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Abstract 1 

Transcription is an episodic process characterized by probabilistic bursts; but how these 2 

bursts are modulated by cellular physiology remains unclear and has implications for how 3 

selection may act on these fluctuations.  Using simulations and single-molecule RNA 4 

counting, we examined how cellular processes influence cell-to-cell variability (noise).  The 5 

results show that RNA noise is amplified in the cytoplasm compared to the nucleus in 6 

~85% of genes across diverse promoters, genomic loci, and cell types (human and mouse).  7 

Surprisingly, measurements show further amplification of RNA noise in the cytoplasm, 8 

fitting a model of biphasic mRNA conversion between translation- and degradation-9 

competent states.  The multi-state translation-degradation of mRNA also causes substantial 10 

noise amplification in protein levels, ultimately accounting for ~74% of intrinsic protein 11 

variability in cell populations.  Overall, the results demonstrate how transcriptional bursts 12 

are intrinsically amplified by mRNA processing and indicate mechanisms through which 13 

noise could act as a substrate for evolutionary selection.   14 
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Introduction 1 

Intracellular biological reactions can exhibit large intrinsic fluctuations (i.e., stochastic ‘noise’) 2 

that manifest as cell-to-cell variability, even in isogenic populations of cells (Blake et al., 2003; 3 

Elowitz et al., 2002; Kaern et al., 2005; Kepler and Elston, 2001).  These intrinsic stochastic 4 

fluctuations partly originate during transcription (Golding et al., 2005; Raj et al., 2006) and drive 5 

strong evolutionary selection pressures (Fraser et al., 2004; Metzger et al., 2015) as well as cell-6 

fate decisions (Balázsi et al., 2011; Suel et al., 2007; Weinberger et al., 2005).  7 

 8 

Transcriptional fluctuations can be largely due to the episodic nature of transcription, commonly 9 

called ‘bursting’, in which short periods of productive promoter activity are interspersed between 10 

long periods of promoter inactivity (Chong et al., 2014; Coulon et al., 2013; Dar et al., 2012; 11 

Golding et al., 2005; Raj et al., 2006; Sanchez and Golding, 2013; Singh et al., 2010; Suter et al., 12 

2011; Zenklusen et al., 2008).  These episodic transcriptional bursts appear to be predominant in 13 

mammalian cells, especially at low transcript abundance (Dar et al., 2012; Raj et al., 2006).  In 14 

the common transcriptional bursting model, the ‘two-state random-telegraph’ model, a promoter 15 

toggles between a transcriptionally inactive OFF state and an active ON state (Kepler and Elston, 16 

2001).  While more than two promoter states may exist, all multistate transcription models 17 

generate super-Poissonian cell-to-cell distributions (noise) in mRNA and protein, especially for 18 

the relatively slow toggling rates measured for many promoters (Harper et al., 2011; Zenklusen 19 

et al., 2008).  These transcriptional bursting models contrast with minimally stochastic, single-20 

state (i.e., constitutive) transcription models, which are Poisson processes and generate Poisson 21 

distributions for cell-to-cell variability in gene products.  These Poisson distributions represent 22 

the theoretical low-noise limit for gene expression (Kaern et al., 2005), but the more complex 23 
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multi-state models (e.g. random-telegraph models) are required to fit the vast majority of 1 

measured cell-to-cell expression distributions, which are super-Poissonian (Sanchez and Golding, 2 

2013).  While variability in the abundance of nascent transcripts—those still tethered to DNA at 3 

the transcriptional center—can fall under the Poisson limit (Choubey et al., 2015), this scenario 4 

is not a birth-death process but a special case of an age-structured process described by a 5 

particular form of the gamma distribution called an Erlang distribution (Mittler et al., 1998).  6 

Nevertheless, once transcripts are released from the DNA, the process can no longer be 7 

considered age structured and the distributions are, at best, Poisson birth-death limited. 8 

 9 

Noise that originates during transcription can be modulated by various cellular mechanisms.  For 10 

example, translation often amplifies transcriptional bursting noise (Ozbudak et al., 2002) and 11 

auto-regulatory gene circuits can, depending upon their architecture, either amplify or attenuate 12 

noise for their specific target genes (Arias and Hayward, 2006; Austin et al., 2006; Barkai and 13 

Leibler, 2000; Isaacs et al., 2003).  However, recent studies have suggested that transcriptional 14 

noise is efficiently and non-specifically buffered to minimal Poisson levels by ‘passive’ cellular 15 

compartmentalization, specifically nuclear export (Battich et al., 2015; Stoeger et al., 2016).  The 16 

resulting conundrum is, if compartmentalization broadly buffers noise to minimal levels, why is 17 

the signature of evolutionary selection visible on promoter architecture?  Moreover, how can 18 

noise drive selection pressures and cell fate decisions?  For example, how are transcriptional 19 

regulatory circuits able to modulate noise—i.e., attenuate (Arias and Hayward, 2006) or amplify 20 

(Weinberger et al., 2005) noise—when nuclear export acts as a strong downstream filter 21 

reducing noise to the theoretical limit?   22 

 23 
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Given the literature reporting super-Poissonian cytoplasmic mRNA and protein noise in 1 

nucleated eukaryotic cells, we sought to reconcile how evidence of super-Poissonian noise could 2 

co-exist with nuclear export passively buffering noise to minimal levels.  Using computational 3 

modeling and single-molecule quantitation by RNA Fluorescence in situ Hybridization (FISH), 4 

we predict and then experimentally measure mRNA noise in the nucleus and cytoplasm.  We 5 

model across the known physiological parameter range and find that in the vast majority of cases 6 

(~85%), mRNA noise is amplified by export from the nucleus and is super-Poissonian in the 7 

cytoplasm.  smFISH measurements corroborate this finding for diverse promoters (LTR, UBC, 8 

Ef1-1α, SV40, c-Jun, c-Fos, COX-2, FoxO, Per1, NR4A2 and NANOG) in different cell types.  9 

As predicted by modeling, modulation of nuclear export has little effect in changing this 10 

amplification.  Surprisingly, the smFISH measurements and perturbation experiments indicate a 11 

further post-export step of noise-amplification for cytoplasmic mRNA, which supports mRNA 12 

translation and degradation being mutually exclusive (multi-state) processes.  Finally, we present 13 

a model that quantifies how mRNAs are amplified during progression from transcription to 14 

translation and predicts super-Poissonian protein noise from transcriptional measures.  Overall, 15 

the findings demonstrate that transcriptional noise is intrinsically amplified in cells, showing 16 

how, in principle, noise could have served as a substrate for promoter selection and can act as a 17 

driving force in cell-fate decisions. 18 

 19 

Results 20 

The standard model of gene expression predicts that—in the physiological parameter 21 

regime—mRNA noise is often amplified in the cytoplasm compared to the nucleus 22 

 23 
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To explore how cellular physiology influences gene expression noise, we used Gillespie’s 1 

method (Gillespie, 1977) to perform stochastic simulations of a conventional model of 2 

eukaryotic mRNA transcription (Dar et al., 2014; Raj et al., 2006; Raser and O'Shea, 2004; Suter 3 

et al., 2011), expanded to include both the nuclear and cytoplasmic compartments (Figure 1A).  4 

Since most genes are co-transcriptionally spliced (Tilgner et al., 2012), splicing was incorporated 5 

into the transcription rate.  A total of 7776 (65) parameter combinations were examined—with 6 

1000 simulations run per parameter combination (i.e., over 7 million simulation runs)—allowing 7 

us to vary the rate of each cellular process (e.g., transcription, export, decay) over several orders 8 

of magnitude based on literature estimates (Bahar Halpern et al., 2015a; Bahar Halpern et al., 9 

2015b; Battich et al., 2015; Dar et al., 2012; Harper et al., 2011; Suter et al., 2011).  Mean (µ) 10 

and variance (s2) in mRNA counts were determined for both nuclear and cytoplasmic 11 

compartments (Figures S1A).  12 

 13 

When comparing mRNA noise in the nucleus and cytoplasm, three scenarios are possible:  (i) 14 

