. This is consistent 
with linkage disequilibrium extending over 
short distances in this species, and the 
strength of selection acting on these regions 
being relatively small relative to 
recombination. 

Associations of population differentiation 
and environmental variables 

When the clam shrimp were collected, up to 
24 environmental variables (Sup. table 6) 
were recorded for each population. These run 
the gamut from geographic data (latitude, 
longitude, elevation), through abiotic 
ecological variables (pond size, pH, etc.), to 
biotic ecological variables (the presence of 
other shrimp species, the percentage of 
males in the population). We collapsed 
several of the variables highly correlated 
across the 11 ponds of this study 

(Supplementary figure 11). We further 
generated a set of “dummy” environmental 
variables corresponding to each of the study 
populations. For example, the “LTER” dummy 
variable would have a value of 1 for the LTER 
population and a value of 0 for all others. We 
then correlated each dummy variable with 
each environmental variable and further 
collapsed environmental variables with an 
absolute 𝜚greater than 95% with a population 
dummy variable.  The logic here was to avoid 
attributing a region associated with an 
environmental variable to that variable, in 
cases where that variable is statistical 
confounded with a single pond. This data 
reduction algorithm resulted in the following 
collapses: Thamnocephalus platyurus, 
Streptocephalus mackeni, and Cladoceran 
presence/absence were found to be identical, 
and highly correlated with longitude and WAL 
(thus collapsed to WAL); Eocyzicus 
presence/absence was collapsed to Ares; 
Tadpole shrimp presence/absence collapsed 
to Forsling; volume and surface area 
collapsed to LTER. Finally, the surface area-
to-volume ratio and depth were collapsed; 
that said, because they do not display any 
significance peaks indicating regions of local 
adaptation (see below), they have been 
excluded from our figures We did not include 
the absolute number of males or 
hermaphrodites in our analysis because they 
are a simple function of the amount of soil 
hydrated in the laboratory, although we did 
consider the frequency of males. This 
reduced the number of environmental 
variables from 24 to 13. The final set of 
environmental variables is listed in 
supplementary table 7. 

We used Bayenv2 to generate Bayes factors 
at each SNP, for 11 dummy variables and 13 
collapsed environmental variables (see 
supplementary table 7 for a complete list). 
Bayes factors differ from XTX in that they are 
only elevated when the allele frequencies at a 
SNP are correlated with the environmental 
variable in question. For each ecological 
variable, the Bayes factors (S. N. Goodman 
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1999) compare two hypotheses: either that 
the observed allele frequencies are due to 
ancestry alone, or that they are due to a 
combination of ancestry and selection that is 
correlated with an environmental variable of 
interest. Our Bayes factors were elevated if 
the “selection” hypothesis was more likely 
than the “ancestry alone” hypothesis. 

We began our analysis of the Bayes factors 
by subjecting them to the same Q-Q plotting 
test that we used with XTX. We present here 
Q-Q plots for a single Bayes factor 
(association with collection date, Figure 5, 
panel A), because other Bayes factors had 
nearly identical Q-Q plots. We find that the 
empirical values and the gamma distribution 
fit to the empirical values are fairly linear, with 
a very slight ‘hockey stick’ signal at the upper 
end of the distribution. This effect is made 
less obvious because of the double-log of the 
data, but is indicative of a very dramatic 
increase in the slope when the double-log is 
reverted (not shown). Our simulated neutral 

dataset allows us to establish that a 
log10(Bayes factor) single SNP threshold of 
4.97 holds the genome wide false positive 
rate to be 0.36. This threshold obtained via 
simulation agrees with the observed inflection 
point in the Q-Q plot. Note that, to avoid 
logging negative values, or fitting a gamma 
distribution to a distribution with negative 
values, the double-logged Q-Q plot was 
transformed by the following equation: 
log10(log10(Bayes Factor) + 0.76) + 2.032, 
such that the log10(BF) value of 4.97 
corresponds to a value of 2.79, approximately 
the point in the Q-Q plot (Fig. 5) where the 
hockey stick effect begins. 

