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Early detection  of  pediatric severe sepsis  is necessary in order to administer  effective treatment. 
In  this study, we  assessed  the efficacy  of  a machine-learning-based  prediction algorithm applied 
to electronic  healthcare record (EHR)  data for  the prediction  of  severe sepsis  onset. The resulting 
prediction performance was  compared with the Pediatric  Logistic Organ  Dysfunction score 
(PELOD-2)  and pediatric Systemic Inflammatory  Response  Syndrome score (SIRS)  using 
cross-validation and pairwise t -tests. EHR data were collected  from a retrospective  set of 
de-identified pediatric inpatient and emergency  encounters drawn  from the University of 
California San Francisco (UCSF)  Medical Center, with encounter  dates between June  2011 and 
March 2016. Patients (n  = 11,127)  were 2-17  years of  age and 103 [0.93%]  were labeled  severely 
septic. In  four-fold cross-validation  evaluations, the machine  learning algorithm achieved an 
AUROC  of  0.912 for  discrimination between severely septic and control pediatric  patients at 
onset and AUROC  of  0.727 four  hours  before onset. Under  the same measure, the prediction 
algorithm also significantly  outperformed PELOD-2  ( p < 0.05)  and SIRS  ( p < 0.05)  in the 
prediction of  severe sepsis  four  hours  before onset. This machine  learning algorithm has  the 
potential to deliver  high-performance severe sepsis  detection  and prediction  for  pediatric 
inpatients. 
 
Introduction: 

Sepsis  is a high-impact  condition that affects both adults and children.  In  2001, the total 
burden of  sepsis-spectrum syndromes  in the United States was  estimated  at $16.7 billion  and 
215,000 deaths annually. 1 In  2007, the mean, per-hospitalization  cost of  severe sepsis  was 
estimated to be $47,126,2 and a recent  study assessed  that sepsis  is responsible for  as  many as  5.3 
million deaths per year globally. 3 Pediatric sepsis  in particular  causes over 6,500 deaths annually 
in the United States, with an estimated  $4.8 billion burden of  care, at approximately  $64,280 per 
hospitalization.4  Moreover, survivors  can suffer  both short-term5 and long-lasting  impacts.6 

Relative to that of  adult sepsis,  the literature  of  pediatric sepsis  is less developed. This 
includes consensus  definitions  of  pediatric sepsis, 7 8 9 which may not match  clinicians’ diagnoses 
in practice. 10  The current pediatric  consensus  definitions for  sepsis 6 are closest to the older, 
three-stage adult sepsis  definitions, 11  rather than the more recent,  two-stage “Sepsis-3” 
definitions.12  

As  is true for  adult sepsis, 13  14  many studies show  that early and aggressive treatment  of 
pediatric sepsis  with antibiotics  and fluids correlates  with better  outcomes.15  16  17  18 19  While there 
is some evidence  that fluid bolus treatment  is detrimental  in pediatric  patients,20  it is nevertheless 
true that determining  the most effective  treatment depends on early detection  and diagnosis. 
Traditionally, the call  for  early detection  has  been answered by severity scoring systems, which 
are lacking  in specificity  for  pediatric sepsis.  For  example, while the Systemic  Inflammatory 
Response  Syndrome (SIRS)  criteria have been adapted  for  pediatric patients,7 they are intended 
to assess  infection and other inflammatory  response  in general.  In  some cases, scoring systems 
for  nonspecific pediatric disease severity or  mortality  are applied  to the task of  recognizing 
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pediatric sepsis,  such  as  the Pediatric  Logistic Organ  Dysfunction score (PELOD-2). 21  In  the 
absence of  specialized  pediatric sepsis  scores,  some hospitals have implemented  home-grown 
computerized sepsis  prediction systems, which may benefit  from site specificity. 22  

Computerized prediction systems offer a compelling  alternative to manual  application of 
scoring systems. Such systems access electronic  health record (EHR)  data to inform 
recommendations to clinicians.  These systems have the potential  to catch  septic patients  who 
might otherwise be missed, typically  while in the emergency  department, and could provide 
early warning of  sepsis  for  patients  in intensive  care. Studies in adults show  that this latter  setting 
of  hospital-acquired sepsis  among inpatients  is both distinct  and substantially  more deadly.23 24 25 
Tools such  as  the Modified Early Warning Score (MEWS) 26  or  other sets of  rules can be used  to 
rank adult patients  by some measure of  their risk of  developing  sepsis. 27  28 29  The scoring systems 
on which these approaches are based, however, tend to be created  and evaluated  on large cohorts 
(e.g., qSOFA 30)  without regard to special,  site- or  population-specific  conditions, which might 
render them less effective  than site-specific  prediction tools.  