Noise can be lower in the cytoplasm than in the nucleus (i.e. attenuated) (Figure 1B, blue); (ii) 15 

noise can be the same in both compartments (i.e. unchanged) (Figure 1B, grey); or (iii), noise 16 

can be higher in the cytoplasm than the nucleus (i.e. amplified) (Figure 1B, red).  When 17 

interpreting the coefficient of variation (CV2 = s2/µ2) for these three scenarios, it is important to 18 

note that a decrease in CV2 does not necessarily translate to a decrease in noise (Figure 1C).  19 

Any changes in rates which cause an increase in mean without an increase in noise will follow so 20 

called “Poisson-scaling”—CV2 decreases to the same extent that the mean increases (Kaern et 21 

al., 2005).  In other words, a decrease in CV2 is only an effective attenuation of noise if the 22 

decrease is greater than the decrease that would be obtained by a simple scaling of the mean (i.e., 23 
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attenuated noise only occurs when the CV2 falls below the “expected” dashed diagonal in Figure 1 

1C, left).  Whereas, noise is effectively “unchanged” when CV2 scales as expected from the 2 

mean (Figure 1C, middle) and noise is effectively amplified when CV2 is higher than expected 3 

given the mean (Figure 1C, right).  Since these scaling properties can make the CV2 a somewhat 4 

complex metric, noise is often calculated by variance over the mean (s2/µ; a.k.a,, the Fano 5 

factor) (Thattai and van Oudenaarden, 2001), where the expected noise is constant with respect 6 

to the mean such that attenuation and amplification are readily apparent (Figure 1D-E).  As such, 7 

the Fano factor automatically provides a measure of deviation from a Poisson process, where 8 

s2/µ = 1.  The respective noise ratio—Noisecytoplasm / Noisenucleus (which is equivalent to 9 

CV2
cytoplasm /CV2

expected)—was examined for all 7776 parameter combinations (Figure 1F-H). 10 

 11 

Remarkably, the results show that for most combinations of physiologically relevant parameters, 12 

mRNA noise is largely amplified in the cytoplasm compared to the nucleus (Figure 1F–H, red 13 

rectangles).  Moreover, the possible physiological parameter space can be further limited to a 14 

probable regime using previously reported genome-wide mRNA counts (Bahar Halpern et al., 15 

2015a).  Namely, the reported nuclear and cytoplasmic mRNA counts were used to estimate 16 

likely ratios of mRNA export-to-degradation rates (Figure S1C, and Methods Equations 1–5), 17 

which largely determine whether noise is amplified, unchanged, or attenuated.  This data 18 

constraint is applied to generate a probable physiological parameter regime in which 19 

amplification becomes even more prevalent (Figure 1H, black box).  Specifically, about 15% of 20 

genes across the genome show >20-fold higher export rates than degradation rates, thus falling 21 

within the parameter regime of highly amplified cytoplasmic noise.  Another 70% of genes 22 

across the genome have significantly faster rates of export than degradation, also falling in the 23 
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parameter regime of amplification.  Finally, only ~15% of genes across the genome fall in the 1 

parameter regime in which the rate of export is slower than cytoplasmic mRNA degradation, of 2 

which less than 4% have rates where substantial noise attenuation (>5-fold) is even possible 3 

(Figure 1H, light blue box).  Thus, the data constraints show that ~85% of genes fall in the 4 

parameter regime in which noise is amplified in the cytoplasm and only about 2.5% of genes fall 5 

in the parameter regime where noise is attenuated down to minimally stochastic Poisson levels—6 

substantially less than previously implied (Battich et al., 2015).  7 

 8 

Analytically, a fairly simply expression for the Fano factor ratio between cytoplasm and nucleus 9 

can be obtained (see Methods: Analytical derivation): 10 
!"#$%&'(

!"#$%)*&

=
,

!

-&'(

-)*&

./. 1  11 

Where !  and ,  are the mean mRNA abundances in the nucleus and cytoplasm, respectively, 12 

while -&'(  and -)*&  are the noise bandwidths (Simpson et al., 2003) in the cytoplasm and 13 

nucleus, respectively.  In both cases, the noise bandwidth is dominated by the lowest critical 14 

frequency it is associated with (i.e. either the critical frequency of promoter toggling or mRNA 15 

export for -)*&,  and either the critical frequency of promoter toggling, mRNA export or 16 

degradation for -&'().  Intuitively, this means that -)*&≥ -&'(, since -&'( can be dominated by the 17 

additional critical frequency associated with degradation, which has no impact on -)*& .  18 

Therefore, for all cases Eq. [1] reduces to 3456789:
34567;<8

≤
>

3
 , which predicts that there is a strong 19 

tendency for Noisecyt > Noisenuc when ,  > ! .  Given previous reports that most genes exhibit 20 

,  > !  (Bahar Halpern et al., 2015), most genes are expected to fall in the amplification 21 

regime as the numerical simulations show (Figure 1H).  22 

 23 
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Single-molecule mRNA quantification shows generalized amplification of noise in the 1 

cytoplasm 2 

 3 

To experimentally test the model predictions that noise is generally amplified in the cytoplasm, 4 

we used single-molecule RNA Fluorescence in situ Hybridization (smFISH) to quantify 5 

individual mRNA transcripts in both the nucleus and cytoplasm. To span across the 6 

physiological parameter regime, we examined both a panel of GFP-expressing reporter 7 

constructs with different promoter architectures, which exhibit widely different transcriptional 8 

bursting and expression rates (Figure 2), as well as endogenous genes c-Jun, c-Fos, COX-2, 9 

PER1, FoxO, NR4A2 and NANOG (Figure 3). 10 

 11 

For the reporter constructs, lentiviral vectors were used to semi-randomly integrate the reporters 12 

into the genome and isoclonal populations were generated from individual transduced cells such 13 

that each different isoclone carried a single promoter integrated at a unique genomic locus.  14 

Importantly, this approach controls for the effect of a specific genomic locus on, for example, 15 

noise levels (Becskei et al., 2005) or localization of nuclear transport machinery (Casolari et al., 16 

2004) by allowing the same promoter to be analyzed at multiple genomic loci.  The reporter 17 

constructs (Figure 2A) used a range of both human and viral promoters, including: the human 18 

ubiquitin C (UBC) promoter, which drives an essential cellular housekeeping gene and results in 19 

abundant protein expression across integration sites and cell types (Kim et al., 1990); the human 20 

elongation factor 1α (EF-1α) promoter, a stronger constitutive promoter also expressing an 21 

essential cellular housekeeping gene; the HIV-1 long terminal repeat (LTR) promoter, an 22 
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inducible and exceptionally bursty viral promoter; and, the Simian virus 40 (SV40) promoter, a 1 

viral promoter that is far less noisy than the LTR promoter (Dar et al., 2012; Gilbert et al., 2013). 2 

 3 

Isoclonal populations were imaged using three-dimensional (3D) confocal microscopy (Figure 4 

2B and S2A–B), and individual mRNA molecules were quantified with a series of extrinsic-5 

noise filtering steps that eliminate contributions to the Fano factor arising from external stimuli 6 