We also discuss an alternative to Bayes 
factors, LFMM’s z-values (Frichot et al. 2013), 
but only in limited detail. LFMM does not take 
into account coverage, and so seems to 
produce inflated values in regions where 
coverage is low and allele frequency 
estimates are inaccurate (data not shown). 
Again, we begin by generating Q-Q plots of all 

 
Figure 5: Quantile-quantile plots of two statistics used to identify regions with high population 
differentiation associated with collection date (an environmental covariate). Left: Bayenv2’s Bayes 
factors, double-logged, and plotted against a two parameter gamma distribution fit to the middle 70% 
of the distribution (methods) Right: LFMM’s negative logged p-values plotted against a negative 
logged uniform distribution from 0 to 1. The straight line is the linear regression line to the middle 70% 
of the data in both cases. The bar charts along the sides of the graph are histograms of the data along 
their respective axes. 
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LFMM p-values, though for the sake of 
brevity, we only report one sample plot here, 
as all others were similarly shaped. Our Q-Q 
plot of the -log(p-values) produced by LFMM 
for the environmental variable of collection 
date (Fig. 5, panel 2) against a negative 
logged uniform distribution between 1 and 0 
(the expectation for a p-value), displays an 
upward “hockey stick” in the upper portion of 
the distribution (the majority of the data is in 
the very low end of the -log(p) value range, so 
a large portion of the Q-Q plot makes up the 
“hockey stick”). Genome wide analysis of our 
data with LFMM produced conclusions 
superficially similar to the Bayes factor 
results, which at first seems to be in keeping 
with the Q-Q plot results: a relatively small 
number of regions had visibly large numbers 
of strongly significant SNPs adjacent to each 
other. On the other hand, while a few LFMM 
hits seem to correspond to Bayes factor hits, 
many hits are unique to one of the two 
methods. Where there is disagreement, we 
believe Bayenv2 is a more reliable indicator of 
the presence of local adaptation. Bayenv2 
incorporates count data into its significance 
calculations, while LFMM uses only allele 
frequencies. Comparison to coverage 
indicates that many of LFMM’s strongest hits 
are in areas of low sequencing coverage. This 
is unsurprising, as inaccurate estimates of 
allele frequencies should produce allele 
frequencies that are not in agreement with the 
existing relationships between the populations 
(Fig. 4). For this reason, we do not further 
discuss the LFMM peaks. 

Across all 13 of our collapsed environmental 
variables (Sup. Table 7) we found 1,414 
SNPs with at least one significant Bayes 
factor; similarly, across the 11 dummy 
variables (Sup. Table 7) we found 3,877 such 
SNPs. 1,520 genes are associated with at 
least one significant SNP via the 
environmental variables, while 3,504 genes 
are associated with at least one dummy 
variable. The Bayes factors thus seem to 
have tagged a larger fraction of the genome 
than the previous analysis that ignored 

environmental predictors and only employed 
XTX: XTX identified a total of 510 SNPs; 
Bayes Factors, all told, identified 5291 SNPs. 
We will discuss this difference in the next 
section. Unsurprisingly, when we censor the 
SNPs to only include those in the 13 regions, 
we find the same number of associated genes 
(50) as we do with the XTX analysis earlier. 

The difference in the number of SNPs 
between the XTX and Bayes Factor analyses 
is due primarily to the Tank011 dummy 
variable, and the Elevation environmental 
variable. Both have extremely large numbers 
of significant SNPs (2,944 for Tank011, 
versus 92.3 for the average dummy variable). 
This difference in the number of SNPs could 
be due to either an incorrectly set significance 
threshold for these two tests, or it could be 
due to an especially high number of truly 
differentiated SNPs associated with these 
tests. The fact that Tank011 is one of our 
most deeply sequenced populations and 
happens to have a large number of significant 
loci seems to be circumstantial evidence that 
these may be the result of true signals of 
differentiation, but this is uncertain; Therefore, 
we focus here on the 13 large peaks that 
were supported both by XTX and a large 
number of Bayes Factor tests. 