Machine-learning (ML)-based approaches can be easily customized  using site- or 
population-specific data, ultimately  resulting in improved performance  relative to generic 
scoring systems31  32  33  and to non-customized  applications of  the same ML-based system. 34  35  36 
While ML-based systems have been applied  to prediction  of  sepsis  in neonatal patients, 
conditioned on the availability  of  real-time waveform data37  38  or  extensive sets of  laboratory and 
historical data,39  they have not previously been applied  to EHR-based prediction  for  the pediatric 
inpatient population. If  successful, such  predictors could provide easily-accessible, 
site-customized early sepsis  warning for  pediatric  patients. In  the experiments  discussed  below, 
our  objective was  to create and demonstrate  such  a customized,  high-performance ML-based 
prediction tool for  pediatric  severe sepsis. 
 
Methods: 
Data Set: 
In  these experiments,  we  use  de-identified chart data from pediatric  (ages 2 to 17 years) inpatient 
and emergency  encounters at the University of  California  San Francisco (UCSF)  Medical Center, 
from June  2011 to March 2016, inclusive. 40  This age range corresponds  to the older three 
pediatric subpopulations as  described by Goldstein.7 The original  UCSF  data collection  did not 
impact patient safety and all data were deidentified  in accordance  with the Health Insurance 
Portability and Accountability  Act (HIPAA)  Privacy Rule prior to commencement  of  this study. 
Hence, this study constitutes  non-human subjects research which does  not require Institutional 
Review Board approval. The data set includes 11,621 encounters. After exclusion, described 
below, the final data set includes 11,127 encounters, of  which 103 are labeled  as  severely septic. 
The inclusion flowchart and demographic  characteristics of  the data set are presented in Figure 1 
and Table  1. 
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Table 1: Demographic  information of  pediatric inpatients at UCSF  from June  2011 to March 
2016, inclusive. 

 
Characteristic 

Overall Severe Sepsis 

Count Percent Count Percent 

Gender Female 5,494 (49.38%) 46 (44.66%) 

Male 5,633 (50.62%) 57 (55.34%) 

Age 
Overall: 
Median  10, 
IQR  (5-14) 
Severe sepsis: 
Median  11, 
IQR  (4-14) 

2-5 3,101 (27.87%) 34 (33.01%) 

6-12 4,081 (36.68%) 26 (25.24%) 

13-17 3,945 (35.45%) 43 (41.75%) 

Length  of Stay 
(days) 
Overall: 
Median  3, IQR 
(1-6) 
Severe sepsis: 
Median  21, 
IQR  (10-46) 

0-2 4,919 (44.21%) 1 (0.97%) 

3-5 3,344 (30.05%) 7 (6.80%) 

6-8 1,189 (10.69%) 11 (10.68%) 

9-11 536 (4.82%) 17 (16.50%) 

12+ 1,073 (9.64%) 66 (64.08%) 

Unknown 66 (0.59%) 1 (0.97%) 

In-Hospital 
Death 

Yes 67 (0.60%) 16 (15.53%) 

No 11,060 (99.40%) 87 (84.47%) 

 
 
 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 22, 2017. ; https://doi.org/10.1101/223289doi: bioRxiv preprint 

https://doi.org/10.1101/223289


 
 
Figure 1: Inclusion flowchart. The final data set used  in training  and testing  constitutes 11,127 
examples, of  which 103 (0.93%)  are labeled  as  severely septic. 
 