(Raj et al., 2006).   Consistent with previous observations (Padovan-Merhar et al., 2015), 7 

analysis of correlation strength between cellular volume, shape, and DNA-stain intensity with 8 

mRNA count indicated that cell size was the strongest measure of extrinsic noise (i.e., mRNA 9 

copy number scales most tightly with cell size) (Figures S2C–G).  Consequently, our analysis 10 

focused primarily on size-dependent extrinsic-noise filtering (Figures S2D-G), as done in similar 11 

genome-wide analyses in yeast (Newman et al., 2006).  Nuclear and cytoplasmic mRNA counts 12 

were measured through 3D image analysis and DAPI staining of nuclear DNA.  Frequency 13 

distributions (Figure 2C) were obtained for each isoclonal population of cells (minimum of ~100 14 

cells, as lower cell counts significantly increased the calculated Fano factors by increasing the 15 

effect of outliers) (Figure S2E). 16 

 17 

As predicted by the simulations (Figure 1) and analytic arguments (Eq. [1]), smFISH mRNA 18 

quantification largely show amplification of mRNA noise in the cytoplasm relative to the noise 19 

in the nucleus; in virtually all cases, the CV2 of cytoplasmic mRNA is significantly higher than 20 

expected from Poisson scaling (Figure 2D and S3A), with all data falling far above the 21 

minimally stochastic Poisson noise (Fano factor = 1) for all promoters (Figures 2E).  The SV40 22 

promoter was the only promoter with comparable mRNA noise in the nucleus and cytoplasm, 23 
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although it still generated mRNA noise far from Poissonian in both the nucleus and cytoplasm.  1 

Directly comparing cytoplasmic versus nuclear noise for all four promoters (16 genomic loci), 2 

shows that, in most cases, cytoplasmic noise was significantly amplified relative to nuclear noise 3 

(Figures 2F), with the data falling within the parameter space that most genes were predicted to 4 

fall (Figure S3B).  This generalized amplification of mRNA noise in the cytoplasm occurs 5 

despite very different mRNA mean and noise levels, consistent with transcriptional burst size 6 

and frequency affected by genomic location (Dar et al., 2012). 7 

 8 

To further validate these results, smRNA FISH was performed on seven endogenous genes in 9 

adherent cell lines (mouse embryonic stem cells and human embryonic kidney cells).  These 10 

measurements encompass five signal-responsive genes (three immediate-early response genes c-11 

Jun, c-Fos, and NR4A2; the forkhead transcription factor, FoxO1; and, a late-response gene 12 

COX-2), a circadian clock gene (PER1), and a gene constitutively expressed in the pluripotent 13 

state (NANOG).  Consistent with data from non-adherent cell lines (Figure 2), the majority of 14 

these genes exhibit cytoplasmic mRNA noise that is amplified relative to nuclear noise (i.e., CV2 15 

larger than expected from Poisson scaling) and is far above the minimally stochastic Poisson 16 

limit (Figure 3A-B and S3C).  While NR4A2, COX-2 and c-Fos have a similar number of 17 

mRNAs in the nucleus and cytoplasm, NANOG, PER1, FoxO and c-Jun have higher cytoplasmic 18 

than nuclear means (Figure 3B).  Five of the genes show higher cytoplasmic than nuclear noise 19 

and fall in the amplification regime, FoxO falls in the unchanged regime, and NR4A2 is the only 20 

gene which shows slight attenuation of cytoplasmic mRNA noise compared to nuclear mRNA 21 

noise (Figure 3C).  Thus, in agreement with theoretical predictions (Figure 1 and Eq. [1]), 22 

experimental observations show that the majority of genes exhibit amplification of mRNA noise 23 
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in the cytoplasm compared to the nucleus, especially when the mean cytoplasmic abundance is 1 

greater than its mean nuclear abundance. 2 

 3 

As predicted, cytoplasmic mRNA and protein noise are largely insensitive to changes in 4 

nuclear export 5 

 6 

To test model predictions of the effects of nuclear export on cytoplasmic noise, we 7 

computationally and experimentally perturbed nuclear export rates.  Numerical simulations and 8 

analytical arguments (Eq. [1]) predicted that slowed nuclear export should only impact nuclear 9 

noise, without affecting cytoplasmic noise (Figure 4A, Figure S4A), because most genes fall in a 10 

regime in which nuclear export is much faster than cytoplasmic mRNA degradation (kexp >> kdeg).  11 

An important assumption of the model is that nuclear-export rate is not operating in the saturated 12 

regime, which could lead to nuclear pileup of mRNA, manifesting as reduced net export, and 13 

alter these predictions (Xiong et al., 2010).  To verify that nuclear export is not saturated, 14 

transcriptional center (TC) intensity and frequency were measured by smFISH, and then used 15 

together with nuclear mRNA means to quantify the export rate (see Methods: Rate calculations) 16 

after transcriptional activation with tumor necrosis factor (TNF) (Duh et al., 1989) for 24 hours.  17 

We did not observe altered nuclear-export kinetics compared to the untreated control, indicating 18 

that export is operating far from saturation (Figure S4F).  Overall, simulations predict that export 19 

rates can be the cause of altered nuclear-to-cytoplasmic noise ratio (Figure 4A); however, the 20 

export rate does not impact cytoplasmic mRNA noise and, consequently, is predicted to have no 21 

impact on protein noise. 22 

 23 
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To experimentally perturb nuclear-export rates, we took advantage of the fact that HIV and 1 

lentiviral reporter constructs (e.g., the LTR-GFP construct, Figure 2A) utilize the cellular 2 

chromosome region maintenance 1 (CRM1) pathway for nuclear export (Felber et al., 1989; 3 

Malim et al., 1988; Ossareh-Nazari et al., 1997) even in the absence of Rev (Urcuqui-Inchima et 4 

al., 2011).  Cells were treated with the small-molecule inhibitor of CRM1 mediated nuclear 5 

export, leptomycin B (Watanabe et al., 1999), and imaged by smRNA FISH.  Both dose and 6 

duration of leptomycin B were titrated to determine the maximum tolerable concentration 7 

(Figures S4C and S4D) (i.e., 0.6 ng/mL for 2.5 hours gave minimal cytotoxicity while still giving 8 

significantly increased mean nuclear mRNA).  As above, extrinsic-noise filtering (i.e., cell size 9 

and DNA content) was employed, which further controls for cytotoxic effects, because dying and 10 

dead cells tend to be smaller.  To validate that the nuclear-export rate was specifically decreased, 11 

without affecting other rates (Figures S4E), we measured TC intensity and frequency by 12 

smFISH, and then used mRNA distributions to calculate rates for each individual biochemical 13 

step in mRNA biogenesis, as previously done (Bahar Halpern et al., 2015a; Munsky et al., 2012).  14 

To validate the decreased export rate, we confirmed the calculated export and cytoplasmic 15 

degradation rates (3.78 ± 0.63 and 0.66 ± 0.14, respectively) by smRNA FISH at 15-minute time 16 

intervals after treatment with an orthogonal transcriptional inhibitor (Figures S4F), Actinomycin 17 

D (Bensaude, 2011), and found an export rate of 4.4 ± 1.5 hr-1 and degradation rate of 1.0 ± 0.5 18 

hr-1.  19 

 20 

As predicted, the data shows that both the mean and noise of nuclear mRNA increased 21 

significantly (paired t test: p=0.012 and p=0.007) when nuclear export is diminished 22 

approximately 2-fold (Figure 4B).  In contrast, neither mean nor noise of cytoplasmic mRNA 23 
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change significantly when nuclear export is diminished (paired t test: p = 0.374 and p = 0.06, 1 

respectively) (Figures 4C and 4D).  Protein noise did not change significantly (paired t test: p = 2 

0.162) (Figure 4E) despite use of a short-lived GFP reporter that is particularly sensitive to 3 

changes in noise (Dar et al., 2012).  This result is expected given the lack of change in 4 

cytoplasmic mRNA noise.  To test that these results were not caused by an off-target effect of 5 

leptomycin B (i.e. observed effects were specific to inhibition of CRM1 export pathway), we 6 

treated the SV40 and UBC promoters with leptomycin B.  Transcripts expressed from either 7 

promoter lack an RRE (Figure 2A) and are presumably not exported via the CRM1 dependent 8 

pathway.  Therefore, mRNA expressed from either SV40 or UBC should be insensitive to 9 

leptomycin B treatment.  As expected, we found no significant difference in nuclear mRNA 10 

distributions (KS test p > 0.1 compared to p <0.0001 for LTR isoclone A3, Figure S4G).  11 