We next generated Manhattan plots of the 
Bayes factors for each of the 13 
environmental variables (Figure 6, Figure 7, 
Sup. Figures 5-10) and 11 dummy variables 
(Sup. Figure 12). Because of the lack of 
peaks associated with some variables, figures 
depict only those variables that had at least 
one visible peak. Figure 6 provides an 
example of Bayes factors for the effect of 
collection date. As the shrimp populations 
were samples in different years (1995, 1996, 
1998, 2000, and 2003), collection date 
presumably reflects differences in allele 
frequency due to the ecological details of the 
prior spring’s rainy season.  Here we observe 
3 peaks. Interestingly, these peaks 
correspond to numbered regions 3, 9, and 11 
of Figure 7. An important observation is that 
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we do not identify any additional peaks using 
Bayes factors and the environmental variable 
date that are not identified using the 11-
population XTX test alone.  A similar trend 
holds for the other 8 environmental covariates 
shown (Fig. 7). In many cases we identify 
peaks, but they always correspond to the 
peaks from the 11-population comparison.  
The same pattern holds for the 11 dummy 
variables (Sup. Fig. 12). Whenever the Bayes 
factor identifies a clear peak, that peak always 
corresponds to one of the 13 peaks identified 
using the XTX test.  Further, because we 
cannot differentiate especially well between 
hypotheses 4 and 5 (above), there are 
reasons to believe single SNPs identified as 
significant that are not associated with a peak 
are simply false positives. Thus, we focus our 

analysis on the 13 peaks that seem most 
reliable. 

A summary of the mapping of peaks to 
environmental predictors or dummy variables 
is presented in Figure 8, with some 
environmental predictors and dummy 
variables excluded due to a lack of peaks 
associated with these variables. We searched 
for trends in the patterns of peaks relative to 
environmental and dummy variables. Most 
strikingly, regions 12 and 13 display elevated 
Bayes factors for every environmental 
variable we have measured. The putative 
genes identified in these regions (Cp1, 
CG7627, CG4562, multidrug resistance-like 
protein 1, octopamine β-1 receptor), which 
relate to various nervous system functions 
and wound healing, may be worth further 

 
Figure 6: Manhattan plots of tests for an association between collection date and allele frequency 
difference for the 11 populations. A: Single SNP Bayenv2 Bayes Factor, logged; B: 25-SNP windowed 
Bayenv2 Bayes Factor, logged. Peaks numbered as in Figure 5. Red lines correspond to significance 
thresholds set as described in the methods. 
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inspection. That being said, peaks 12 and 13 
are located in a small contig with somewhat 
high estimates of residual heterozygosity in 
the reference genome. A small assembly 
contig may be a red flag that the contig 
contains repetitive elements that would make 
alignment to the contig less reliable (Baldwin-
Brown et al. 2017, Sup. Fig 3 – 14th contig 
from the left). Indeed, we see large regions of 
this contig that contain no SNPs that have 
passed coverage filtering (not shown), 
indicating that alignment to the contig in 
question is not as reliable as alignment to 
other contigs. Thus, we believe these peaks 
should be treated with some skepticism and 
may not be reliable. In this way, these regions 
highlight the value of a high quality genome 
assembly: alignment to a higher quality 
assembly is much more reliable. 

The other 11 peaks are associated with 
regions of the genome with excellent 
assembly properties. Collection date is 
associated with regions 3, 9, and 11, and is of 
note because it is not highly correlated with 
any particular population. Of note here is the 
fact that collection date is not necessarily 
identical to the year of last hydration in the 
wild, as not all pools are filled with water on a 
consistent yearly basis. Collection date is not 
necessarily identical to the year of last 
hydration in the wild, as not all pools are filled 
with water on a consistent yearly basis, but is 
certainly connected to it. Elevation is 
associated with numerous regions: 
1,3,4,5,7,9, and 10, and is also not correlated 
with any single population. It still remains a 
challenge to know if the observed 
associations with environmental predictors 

 
Figure 7: Manhattan plots of single SNP Bayes factors for different environmental variables. All plots 
show the 11-population logged Bayes factor associated with the given environmental variable, with 
environmental variables indicated, and the number in parenthesis the number of populations that 
environmental variable was measured for. “f” refers to the inbreeding coefficient estimated for each 
population (S C Weeks and Zucker 1999). Environmental variables that are highly correlated with a 
single pool, or that have no significant peaks besides regions 12 and 13, are not shown. 
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are real, or just happen to be associated with 
a subset of our 11 populations due to 
sampling. 