Data Processing  and Screening: 
The UCSF  EHR data were organized  into a SQL  database  and custom queries were used  to 
extract the vital  sign, lab report, and other data used  in our  experiments.  These patient  records 
were loaded by Dascena’s proprietary  software to prepare examples  for  training and prediction.  

Encounters were removed if the recorded patient  age was  less than two or  more than 
eighteen years; this range corresponds  to non-infant age brackets in the consensus  sepsis 
definitions.7 In  addition, encounters were removed if they were missing any of  the required 
measurements (patient age, diastolic  and systolic blood pressures,  heart rate, temperature, 
respiration  rate, and peripheral  oxygen saturation)  to be used  in training  and prediction;  while 
supplemental measurements (Glasgow  Coma Score, white blood cell  count, and platelet  count) 
were passed  to the training  and testing  routines, their presence was  not required. The inclusion 
diagram is presented in Figure 1. From 11,621 encounters with appropriate  ages, 11,209 
remained after checking  for  the required measurements.  As  a final step, encounters with severe 
sepsis  onset too early in the stay (  < 6 hours  after the start of  the patient  record) were removed, 
such  that the set of  encounters used  at varying pre-onset offsets  (see Experimental  Procedures) 
was  constant. Encounters with any other error in onset time  determination were also removed. 
After removing encounters for  these onset times, a total  of  11,127 encounters remained  for 
training and testing.  Of  these examples,  103 (0.93%)  were labeled  severely septic. 
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For  encounters meeting  the inclusion  criteria, observations of  vital  signs  were binned by 
the hour  and simple  carry-forward imputation  was  used  when  no observation was  available  for  a 
given hour.  Based on these observation time  series, we  constructed  a variety  of  derived features 
(e.g., approximate  Mean Arterial  Pressure  constructed as  a linear  combination of  systolic and 
diastolic blood pressures)  and calculated  the sepsis  gold standard (see Supplemental  Tables 1 & 
2). 

 
Gold Standard: 
The gold standard follows the pediatric  severe sepsis  definition  of  Goldstein et al., 2005, wherein 
severe sepsis  requires:  

● SIRS  score of  ≥ 2, where at least one of  temperature  or  white blood cell  count is 
abnormal;  

● suspicion of  infection,  operationalized here as  the presence of  an ICD-9  code for 
septicemia, sepsis,  severe sepsis,  or  septic shock,  which might  be attached  at any time 
during the encounter  (given that the patient  meets the SIRS  criteria  above, this is “sepsis” 
under the Goldstein criteria);  and 

● Organ  dysfunction  
Under  the Goldstein criteria,  septic shock  is further defined by when  the above conditions  are 
met and there is cardiovascular  organ dysfunction. Pediatric  SIRS  criteria, the gold standard, and 
the organ dysfunction criteria  (part of  the gold standard) are presented in Supplemental  Tables 1, 
2, and 3, respectively.  

The gold standard was  implemented  by electronic chart abstraction,  combining data 
entered into the EHR throughout the encounter  with ICD-9  codes. All of  these criteria  follow 
Goldstein et al., 2005,7 with modifications  necessary for  application  to the UCSF  pediatric  data 
set. These necessary modifications  include those allowing for  binary white blood cell  count 
(normal vs.  abnormal),  lack of  radiological  information, and lack of  patient  history. Without 
information on physician intention  and examination  observations, fluid administration  in the 
presence of  low blood pressure  was  assumed to be an attempt  to resuscitate,  and a section of  the 
Goldstein cardiovascular  dysfunction definitions  was  removed (see Supplemental  Tables for 
details of  implemented criteria). 

Our  gold standard is particularly  concerned with the timing  of  severe sepsis  onset. 
Timing information comes from the satisfaction  of  the SIRS  criteria  and the organ dysfunction 
criteria. When the patient  first meets the SIRS  criteria  is the time  of  sepsis  onset (if a 
sepsis-related ICD-9  code, which does  not carry timing  information, is present). When a patient 
who,  at some point in their stay, meets the SIRS  criteria  and has  a sepsis-related  ICD-9  code (is 
“septic” under our  gold standard), this patient  is marked as  having severe sepsis  with an onset 
time defined by the first time  the organ dysfunction criterion  is met. Note that this means that our 
retrospective definition may determine  that a patient  is “severely  septic” before they meet  the 
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surveillance criteria for  being “septic.”  This feature  was  deemed necessary both to reflect  the 
clinical process  and to avoid difficulties  surrounding  noisy satisfaction of  the thresholds.  
 