 12 

In extreme cases when export rates fall below the mRNA-degradation rates—as occurs for a 13 

small fraction of genes (Bahar Halpern et al., 2015a)—the situation is slightly different.  In this 14 

regime, cytoplasmic noise can be affected by decreases in export rate (Figure S4A).  However, 15 

even for a conservatively low protein half-life of two hours, simulations show that this decrease 16 

in cytoplasmic mRNA noise cannot propagate to protein noise (Figure S4B).  Consequently, for 17 

physiologically relevant parameters, even in the extreme cases, nuclear export is predicted to 18 

cause noise amplification rather than attenuation. 19 

 20 

Cytoplasmic mRNA noise is further amplified by super-Poissonian mRNA decay and 21 

translation processes caused by mRNA switching between alternate states 22 

 23 
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Based on previous reports (Battich et al., 2015), we next explored whether there might be noise-1 

attenuation processes concealed within the data.  Briefly, we used a common model-validation 2 

approach (Munsky et al., 2012) to determine whether cytoplasmic mRNA distributions could be 3 

predicted from measured nuclear mRNA distributions using the existing model parameter 4 

estimates (Figure S4E).  If nuclear mRNA distributions predicted broader cytoplasmic mRNA 5 

noise distributions than experimentally measured, it could indicate hidden noise-attenuation 6 

processes.   Importantly, the goal of this analysis is distinct from the analysis above (Figure 2), 7 

which shows that cytoplasmic noise is higher than predicted from the cytoplasmic mean level: 8 

instead, the goal of this analysis was to test if measured cytoplasmic noise levels are different 9 

than predicted from nuclear parameters (i.e., transcriptional burst frequency, transcriptional burst 10 

size, mean, and noise). 11 

 12 

Strikingly, the data show precisely the opposite of attenuation: the experimentally measured 13 

cytoplasmic RNA distributions are significantly broader than predicted from nuclear 14 

distributions [KS test: p = 0.0002 (Figure 5A, right panel, grey bar chart versus green dashed 15 

line)].  To fit both nuclear and cytoplasmic mRNA distributions, we then analyzed a series of 16 

models of increasing complexity in order to arrive at a best-fit model of lowest complexity 17 

(Figure S5).  We examined eight models consisting of: (Models i-iii) single to multiple mRNA 18 

states followed by first order mRNA degradation; (Models iv-v) single to multiple mRNA states 19 

with zero-order mRNA degradation; (Models vi-viii) multiple mRNA states with the rate of 20 

mRNA entering the degradation-competent state exhibiting zero-order kinetics, followed by first 21 

order mRNA degradation.  While nuclear RNA distributions could be fit by all models 22 

examined, overall, the key physiological process required to fit the amplified RNA noise in the 23 
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cytoplasmic was that mRNA degradation not be a simple Poisson process (i.e., exponential 1 

waiting times), but rather at least a three-state process where degradation is biphasic—in general, 2 

multi-state processes are super-Poissonian processes generating super-Poissonian distributions 3 

(Singh et al., 2010).  Interestingly, we found that the reported biphasic mRNA decay (Yamashita 4 

et al., 2005), required that the rate of mRNA entry into the degradation-competent state have 5 

zero-order kinetics (Figure S5vi-viii), indicating a reaction rate that is independent of the 6 

concentration of the mRNA species involved (Figure S5, blue arrow).  In fact, the resulting best-7 

fit model [Model viii; KS test: p = 0.44 (Figure 5A, right panel, grey bar chart versus purple full 8 

line)] incorporates two previously documented phenomena: (i) biphasic mRNA degradation in 9 

mammalian cells (Yamashita et al., 2005)—where two independent co-translational 10 

deadenylation steps (state 1 and state 2) are followed by 5’ decapping (state 3) and mRNA 11 

degradation; and (ii) the well-documented inverse relationship between translational initiation 12 

rates and rates of mRNA degradation (LaGrandeur and Parker, 1999; Parker, 2012), which posits 13 

that translational machinery protects mRNA from degradation or, vice versa, that the presence of 14 

mRNA degradation machinery inhibits translation.  15 

 16 

To further validate the multi-state degradation (super-Poissonian) model, we analyzed the panel 17 

of clones from above (Figure 2).  We first double-checked that the measured TC frequency and 18 

size could accurately predict mRNA distributions in the nucleus and, consistent with the 19 

computational predictions, measured TC size and frequency indeed accurately predicts nuclear 20 

mRNA distributions using either a Poisson or non-Poisson model for all clones (Figures 5A, left 21 

panel, and 5B-C circles).  However, consistent with the results above (Figure S5), for all clones 22 

examined, cytoplasmic mRNA distributions had substantially higher noise than predicted by 23 
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Poisson degradation and these super-Poissonian distributions could be fit by the multi-state 1 

mRNA degradation model (Figures 5A, right panel, and 5C squares).  Overall, these data 2 

confirm a further amplification of cytoplasmic mRNA noise relative to the nucleus, consistent 3 

with multi-state (super-Poissonian) mRNA degradation.   4 

 5 

To experimentally test the multi-state translation-degradation model, we next analyzed the 6 

effects of two small-molecule inhibitors (cyclohexamide and lactimidomycin) that block mRNA 7 

translation through alternate mechanisms of action (Figure S6A-C) and that numerical 8 

simulations predicted would have inverse effects on mRNA half-life in the translation-9 

degradation model (Figure S6D, dashed lines).  Specifically, cyclohexamide (CHX) inhibits the 10 

elongation of ribosomes, causing ribosomes to accumulate on the mRNA (Lee et al., 2012), 11 

whereas lactimidomycin (LTM) inhibits the final step of translational initiation (Lee et al., 2012).  12 

If mRNAs undergo multi-state degradation-translation with ribosomes protecting mRNAs from 13 

degradation, the model predicts that CHX would prevent transcripts from entering the 14 

degradation-competent state, resulting in a lower kon_deg and longer mRNA half-life (predictions 15 

shown in Figure S6D, left – dashed blue line).  In contrast, in the presence of LTM, the mRNA is 16 

free of ribosomes—except for the initiating ribosome which is frozen in place—and more 17 

susceptible to exosomal decay (Garneau et al., 2007).  Consequently, the model predicts that 18 

LTM should push transcripts into the degradation-competent state, resulting in a higher kon_deg 19 

and a decrease in mean cytoplasmic mRNA per cell (Figure S6D, right – dashed red line).  20 

Strikingly, despite both CHX and LTM inhibiting protein translation to the same extent (Figure 21 

S6A), CHX causes an accumulation of cytoplasmic mRNA over time while LTM treatment 22 

shows a decrease in cytoplasmic mRNA (Figure S6D), as predicted.  We did observe LTM 23 
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inducing an initial 1-hr transient increase in cytoplasmic mRNA preceding the decrease, and, as 1 

previously reported, this transient increase could be due to the cell globally decreasing 2 

degradation rates as a response to stress (Horvathova et al., 2017).  Importantly, these changes in 3 

cytoplasmic mRNA levels are not due to changes in transcription rate, since the nuclear mean 4 

(Figure S6D, black data points) and respective distributions (Figure S6B) show no significant 5 

differences.  Overall, a multi-state mRNA translation-degradation model appears to be the most 6 

parsimonious with the cytoplasmic RNA data. 7 

 8 

Multi-state mRNA translation-degradation amplifies protein noise, accounting for up to 9 

74% of intrinsic cell-to-cell variability in protein levels 10 

 11 

To examine how mRNA noise propagates to protein levels, we combined quantitative protein 12 

imaging with cytoplasmic smRNA FISH.  GFP levels were quantified in individual isoclonal 13 

LTR-GFP reporter cells by confocal microscopy (Figure 6A-B, grey circles and bars), and 14 

molecular concentrations were calculated by calibration against purified, soluble GFP standards 15 