With the above caveats in mind, some gene 
functions do seem to suggest a relationship 
between genotype and phenotype: for 
example, CG10413, a gene in region 11, is 
believed to have sodium/potassium/chloride 
symporter activity, and contains a 
nonsynonymous SNP with a very high XTX 
value; one might speculate this influences 
salinity tolerance in these shrimp as ponds 
are likely to vary in their salinity. Region 11 is 
associated with the collection date, the 
latitude, the presence of fairy shrimp, the 
AMT1 population, the Hayden population, and 
the WAL population (which is correlated with 
longitude, the presence of Streptocephalus 
mackeni, and the presence of 
Thamnocephalus platyurus). With so many 
associations, it is not likely that we can 
definitively identify the environmental variable 
that drives differentiation of CG10413. 
Likewise, rumpelstiltskin, a gene in region 4, 
is a development gene in D. melanogaster 
associated with embryo segmentation and 
anterior/posterior differentiation, and contains 
a nonsynonymous mutation at the SNP with 
the highest XTX value in region 4. We do not 
find evidence that this SNP is in a conserved 
residue, but our ability to identify conserved 
residues is limited by the lack of available 
genomes that are closely related to E. texana. 
Unfortunately, rumpelstiltskin is associated 
with elevation, pH, and the Hayden, WAL, 
SWP4, and Tank011 populations, so it is 
difficult to draw a conclusion about its 
relationship with any specific environmental 
variable. Other genes with nonsynonymous 
mutations in highly differentiated SNPs in the 
regions assayed here include pyridoxal kinase 
in region 5 (vitamin B6 production), and 
branchless in region 11 (branch 
morphogenesis in trachea and lungs). 

Discussion 

Wild populations and selection 

Numerous studies have used an analogue of 
FST for detecting local adaptation in model 
systems with a high quality reference genome 
with a large number of individuals genotyped. 
Studies performed in humans (Mackinnon et 
al. 2016), Drosophila (Reinhardt et al. 2014), 
and other model organisms (McGaughran et 
al. 2016) commonly use either whole genome 
sequence data (Drosophila, other models) or 
relatively carefully ascertained SNPs from 
genotyping chips (human). Given a high 
quality reference genome and large 
population sample, the identification of FST-
like outliers seems to be a somewhat effective 
means of detecting local adaptation 
(Savolainen et al. 2013). Only a small number 
of studies in non-model systems have 
employed a high-quality reference and 
genotyping dataset (e.g., Lamichhaney et al. 
2015, McGaughran 2016). Perhaps the best 
non-model example at this time is 
Lamichhaney 2015 (Lamichhaney et al. 
2015), a project that sequenced 120 finches 
across the Galapagos Islands using whole 
genome sequencing, and used a high quality 
(5.2Mb scaffold N50) assembly for alignment. 
In spite of the fact that they restricted 
themselves to a normalized version of FST, 
which does not account for relationships 
between populations, they were still able to 
detect several regions that they believed 
contained genes related to beak morphology, 
a trait that did not escape Darwin’s attention. 
Even so, many of these peaks were about the 
same size as the scaffolds on which they 
resided, making it difficult to tell where one 
peak ends and another begins. McGaughran 
2016 (McGaughran et al. 2016) sequenced 
264 strains of nematodes (Pristionchus 
pacificus rather than Caenorhabditis elegans) 
and performed an FST analysis, the authors 
successfully identified a set of locally adapted 
regions. One region contained a gene that 
was a homologue of the C. elegans NHX 
gene family. They confirmed this gene’s effect 
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on pH tolerance using transgenics. Both of 
these studies required sequencing of a large 
number of individuals from a broad 
geographic area, and the construction of a 
high qualify reference genome. Both were 
successful at identifying regions important in 
local adaptation using FST. 