Modeling: 
All learning  conducted in this work  was  done using boosted ensembles of  decision trees.41  42 
Ensemble classifiers combine  the output from many “weak” learners, each of  which would be 
insufficient to solve the desired learning  problem on its own,  creating  a strong learner.  These 
decision trees each carry out a sequence of  multiple  binary classifications,  where each is of  the 
form of  a measurement  value compared  against a threshold. The sequence of  comparisons and 
the required thresholds for  each are created  during the training  process.  The appropriate  set of 
branching checks is performed for  each tree within the final classifier,  traveling along the tree 
structure until  a leaf node (and corresponding risk score) are reached.  The risk scores  from the 
individual trees are then aggregated  to assign an overall  risk score. 
 
Our  classifiers were trained  on a set of  features that included  patient age, diastolic  and systolic 
blood pressures,  heart rate, temperature,  respiration rate, and peripheral  oxygen saturation 
(SpO 2).  As  noted above, encounters had to have all of  these measurements  at some point during 
their stay to qualify for  inclusion in the analyses. Additionally,  the values of  Glasgow  Coma 
Score, white blood cell  count, and platelet  count were used  if available.  The final feature  vectors 
were organized,  along with their gold standard labels, into arrays to be passed  to the training  and 
prediction routines. 
 
Experimental Procedures: 
We compared  the performance  of  the algorithmic  sepsis  predictor with that of  the concurrent, 
running values of  the PELOD-2  and pediatric  SIRS  scores.  These experiments used  all patients 
of  at least 2 and less than 18 years of  age in the data set, treated  as  one aggregate  population. 
This population  was  split into four  approximately  equal-sized “folds” (sets)  for  four-fold 
cross-validation (CV). 42  The CV  procedure allows the estimation  of  generalization performance 
and its variability,  as  well as  comparison of  this performance  with the PELOD-2  and SIRS 
scores,  calculated hourly. Due  to the original  data set’s  encoding of  laboratory  values as  only 
normal/abnormal, the affected  subscores  of  PELOD-2  were approximated with 1 point for 
abnormal and 0 points for  normal. We computed  a variety  of  metrics on the performance  of  the 
resulting classifiers (and the PELOD-2  and SIRS  scores)  on the test folds. We determined 
statistical significance using one-tailed  paired t -tests, where each pair constituted  the same metric 
of  two different classification methods, measured on the same test fold. The p -value threshold for 
significance was  fixed at 0.05 for  all comparisons. We repeated  these experiments  for  pre-onset 
offsets  of  0, 1, 2, 3, and 4 hours,  examining our  system’s ability to learn pre-onset patterns in 
septic patients. 
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Data Availability:  
Any  inquiries regarding the dataset  used  in this study can be addressed to the corresponding 
author.  
 
Results: 
We evaluated  predictive performance of  the ML-based predictor  by training and testing  at hourly 
intervals from sepsis  onset and through four  hours  before onset. Figures 2 and 3 show  the 
performance of  the algorithm  at two such  times in terms of  ROC  curves, which show  the tradeoff 
between sensitivity  (the number of  severe sepsis  examples  detected over all severe sepsis 
examples) and specificity  (the number of  false alarms given, over all examples  that are not 
severely septic). In  comparing  two ROC  curves, a superior classifier  is one that has  either  better 
sensitivity for  a fixed specificity  (is higher on the plot) or  better  specificity for  a fixed sensitivity 
(is farther to the left). In  the onset time  discrimination plot, the ML-based predictor’s ROC  curve 
is nearly strictly  dominant over the PELOD-2  and SIRS  curves, and has  a larger area under it 
(i.e., larger AUROC).  Figure 4 shows  how  cross-validation-fold-averaged AUROC  varies as  a 
function of  prediction  horizon in hours  for  each prediction  system. These comparisons are 
statistically significant ( p < 0.05, one-tailed  pairwise t -test) for  1  and 4 hours  pre-onset 
(PELOD-2)  and 0, 1, and 4 hours  pre-onset (SIRS).  Table 2 presents a set of  detailed 
performance metrics for  the algorithm,  SIRS,  and PELOD-2.  Apart from AUROC,  these 
performance metrics are a function of  a chosen operating  point (i.e. a point on the ROC  curve). 