(Figure S7A).  Using the measured mean GFP level and half-life (Dar et al., 2012), in 16 

combination with previously established parameters (Figures S4E), simulations were used to 17 

examine the models of increasing complexity (Figure S5).  Remarkably, as above, the protein 18 

distributions can only be fit using the eighth model where both degradation and translation are 19 

multi-state (i.e., super-Poissonian) processes (KS test p = 0.46).  Notably, this multi-state process 20 

is fundamentally different from previously reported translational “bursting” (Thattai and van 21 

Oudenaarden, 2001) (Figure S7C, green line), as the zero-order entry to a decay-competent 22 

mRNA state generates a significantly higher degree of noise amplification in a translation-23 
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competent mRNA species and hence in protein (Figure S7C, purple line).  This multi-state 1 

degradation and translation model—where translation and degradation are mutually exclusive—2 

appears necessary and sufficient to explain the amplified mRNA noise in the cytoplasm, as well 3 

as the measured protein noise for the various promoters and integration sites examined (Figure 4 

6A-B).   5 

 6 

Next, to determine the contribution of multi-state translation-degradation bursting to overall 7 

cellular noise, and specifically intrinsic noise, we analyzed flow cytometry data and microscopy 8 

measurements against predictions from numerical simulations.  First, using an established size-9 

gating approach (Blake et al., 2003; Newman et al., 2006; Singh et al., 2010) that isolates cells 10 

synchronized by cell-cycle state, we filtered intrinsic from extrinsic noise (Figure S8A and S2C-11 

G).  While this size-gating approach may slightly under-estimate extrinsic factors (Newman et 12 

al., 2006) it excludes the majority of extrinsic cellular variability especially for low expressing 13 

genes, an expression regime where other methods (e.g., two-color analysis) are technically 14 

difficult to employ.  Consistent with previous large-scale analysis of low abundance genes in 15 

eukaryotes (Bar-Even et al., 2006; Dar et al., 2012; Newman et al., 2006), we find that intrinsic 16 

factors appear to account for a large portion of total protein noise in flow cytometry data—the 17 

intrinsic contribution ranged from 59–76% for the LTR promoter (Figure S8C and S8E), to 41-18 

61% for more highly expressing promoters (EF-1α, SV40 and UBC, Figure S8B and S8E) and 19 

~37% for constitutively expressed NANOG (Figure S8D and S8E).  Then, to determine how 20 

translation-degradation bursting quantitatively contributes to this intrinsic noise, we calculated 21 

the expected protein noise for all clones (LTR, EF-1α and UBC) under two alternate scenarios: 22 

(i) a scenario where noise is generated only from previously characterized sources (i.e., 23 
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transcriptional bursting, nuclear export, and Poissonian mRNA degradation and translation); or, 1 

(ii) the scenario where multi-state translation and degradation is included as a potential noise 2 

source.  Strikingly, this analysis indicates that, for all cell types and promoters, multi-state 3 

translation-degradation bursting accounts for ~74% of intrinsic cell-to-cell variability (Figure 4 

6C) making it the dominant source of intrinsic cellular variability (other processes account for 5 

~26% of intrinsic noise). 6 

 7 

DISCUSSION 8 

How cellular processes amplify or attenuate gene-expression fluctuations (noise) is crucial to 9 

designing synthetic gene-regulatory circuits (Hasty et al., 2002) and for efforts to efficiently 10 

specify cell fate (Blake et al., 2006; Dar et al., 2014).  Here, we analyzed mRNA and protein 11 

noise to quantify whether cellular processes amplify or attenuate fluctuations as mRNAs proceed 12 

from transcription through translation.  Computational results (Figure 1) show that in the 13 

majority of physiologically relevant scenarios (approximately 85%), nuclear export of mRNA 14 

amplifies mRNA fluctuations generated by transcriptional bursts, and single-molecule RNA 15 

counting corroborates this prediction for several viral and mammalian promoters (LTR, UBC, 16 

EF-1α, SV40, c-Jun, c-Fos, COX-2, FoxO, Per1, NR4A2 and NANOG) in different mammalian 17 

cell types (Figure 2–3).  The results also show that cytoplasmic mRNA noise is robust to changes 18 

in nuclear export (Figure 4), but can be substantially amplified by super-Poissonian mRNA 19 

decay (Figure 5) and translation processes (Figures 6).  Cumulatively, the resulting model is 20 

capable of predicting protein noise from transcriptional measures and shows that the effects of 21 

nuclear export, mRNA degradation, and translation substantially amplify gene expression noise, 22 

resulting in cytoplasmic mRNA and protein distributions that are super-Poissonian (i.e., far from 23 
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minimal Poisson noise).  These results, which show that transcriptional noise propagates to the 1 

protein level, are consistent with findings that noise exerts purifying (negative) selection 2 

pressures on promoter architecture (Fraser et al., 2004; Wolf et al., 2015) and can drive 3 

diversifying (positive) selection for bet-hedging phenotypes (Balázsi et al., 2011; Beaumont et 4 

al., 2009; Raj and van Oudenaarden, 2008; Rouzine et al., 2015). 5 

 6 

These results build on previous findings that translation can proportionally amplify 7 

transcriptional fluctuations (Thattai and van Oudenaarden, 2001) since a single RNA typically 8 

produces hundreds to thousands of protein molecules (Bar-Even et al., 2006; Blake et al., 9 

2003)—i.e., fluctuations of a single mRNA molecule can generate large fluctuations in protein 10 

numbers.  However, the multi-state translation-degradation model is fundamentally different 11 

from previously reported translational “bursting” (Thattai and van Oudenaarden, 2001), which is 12 

insufficient to generate the required noise levels to fit the data.  Moreover, the findings herein are 13 

consistent with recent studies showing that in ~15% of cases nuclear export is slower than 14 

cytoplasmic mRNA degradation, and passive attenuation of mRNA noise can occur 15 

(Bahar Halpern et al., 2015).  While an accompanying study reported that noise attenuation was 16 

more widespread (Battich et al., 2015), the HeLa cells and primary human keratinocytes 17 

examined in that study could exhibit significantly slower nuclear export and faster mRNA 18 

degradation than the lymphocytes, embryonic murine cells, and kidney cells examined here, 19 

which may explain how the same genes (c-Jun, c-Fos, Per1, and FoxO) exhibit different noise 20 

properties in these studies.  Nevertheless, the results herein demonstrate that any potential 21 

attenuation of mRNA noise does not translate to decreased protein noise, due to longer protein 22 

half-lives compared to mRNA half-lives, in line with previous predictions (Singh and Bokes, 23 
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2012), and possibly due to multi-state degradation and translation (Figure 5–6).  Interestingly, a 1 

recent study also found higher-than-predicted cytoplasmic noise for transcripts expressed from 2 

12 yeast genes attributed to mRNA processing downstream of transcription and elongation 3 

(Choubey et al., 2015).  Overall, amplification appears to be the most common form of noise 4 

modulation in the absence of specific gene-regulatory circuits.  5 

 6 

Most interestingly, these data support a model for cytoplasmic mRNA deadenylation occurring 7 

at two distinct rates (Yamashita et al., 2005), with translational initiation and mRNA degradation 8 

being inversely proportional and mutually exclusive processes (LaGrandeur and Parker, 1999; 9 