In contrast, scans for local adaptation in non-
model systems are typically performed under 
less than ideal conditions. We could not 
identify any examples in the literature of a 
high quality genotyping dataset associated 
with highly fragmented reference, nor studies 
with low quality genotyping but a very good 
reference. Typically, non-models have highly 

fragmented references and relatively sparse 
genotyping datasets. A low contiguity 
reference genome assembly can prevent 
researchers from being able to identify peaks 
of significance – if a peak is larger than the 
contig that contains it, it is possible that the 
multiple sections of the peak will be identified 
as separate peaks because they are on 
separate contigs. Even in the case of a 
relatively high quality assembly (i.e., 
Lamichhaney et al. 2015), this problem can 
still occur in the smaller contigs. The worst 
possible instance of this would be a complete 
lack of a reference, as in Lal et al. 2016, 
where SNPs can only be analyzed 
independently, and there is no concept of a 
significance peak.  Furthermore, in our work 
two of our thirteen peaks are likely artifacts as 
they are associated with contigs of dubious 
quality; it is unclear the extent to which a high 
fragmented assembly would magnify this 
source of false positives.  On the other hand, 
a small number of assayed markers can lead 
to the problem of missing all of the SNPs in a 
region of population differentiation completely 
or sampling SNPs too sparely to detect a 
peak.  In our study many peaks were only 
tagged by a few dozen SNPs; we might 
expect this to be the case in other systems in 
which linkage disequilibrium only extends 
over short physical distances. There are many 
examples of non-model systems that have 
had populations sequenced using candidate 
gene sequencing (Keller et al. 2012), RADseq 
(Lal et al. 2016), targeted genomic 
sequencing (Yeaman et al. 2016; Roulin et al. 
2016; Holliday et al. 2016), and other 
methods (Riginos et al. 2016; Wenzel et al. 
2016). Although these techniques for 
ascertaining polymorphism information are 
known to be reliable and affordable, most of 
them are limited in the number of 
polymorphisms that they can assay (often as 
low as a few hundred loci). For comparison, 
we used a total of 1.4 million SNPs for our 
XTX scan, giving us an average resolution 
over the 120Mb genome of one marker every 
85 basepairs. A set of only 500 SNPs on this 
same genome would give a resolution of one 

 
Figure 8: A matrix associating the regions of 
Figures 3, 6, and 7 with environmental variables 
or single populations that identified the same 
regions.  A black square indicates the presence 
of a peak at that locus, when associations are 
tested using Bayes factors for that variable. A 
white square indicates no peak in that region, for 
that variable 1LTER is highly correlated with the 
surface area and volume of the pools. 2WAL is 
highly correlated with longitude, as well as the 
presence/absence of Cladocerans, S. mackeni, 
and T. platyurus. Variables above the red line are 
population dummy variables, while variables 
below the red line are measured environmental 
variables. Region 2 was not observed as 
correlating to any of the environmental variables 
or population dummy variables tested. All 
variables that were correlated with only regions 
12 and 13 were excluded from this matrix. 
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marker every 240kb, leaving large gaps of 
unsampled genomic content that could 
prevent the detection of population 
differentiation if such differentiation is 
localized to a small region. 

In most published studies, FST-like statistics 
are computed using population-wide allele 
frequency data. Most use FST or a derivative 
thereof (Lamichhaney et al. 2015; 
McGaughran et al. 2016), but others use 
more complex statistics such as those of 
Bayenv, (Keller et al. 2012), Bayescan (Foll 
and Gaggiotti 2008; Keller et al. 2012; Lal et 
al. 2016), LOSITAN (Antao et al. 2008; Lal et 
al. 2016), or others. We used FST, Bayenv2’s 
XTX and Bayes factors, and LFMM’s z-values 
to identify signals of selection in these 
populations. We largely disregarded FST in our 
study because there are clear relationships 
between the populations that make FST poorly 
suited to identify local selection.  Indeed, we 
found that we could not distinguish any peaks 
of localized population differentiation using 
FST. Additionally, we largely disregarded the 
results of LFMM because it fails to take into 
account coverage when computing 
significance, and many of LFMM’s peaks 
appear to occur in areas of suspiciously low 
coverage, where estimates of allele 
frequencies are inaccurate. It is reasonable to 
assume that LFMM should be very effective in 
scenarios where the allele frequencies are 
known to have been accurately measured 
(say, a large sample of individuals that are 
individually sequenced rather than sequenced 
in pools and/or genotyped using SNPchips), 
but when the sequencing coverage used to 
estimated allele frequencies varies LFMM 
appears unreliable. Therefore, we relied 
largely on the results of Bayenv2’s XTX and 
Bayes factor statistics when dissecting this 
data. Bayenv2 identified a number of regions 
of localized population adaptation, but is 
extremely computationally expensive. The 
Markov chain Monte Carlo approach to 
parameter estimation requires at least 
thousands of iterations per locus, and each 
locus must be estimated multiple times (five, 