 

 
Figure 2: ROC  curves (averaged  across  the four  test folds)  for  the machine  learning algorithm 
(MLA),  PELOD-2,  and SIRS  at time of  onset.  
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Figure 3: ROC  curves (averaged  across  the four  test folds)  for  the machine  learning algorithm 
(MLA),  PELOD-2,  and SIRS  at 4 hours  pre-onset.  

 
 
Table 2: Performance  metrics for  the machine  learning algorithm and pediatric  scoring systems. For 
each metric  and each time  (onset or  4-hours  pre-onset), the best result is bolded. This procedure 
chose an operating  point from the ROC  curve where the sensitivity  was  the largest possible value ≤ 
0.80; the selected  PELOD-2  and SIRS  sensitivity values for  4-hour  pre-onset prediction  were 
considerably below this value, allowing them to obtain favorable  tradeoffs in some of  the other 
metrics. SE is the standard error and DOR  is the diagnostic  odds  ratio. 

 Predictive 
Algorithm 

(Onset) 
Mean (SE) 

PELOD-2 
(Onset) 

Mean (SE) 

SIRS 
(Onset) 

Mean (SE) 

Predictive 
Algorithm  
(4  hours 

pre-onset) 
Mean (SE) 

PELOD-2  
(4  hours 

pre-onset) 
Mean (SE) 

SIRS 
(4  hours 

pre-onset) 
Mean (SE) 

AUROC 
0.912 ± 
(0.023) 

0.881 ± 
(0.007) 

0.742 ± 
(0.053) 

0.727 ± 
(0.052) 

0.658 ± 
(0.053) 

0.667 ± 
(0.044) 

Sensitivity 
0.797 ± 
(0.008) 

0.828 ± 
(0.041) 

0.651 ± 
(0.094) 

0.797 ± 
(0.008) 

0.724 ± 
(0.069) 

0.514 ± 
(0.089) 

Specificity 
0.868 ± 
(0.058) 

0.767 ± 
(0.008) 

0.787 ± 
(0.007) 

0.505 ± 
(0.182) 

0.581 ± 
(0.008) 

0.792 ± 
(0.005) 

DOR 
34.211 ± 
(19.494) 

17.152 ± 
(5.097) 

7.586 ± 
(2.575) 

5.161 ± 
(3.372) 

3.98 ± 
(1.397) 

4.379 ± 
(1.812) 
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Figure 4: Average AUROC  over a prediction  horizon. These AUROC  differences  are 
statistically significant for  the machine  learning algorithm (MLA)  versus  PELOD-2  at 1 and 4 
hours  pre-onset (p  < 0.05)  and versus  SIRS  at 0, 1, and 4 hours  pre-onset (p  < 0.05). 
Non-significant comparisons against PELOD-2  have pvalues of  0.0596, 0.2819, and 0.2270 (0-, 
1-,  and 3-hour).  Nonsignificant  comparisons against SIRS  have p-values of  0.0652 and 0.3335 
(2-  and 3-hour).  
 
 
Discussion: 
These experiments  demonstrate that the ML-based sepsis  prediction  system can predict  severe 
sepsis  onset with AUROC  performance superior to that of  existing pediatric  organ dysfunction 
and inflammatory  response  scoring systems (Table  2, Figure 2, Figure 3 & Figure 4).  These 
comparisons were statistically  significant versus  PELOD-2  (organ dysfunction) at 1 and 4 hours 
pre-onset and versus  SIRS  at 0, 1, and 4 hours  pre-onset. This superiority is also visible in other 
metrics, particularly at onset time.  
 