Parker, 2012; Pelechano et al., 2015; Schwartz and Parker, 1999).  Notably, the model proposed 10 

here does not contradict recent data obtained from yeast demonstrating that some mRNA can 11 

undergo co-translational mRNA degradation (Pelechano et al., 2015).  Since, the model requires 12 

translational initiation and degradation to be mutually exclusive, elongation could still occur 13 

during 5’ to 3’ degradation.  Hence, cytoplasmic mRNA is subject to another, at least three-state 14 

process, which adds a significant noise-amplification step to gene expression.  Several 15 

mechanisms could explain this multi-state degradation and translation including the association 16 

of non-translating mRNAs into P-bodies or stress granules, as P-bodies and stress granules are 17 

enriched with mRNA degradation and translational initiation machinery respectively (Decker 18 

and Parker, 2012).  However, because our data do not show mRNA aggregates in the cytoplasm, 19 

biphasic deadenylation along with mutually exclusive degradation and translation appears to be 20 

the more parsimonious model.  21 

 22 
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While the computational model we employed was admittedly simplified—it considered only two 1 

transcriptional states without important processes such as splicing—the smFISH measurements 2 

show that amplification of noise occurs primarily via post-transcriptional processes in the 3 

cytoplasm (e.g., export, degradation and translation; see Figure 6D).  If splicing were included as 4 

a rate-limiting step (Hao and Baltimore, 2013), it would add an extra noise source and most 5 

likely further amplify noise.  Moreover, the results do not depend on the strict two-state random-6 

telegraph transcription model, because noise amplification is primarily post-transcriptional—i.e., 7 

the noise amplification result would hold for other transcription models with greater than two 8 

transcriptional states (Corrigan et al., 2016; Neuert et al., 2013; Zoller et al., 2015).  9 

 10 

It is not clear how widespread biphasic mRNA decay is across the mammalian genome or even 11 

across different mammalian cell types, and, notably, mRNAs that exhibit Poisson-like mRNA 12 

decay (Horvathova et al., 2017) would not be subject to this additional noise amplification step. 13 

From an evolutionary perspective it is conceivable that the ~15% of mRNA species that are 14 

subject to passive attenuation of mRNA noise (Bahar Halpern et al., 2015) could also exhibit 15 

Poisson-like mRNA decay, allowing for certain genes to have evolved a low-noise gene 16 

expression pathway.  It also is possible that untranslated mRNAs, such as miRNAs or shRNAs, 17 

are not subject to multi-state degradation and accompanying noise amplification, due to the lack 18 

of protecting ribosomes, though Dicer and other processing machinery could serve an equivalent 19 

protection role.  Since miRNAs modulate protein levels via mRNA degradation and translational 20 

repression (Bartel, 2004), miRNAs could influence multi-state degradation and translation rates 21 

to modulate noise (Garg and Sharp, 2016; Schmiedel et al., 2015).  22 

 23 
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In summary, the results show that, in the majority of scenarios, transcriptional noise is amplified 1 

by nuclear export and is then further amplified by mRNAs switching between translation- and 2 

degradation-competent states.  Importantly, the results show that this intrinsic cellular process, 3 

multi-state translation-degradation, accounts ~74% of the intrinsic noise, providing a 4 

foundational basis for noise to have acted as a substrate for promoter selection and as a driving 5 

force in cell-fate decisions. 6 

 7 
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METHODS 1 

 2 

Cell lines 3 

Mouse E14 embryonic stem cells (mESCs) were cultured in feeder-free conditions on gelatin-4 

coated, 10cm Corning plates.  ESGRO 2i + LIF media (SF016-200) was used for cell culture.  5 

Jurkat T Lymphocytes were cultured in RPMI-1640 medium (supplemented with L-glutamine, 6 

10% fetal bovine serum, and 1% penicillin-streptomycin), at 37°C, 5% CO2, in humidified 7 

conditions at b 0.05 × 105 to 1 × 106 cells/mL.  Human immortalized myelogenous leukemia 8 

(K652) cells were cultured in RPMI-1640 medium (supplemented with L-glutamine, 10% fetal 9 

bovine serum, and 1% penicillin-streptomycin), at 37°C, 5% CO2, in humidified conditions at 2 10 

× 105 to 2 × 106 cells/mL.	 	 Human embryonic kidney (293FT) cells were cultured in DMEM 11 

(supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin) at 37°C, 5% CO2, 12 

in humidified conditions at 10 to 90% confluency. All cell lines were passaged at least three 13 

times prior to smRNA FISH imaging. 14 

 15 

Computational modeling 16 

Stochastic simulations 17 

A simplified two-state transcription model incorporating two compartments (nucleus and 18 

cytoplasm) was constructed and simulated using the Gillespie algorithm (Gillespie, 1977), with 19 

reaction scheme and parameters as defined in Table S1.  Stochastic simulations were run in 20 

MATLAB.  Initial conditions for all species were set to 0, except for PromoterOFF which was set 21 

to 1.  Simulations were run to time = 25 (arbitrary time units) and 1000 simulations were run for 22 

each parameter set.  For the final “time-point” of simulations, nuclear and cytoplasmic mean and 23 

Fano factor were calculated.  24 

  25 

Ordinary differential equations for probable parameter regime calculations 26 

Assuming a simplified mathematical model where mRNAs are transcribed at rate α, nuclear and 27 

cytoplasmic mRNA means can be approximated by the following equations:    28 
?@A3B;<8

?(
= C − E7FG ∙ IJ!K)*&    (Equation 1) 29 

?@A3B89:

?(
= E7FG ∙ IJ!K)*& − E?7L ∙ IJ!K&'(    (Equation 2) 30 
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At steady state the mean amount of nuclear and cytoplasmic mRNA is therefore: 1 

IJ!K)*& =
M

NOPQ

       (Equation 3) 2 

IJ!K&'( =
M

NROS

       (Equation 4) 3 

And the ratio of nuclear to cytoplasmic mRNA is: 4 
@A3B;<8

@A3B89:

=
NROS

NOPQ

      (Equation 5) 5 

From previously reported genome-wide mRNA counts of nuclear versus cytoplasmic mRNA, the 6 

ratio between the degradation and export rate (kdeg/kexp) per gene can be estimated (Figure S1C) 7 

(Bahar Halpern et al., 2015), and the possible parameter space can be further limited to a 8 

probable regime.  From the probable parameter regime, we could determine how many scenarios 9 

resulted in true attenuation of mRNA noise (i.e. cytoplasmic noise was attenuated down to 10 

minimal Poissonian levels).  To remain on the conservative side, a given parameter combination 11 

was labeled true attenuation, when cytoplasmic noise was lower than nuclear noise, and 12 

cytoplasmic Fano factor was < 2.  Next, the percentage of scenarios resulting in true attenuation 13 

was calculated, resulting in only ~2.5%.  14 

 15 

 16 

Analytical derivation 17 

The power spectral density (PSD) of the noise in the Nuc mRNA populations (T3U> V  is (see 18 

Simpson et al. PNAS 2003; Simpson et al. JTB 2004; Cox et al Chaos 2006) 19 

 20 

T3U> V =
WXYZ [

\]
^

^
:_SS`O

a

\]
^

^OPQ_b:

a
      (Equation 6) 21 

 22 

Where 23 

f=frequency in Hz 24 

T3U> 0 = PSD of NUC mRNA population noise at f=0 25 
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V(4LLd7 =
NeX]Neff

gh
 = critical frequency associated with promoter toggling 1 

V7FG4i( =
NOPQ

gh
 = critical frequency associated with export of mRNA 2 

 3 

The variance of the noise in the Nuc mRNA populations (j3U>g ) is (Simpson et al. PNAS 2003) 4 

j3U>
g

= T3U> 0 !kl3U>       5 

 6 

Where  7 

!kl3U>  is known as the noise bandwidth and is a function of the 2 critical frequencies 8 

described above (Simpson at al. PNAS 2003).   9 

The Fano factor of the noise in the Nuc mRNA population (FFNUC) is 10 

 11 

mm3U> =
n
XYZ

a

3
=

WXYZ [ 3opXYZ

3
  12 

 13 

Where 14 

 15 

!  is the steady-state value of the Nuc mRNA population. 16 

 17 

The PSD of the noise in the Cyto mRNA population (T>qrs V  is 18 

 19 

T>qrs V = t
g

T3U> 0

1 +
V

V(4LLd7

g

1 +
V

V7FG4i(

g

1 +
V

V?7L

g
 20 

 21 

Where  22 

t =
>

3
=

NROS

NOPQ

 is the “gain” between Cyto and Nuc mRNA populations.  23 

<C> is the Cyto mRNA population 24 

Kdegis the rate of mRNA degradation in the cyto 25 

V?7L =
NROS

gh
 is the critical frequency associated with mRNA degradation in the cyto 26 

The variance (j>qrsg ) and Fano factors (mm>qrs) for the Cyto mRNA population are 27 
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 1 

j>qrs
g

= t
g
T3U> 0 !kl>qrs 2 

 3 

mm>qrs =
j>qrs
g

,
=
t
g
T3U> 0 !kl>qrs

t !
= t

T3U> 0 !kl>qrs

!
=

,

!