in our case). On top of that, identification of a 
significance threshold requires further XTX 
and Bayes factor estimation on simulated 
neutral datasets, which must be considerably 
larger than the genome. At ~5 minutes per run 
per locus on a modern high performance 
cluster, we estimate this project required 
greater than one million CPU hours. A similar 
project, performed on a human-sized 
genome, or one on the same sized genome 
with an order of magnitude more populations 
would be computationally difficult to carry out. 
The most likely reason the Bayenv2 approach 
has not been used on genome wide datasets 
consisting of millions of SNP markers is 
simply that of computational difficulty. The 
field would be greatly accelerated if future 
versions of Bayenv2 were ~100X more 
efficient. 

To our knowledge ours is the first non-model 
study employing a high contiguous genome 
assembly, a high coverage genome wide 
Poolseq dataset that detected millions of 
SNPs in several populations, and a 
computationally challenging, but powerful, 
Bayesian statistic framework. The intersection 
of assembly, whole genome sequencing, and 
complex Bayesian statistics in our case led to 
the detection of regions of the genome 
apparently under local adaptation that would 
not have been detectable using simpler 
methods, perhaps owing to the relatedness of 
some of our surveyed populations and the 
relatively small number of populations 
surveyed. It is difficult to directly compare our 
study to others, as nearly all of these studies 
relied upon sequencing of individuals, rather 
than sequencing of pooled populations (with 
rare exceptions J. Chen et al. 2016). Our use 
of pooled population sequencing allowed us 
to estimate our allele frequencies based on a 
large total number of individuals, but also 
caused uncertainty in the number of 
individuals contributing to an allele frequency 
estimate, and caused the number of 
individuals contributing to each estimate to 
differ between both from region-to-region and 
from population-to-population. Thus, it is 
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difficult to compare the value of the 844X of 
Illumina sequencing performed here across all 
11 populations to, say, the 120 individuals 
sequenced in (Lamichhaney et al. 2015). 

Wild populations and selection in E. 
texana 

Conventional wisdom indicates that vernal 
pool organisms are not capable of a great 
deal of migration under most circumstances. 
Indeed, Bohonak 1998 indicates that a 
geographic distance of only a few hundred 
meters should be sufficient for a high degree 
of differentiation of populations in the 
Anostraca (fairy shrimp). The inability of 
vernal pool shrimp to escape the pools in 
which they are born seems to prohibit 
migration between distinct pools. In fact, we 
find here (Fig. 1) that there is a great deal of 
migration between pools, both across short 
and long geographic distances, with shorter 
distances leading to increased migration - 
mean pairwise FST is 0.038 across these 
samples. The source of this ability to migrate, 
whether it is animal tracking, wind dispersal, 
periodic flooding, or some other mechanism, 
should be the subject of further study. 

We identify several genomic regions that 
appear to be under selection, as well as 
several variables in the environment that 
appear to be correlated with these selected 
regions. Of note are two regions that appear 
to be subject to selection that are both related 
to RNA-to-protein translation, including 
CG10306, which is expected to be involved in 
regulation of translation initiation (FlyBase 
Curators, Swiss-Prot Project Members, and 
InterPro Project Members 2004), La, which is 
experimentally validated as binding to rRNA 
primary transcript (Yoo and Wolin 1994), and 
rumpelstiltskin, which is experimentally 
validated as binding to the 3’ UTR of mRNAs. 
It is not clear what would drive protein 
translation machinery to be under differential 
selection in different pools, though we note 
that not all genes in our assembly have 
orthologs in D. melanogaster, so it is possible 

that unannotated genes, or even 
undiscovered genes, could drive these signals 
of local adaptation. 