The ML-based system can be a competitive  and useful means of  assessing  pediatric  patients’ 
likelihood of  developing severe sepsis.  This clinical  problem represents a significant  opportunity 
for  clinical decision support, as  it is critical  to both provide monitoring  for  this particularly 
vulnerable population and avoid excessive numbers of  alarms. Our  machine  learning algorithm 
outperforms the PELOD-2  and pediatric  SIRS  scoring systems, indicating that it has  the potential 
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to deliver  these essential  improvements. While neither PELOD-2  or  SIRS  are primarily intended 
for  sepsis  prediction,, they provide a practical  baseline for  this retrospective  study. These can be 
computed in the absence of  biomarkers, nursing reports, or  access to other authors’ machine 
learning-derived models. In  this context,  these results are particularly  compelling in light  of  the 
granularity of  our  continuous, chart-abstracted  nature of  data set and gold standard, which allow 
us  to determine  a sepsis  onset time  within an inpatient  encounter. 
 
The gold standard is a possible limitation  in the present analysis. First, chart review would 
provide a superior gold standard, but it is not applicable  at scale, requiring the present use  of  our 
surveillance-type gold standard. Second, by limiting  “suspicion of  infection”  to those who  have 
ICD-9  codes for  sepsis-spectrum syndromes,  we  prevent the gold standard from positively 
labeling encounters not acknowledged  as  being on this spectrum;  this could mean that the gold 
standard is under-reporting  sepsis  prevalence, were the definition  used  in this work  to be applied 
prospectively. Further, Weiss et al.10  compared the clinical  diagnoses of  severe sepsis  by 
attending physicians with the result of  the application  of  the Goldstein consensus  definitions  and 
found  that the agreement  between the two was  only moderate  (Cohen’s  ϰ, 0.57 ± 0.02, mean ± 
SE). On  a more technical  note, the current analysis uses  only ICD-9  codes and does  not use 
ICD-10  codes, while the study period includes the roll-out of  the ICD-10-CM  coding system and 
the mandatory  compliance date of  October 1, 2015.43  However,  ICD-9  codes for  sepsis  appear 
with a similar  frequency both before and after the roll-out date. Finally,  while the gold standard 
gives a particular  onset time,  it is difficult  to assess  how  this relates to severe sepsis  onset as 
would be observed by an attending  clinician.  
 
The characteristics  of  the UCSF  pediatric inpatient population may limit  generalizability; these 
data are from a tertiary  care center  with a particularly  heavy representation  of  organ transplant 
patients. This population  also has  a low prevalence  of  hospital-acquired severe sepsis  (< 1%), 
limiting the power  of  the statistical  analyses. 
 
For  future, more complex  work  in pediatric sepsis  prediction via machine  learning, an important 
requirement is obtaining  other and larger data sets. Data sets with higher sepsis  prevalence, 
whether due to the population  served or  some other factor, might  be particularly  helpful in this 
regard. Likely  candidates for  obtaining such  data sets are other tertiary  care facilities.  It should 
be noted that, while pediatric  sepsis  is generally rare, even secondary-care  contexts could benefit 
from being able to identify  the few  cases that do appear, particularly  if such  capabilities  could be 
integrated into a larger data collection  and prediction  ecosystem, as  they can with this predictive 
algorithm. 
 
In  summary, the ML-based sepsis  prediction  system examined  in these experiments  outperforms 
traditional, tabular scoring systems and demonstrates  superior performance  in predicting 
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pediatric severe sepsis  onset. The improved ROC  performance  offers  clinicians and hospitals a 
variety of  useful operating  points to suit their sepsis  alerting  needs. The ROC  performance  also 
offers  the promise of  using the actual  numerical score produced by this algorithm  for  severe 
sepsis  risk stratification. Using  these tools, clinicians  will be better  able to allocate  finite clinical 
resources, catch  patients before their condition  deteriorates, and avoid adverse outcomes. This 
work  also represents a novel application  of  machine learning techniques for  sepsis  detection in 
the pediatric  population. We hope that this contribution  encourages others to tackle  this 
intriguing and challenging  problem. 
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