T3U> 0 !kl>qrs

!
 4 

 5 

The ratio of the Fano factors is 6 

 7 

vvZwxe

vvXYZ

=
>

3

yXYZ z X{|Zwxe

X

yXYZ z X{|XYZ

X

=
>

3

3opZwxe

3opXYZ

      (Equation 7) 8 

 9 

The two noise bandwidths are controlled by the 3 critical frequencies associated with 1. 10 

Promoter toggling; 2. mRNA export; and for the cytoplasm 3. mRNA degradation.  In both 11 

cases, the noise bandwidth is dominated by the lowest of the critical frequencies that are 12 

associated with it.  As a result,  13 

 14 

!kl3U> ≥ !kl>qrs 15 

and therefore,  16 
!kl>qrs

!kl3U>

≤ 1 17 

and 18 

 19 
vvZwxe

vvXYZ

≤
>

3
. 20 

 21 

Equation 7 shows that there is a strong tendency for FFCYTO> FFNUC for cases where <C> > <N>. 22 

Only in the special case where Cyto has a much lower noise bandwidth than Nuc is it possible to 23 

have both <C> > <N> and FFNUC> FFCYTO. These relationships can be made clearer by looking 24 

at some limiting cases:  25 

 26 

 27 

 28 
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Parameter 

relationship 

Noise bandwidth relationship Steady-state 

population 

relationship 

Fano factor relationship  
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 1 

 2 

Rate calculations 3 

The number of mRNAs at the transcriptional center (TCmRNA) can be calculated from the 4 

transcriptional center intensity (TCint): 5 

É,@A3B =
r>Ñ;:

WG4(Ñ;:

      (Equation 8) 6 

where Spotint is the median single mRNA intensity. From this the transcription rate (ktx) was 7 

calculated:  8 

E(F = É,@A3B ∙
NO`_;SÖ:Ñ_;

Ü
      (Equation 9) 9 

where kelongation (1.9 kb/min) is the elongation rate of RNA Pol2 (Boireau et al., 2007) and L is the 10 

length of the gene.  The TC frequency is an approximation for the frequency that the respective 11 

promoter is on (fon).  Assuming gene expression is at steady-state, then export (kexp) and 12 

degradation (kdeg) rates were calculated from nuclear (meannuc) and cytoplasmic (meancyt) mean 13 

mRNA count respectively (Munsky et al., 2012):  14 
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E7FG =
á_;∙N:P

@7à);<8

      (Equation 10) 1 

 2 

E?7L =
á_;∙N:P

@7à)89:

      (Equation 11) 3 

 4 

Prediction of cytoplasmic noise 5 

From the frequency that the respective promoter is on (fon): 6 

V4) =
N_;

N_;]N_^^

      (Equation 12) 7 

and the nuclear noise (Fanonuc): 8 

mâä")*& = 1 +
\ãá_; ∙N:P

N_;]N_^^]NOPQ

      (Equation 13) 9 

the promoter ON (kon) and promoter OFF (koff) rates were calculated (Munsky et al., 2012), given 10 

that all other parameters are known.  These parameters were then used to predict cytoplasmic 11 

noise, using both Poissonian and multi-state cytoplasmic mRNA degradation models. The 12 

additional rates involved in multi-state degradation (Table S1) were determined by manual 13 

screening of parameter ranges.  14 

 15 

 16 

Single molecule RNA FISH  17 

 18 

Sample preparation 19 

Probes were developed using the designer tool from Stellaris (LGC Biosearch Technologies, 20 

Novato, CA) (http://www.singlemoleculefish.com/) to detect GFP, c-Jun, c-Fos, COX-2, FoxO, 21 

NR4A2, Per1, c-Fos.  Because NANOG had a GFP tag, it could be detected using the GFP 22 

probes.  Probes were designed using a masking level of 5, and at least 2 base pair spacing 23 

between single probes.  Each probe set contained 29-48 probes, with each probe being 18-20 nt 24 

long and conjugated with TAMRA (see Tables S2–S8 for probe sequences).   25 

 26 

Approximately 6x105 isoclonal cells were washed with 2 mL of PBS solution and then 27 

immobilized on a Cell-Tak (Corning, Bedford, MA) coated 8-well chambered image dish.  28 

Human embryonic kidney (293F) cells were trypsinized with 0.05% Trypsin EDTA (Mediatech, 29 
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MT 25-052-C1) for 1 minute followed by neutralization with DMEM prior to PBS washing step. 1 

If applicable, cells were then treated with leptomycin B (Sigma Aldrich, Darmstadt, Germany).  2 

Prior to fixing, mouse E14 embryonic stem cells (mESCs) were cultured on a 35mm MatTek 3 

dish (P35G-1.5-14C, MatTek, Ashland, MA).  Cells were then fixed with PBS in 3.4% 4 

paraformaldehyde for 10 minutes.  Fixed cells were washed with PBS and stored in 70% EtOH 5 

at 4 °C for a minimum of one hour to permeabilize the cell membranes.  Probes were diluted 6 

200-fold and allowed to hybridize at 37 °C overnight.  Wash steps and DAPI (Thermo Fisher 7 

Scientific, Waltham, MA) staining were performed as described 8 

(https://www.biosearchtech.com/support/applications/stellaris-rna-fish).   9 

 10 

Imaging  11 

To minimize photo bleaching, cells were imaged in a photo-protective buffer containing 50% 12 

glycerol (Thermo Fisher Scientific, Waltham, MA), 75 µg/mL glucose oxidase (Sigma Aldrich, 13 

Darmstadt, Germany), 520 µg/mL catalase (Sigma Aldrich, Darmstadt, Germany), and 0.5 14 

mg/mL Trolox (Sigma Aldrich, Darmstadt, Germany).  Images were taken on a Nikon Ti-E 15 

microscope equipped with a W1 Spinning Disk unit, an Andor iXon Ultra DU888 1k x 1k 16 

EMCCD camera and a Plan Apo VC 100x/1.4 oil objective in the UCSF Nikon Imaging Center.  17 

Approximately 10 xy locations were randomly selected for each isoclonal population.  For each 18 

xy location, Nyquist sampling was performed by taking ~30, 0.4 um steps along the z-plane.  19 

The exposure times for TAMRA (100% laser power), and DAPI (50 % laser power) channels 20 

were 500 ms, and 50 ms for single mRNA analysis and 50 ms, and for transcriptional center 21 

(TC) analysis.  For each z-plane in a 3-D stack images for both single mRNA analysis and TC 22 

analysis were taken.  23 

 24 

Image analysis  25 

mESCs were segmented manually and all other cells were segmented using a short in-house 26 

ImageJ script (available upon request), which relied on the auto fluorescence visible in the RFP 27 

channel.  Spot/TC identification and counting was then performed using in-house MATLAB 28 

programs (available upon request).  In short, the user enters a cellular size and eccentricity range, 29 

DAPI intensity threshold, FISH intensity threshold and TC intensity threshold. The MATLAB 30 

program then uses the central z-slice DAPI image to create a general nuclear mask.  Together 31 
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with the cellular mask established in ImageJ this nuclear mask is used to exclude cells outside a 1 

given size range, nuclear DAPI intensity range or eccentricity range (see extrinsic noise section 2 

below).  Cells which contained more than one nuclei were also excluded to eliminate multiple 3 

cells which were segmented as one.  Notably, these steps automatically exclude unhealthy cells, 4 

since the cells tend to shrink and/or DAPI intensity becomes much brighter.  Next, the DAPI and 5 