Correlation with environmental variables 
seems to indicate that certain variables have 
a larger effect on allele frequencies than 
others, but there are good reasons to think 
that the associations with environmental 
variables that we find are not proof of a 
connection between the environmental 
variable and adaptation. For example, there 
are a number of regions (1,3,5,6,10,12, and 
13) whose allele frequencies are strongly 
correlated with surface area of the pool in 
which the shrimp reside. Pool surface area 
could easily be a strong agent of local 
adaptation, including the persistence of water 
over longer periods, the presence of 
predatory shrimp such as tadpole shrimp 
(there may be a relationship between pool 
size and presence of tadpole shrimp), 
consistency of food availability, etc. 
Unfortunately, only a single population (LTER) 
is represented by a large pool, so peaks 
associated with pool area are confounded 
with the LTER population, and it is difficult to 
draw conclusions about pool area without a 
more extensive sampling that includes both 
large and small pools. A better example of an 
interesting environmental predictor is 
collection date. All samples in this data set 
were collected in one of five collection trips in 
the years 1995, 1996, 1998, 2000, and 2003. 
It is easy to imagine that selection pressures 
differ between, say, a rainy year and a dry 
year, and that changes in climate could drive 
temporary adaptation. Further work could 
determine if there is a relationship between 
the previous season’s rainfall and the allele 
frequencies at collection date-associated 
regions. Overall, although a large number of 
SNPs were significantly differentiated, a small 
number of regions showed visibly strong 
signals of local adaptation. These few, 
strongly differentiated regions certainly seem 
to be worthy of further study. The clam shrimp 
ortholog of CG10413 in region 11, for 
example, is predicted to have 
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sodium/potassium/chloride symporter activity. 
It has long been believed (Potts and Durning 
1980) that sodium/potassium pumps and 
chloride pumps with passive sodium diffusion 
are important for regulating osmotic stress in 
vernal pool shrimp. Although we have no data 
on salinity in these pools (and it likely various 
over the life of any given vernal pool), it is 
tempting to speculate that salinity is 
correlated with the significant region 9 hits. 
We identified five genes, rumpelstiltskin, 
pyridoxal kinase, CG10413, branchless, and 
CG7627, that have nonsynonymous coding 
changes produced by one of the top two 
SNPs in one of our 13 peaks. These genes 
seem especially worthy of further 
investigation. 

Studies have historically had much higher 
power when comparing allele frequencies to 
environmental variables, rather than merely to 
one another, with some selected regions 
being identifiable only when examined in the 
context of a correlation with the environment. 
For example, Berry and Kreitman 1993 
observed excess differentiation at two 
functional sites in the Adh gene in Drosophila 
relative to the latitude of the collection site, 
but were unable to detect the same two sites 
by just looking for excess differentiation 
between populations. In contrast, we found 
that we were able to identify all of the major 
environmental variable-associated peaks 
using only an ecology-agnostic measure of 
population differentiation (XTX). This seems to 
be a demonstration that modern statistical 
techniques, combined with whole-genome 
SNP discovery and analysis, have a much 
higher power to detect differentially selected 
sites without knowledge of the ecology of the 
organisms in question. 

The future 

We identified a relatively small number of 
candidate genes that appear to be associated 
with differentiation of these populations. 
Genetic studies, perhaps using CRISPR-Cas 
(Jinek et al. 2012) could reveal much about 

the effect of these genes on phenotype. That 
being said, the approaches of this work only 
identify regions important in local adaptation – 
they do not tell us what phenotypes variation 
in these regions impact. So, even with the 
ability to generate gene knockouts, it is 
unclear what phenotypes should be 
examined. The observation that somewhat 
reproductively isolated populations living in 
different ecological or physical settings can 
show strong geographical isolation in isolated 
genomic regions suggests a powerful 
paradigm for identifying the genes 
contributing to adaptation in the wild. Further 
reductions in the cost of collecting Poolseq 
datasets would allow studies such as this to 
be carried out with many more populations, 
allowing the effects of specific populations 
versus environmental characteristics of those 
populations to be statistically disentangled. It 
would currently be a major computational 
challenge to efficiently calculate statistics 
such as XTX genome-wide for larger 
collections of populations. If that challenge 
could be met, future studies are more likely to 
be limited by the ability to measure a large 
number of relevant ecological properties for 
each population, rather than the ability to 
accurately estimate the allele frequency at 
every SNP genome-wide.  The methodologies 
of this paper provide a blueprint for 
characterizing the genetics of local adaptation 
in never-before-sequenced species. 
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