FISH images of each individual z-slice are sequentially analyzed.  After background subtraction, 6 

a Gaussian filter was applied to reduce the amount of local maxima caused by pixel-to-pixel 7 

noise.  Individual spots and TC’s are then segmented using the predefined thresholds to 8 

determine possible spot/TC areas.  For each z-slice the local maxima of the segmented spot areas 9 

are detected.  Local maxima which show up within the possible spot areas of multiple sequential 10 

images were only counted as one local maxima.  Each DAPI image was used to create a nuclear 11 

mask for that specific z-slice, which in turn was used together with the cellular mask to allocate a 12 

specific spot to either the nucleus or the cytoplasm of each individual cell.  TC’s were defined as 13 

such, if their local maxima’s were at least double as bright as the median single mRNA local 14 

maxima intensity.  The number of mRNAs at the transcriptional center were quantified as the 15 

intensity of the transcriptional center divided by the median single mRNA intensity.  16 

 17 

Extrinsic noise filtering 18 

Extrinsic noise filtering was part of MATLAB program mentioned above, but the respective 19 

ranges were determined manually.  For the extrinsic noise filtering three parameters were 20 

quantified: cellular size; DAPI intensity; and cellular shape (Figure S2C and D).  For each 21 

parameter the Pearson’s correlation between the total mRNAs per cell and the respective 22 

parameter was quantified.  The extrinsic noise filtering steps were applied such that the analyzed 23 

range of cells was within the respective noise filtering boundaries (Figure S2G).  For two 24 

extrinsic noise filtering boundaries to be accepted, the Pearson’s correlation must not be 25 

statistically significant (i.e. p>0.05, see Figure S2C and F).  The final extrinsic noise filtering 26 

boundaries were chosen in order to include as many cells as possible while maintaining a 27 

Pearson’s correlation p>0.05.  28 

 29 

GFP expression analysis 30 

 31 
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Microscopy 1 

Isoclonal populations were washed with 10 mL PBS solution and then immobilized on Cell-Tak 2 

coated 8-well chambered image dish.  For the GFP standard curve, soluble eGFP (Cell Biolabs, 3 

San Diego, CA) standards (in PBS) of known concentration were imaged under the same 4 

conditions as cellular GFP.  Both GFP standards, and cellular GFP were imaged on a Nikon Ti-E 5 

microscope equipped with a W1 Spinning Disk unit, an Andor iXon Ultra DU888 1k x 1k 6 

EMCCD camera and a Plan Apo VC 100x/1.4 oil objective in the UCSF Nikon Imaging Center, 7 

exposure time was 200 ms with 20% laser power.  Approximately 10 xy locations were 8 

randomly selected for each isoclonal population. After background and auto-fluorescence 9 

subtraction from cellular GFP images, the cellular GFP concentration was calculated from the 10 

GFP standard curve (Figure S6A).  Using the measured cellular volume and cellular GFP 11 

concentration, the absolute number of GFP molecules per cell was calculated.  For a review on 12 

molecular counting see (Coffman and Wu, 2014).  13 

 14 

Flow cytometry 15 

Flow cytometry data was collected on an LSRII cytometer (BD Biosciences) with a 488-nm laser 16 

used to detect GFP.  The cytometry data was analyzed using FlowJo (http://www.flowjo.com/).   17 

 18 

Quantification and statistical analysis 19 

 20 

Statistical analysis was performed by Pearson correlation analysis, Kolmogorov–Smirnov test or 21 

paired t test.  All data are presented as mean ± SEM or SD.  Significance levels were set at P < 22 

0.05.  For statistical analysis GraphPad™ Prism was used.  23 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/222901doi: bioRxiv preprint 

https://doi.org/10.1101/222901


Page 39 of 46	

FIGURE LEGENDS 1 
 2 
Figure 1:  The random-telegraph model of gene expression predicts that mRNA noise is 3 

amplified by nuclear-to-cytoplasmic export.  (A) Schematic representation of the conventional 4 

model of eukaryotic mRNA transcription expanded to include both nuclear and cytoplasmic 5 

compartments.  (B) Representative distributions of nuclear (dashed lines) and cytoplasmic (solid 6 

lines) mRNA for parameter combinations yielding noise attenuation (blue), unchanged noise 7 

(black), and noise amplification (red).  Distributions are from 1000 simulations per parameter 8 

condition.  (C) Mean versus CV2 for nuclear (squares), expected cytoplasmic (grey circles) and 9 

cytoplasmic (colored circles) mRNAs, corresponding to each distribution in B.  Bar graphs show 10 

the expected cytoplasmic CV2 due to Poisson scaling and the actual cytoplasmic CV2.  (D) Mean 11 

versus s2/µ (Fano factor) for both nuclear (squares) and cytoplasmic (circles) mRNAs, 12 

corresponding to each distribution in B.  (E) Comparison of nuclear versus cytoplasmic mRNA 13 

noise (s2/µ).  (F-H) Nuclear-to-cytoplasmic noise ratio (Noisecyt /Noisenuc) simulated for the 14 

physiologically possible parameter space, as calculated by varying each parameter from its 15 

highest-reported to its lowest-reported value (1000 simulations run per parameter combination; > 16 

7 million runs).  Increasing red represents increasing noise amplification while increasing blue 17 

represents increasing noise attenuation, white represents no change in noise from nucleus to 18 

cytoplasm.  Panel F (a subpanel of G) shows how varying kon and koff across the full range of 19 

reported values, affects the noise ratio (all other parameters are kept fixed).  Panel G (a subpanel 20 

of H) shows how varying ktx across its full range of reported values affects the noise ratio for the 21 

array of kon koff simulations.  Panel H represents the full set of simulation results where the array 22 

of kon koff ktx simulations is varied over the full reported range of kexp and kdeg values.  The 23 

probable parameter space (70% of measurements) is marked by the black box, whereas the cyan 24 

box (< 4% of measurements) represents the regime of efficient buffering.   25 

 26 

Figure 2: Single-molecule mRNA counting shows amplification of noise in the cytoplasm, 27 

independent of promoter type and genomic locus. (A) Schematic of reporter constructs used 28 

to express mRNAs from the HIV-1 LTR promoter in isoclonal populations of human T 29 

lymphocytes (Jurkat) and from the UBC, SV40, and EF-1a promoters in isoclonal populations of 30 

human myeloid leukemia cells (K562).  (B) Representative smRNA FISH micrograph of an 31 

isoclonal T-lymphocyte population (maximum intensity projection of 15 optical sections, each 32 
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spaced 0.4 µm apart) where DNA has been DAPI stained (purple) and mRNAs (white dots) are 1 

GFP mRNAs expressed from a single lentiviral-vector integration of a GFP-reporter cassette.  2 

Scale bar represents 5 µm, and arrows point towards two similarly sized cells that show high 3 

variability in mRNA levels.  (C) Typical probability distribution of cytoplasmic and nuclear 4 

mRNA numbers for a single mRNA reporter species (e.g. GFP mRNA) in an isoclonal 5 

population of T cells, after extrinsic noise filtering.  (D) Expected (grey) versus measured (from 6 

smFISH, black) cytoplasmic CV2 of mRNAs expressed from all four promoters.  (E) Mean 7 

mRNA expression (µ) versus noise (s2/µ) for both nuclear (squares) and cytoplasmic (circles) 8 

mRNAs.  Data points are biological replicates, and error bars represent SEM.  The minimal noise 9 

defined by a Poisson process is shown as a purple line (s2/µ = 1).  (F) Comparison of nuclear 10 

versus cytoplasmic mRNA noise (from smFISH) for all promoters (LTR, UBC, EF-1a, and 11 

SV40) shows that noise is primarily amplified from nucleus to cytoplasm.  Data points are mean 12 

of two biological replicates, and error bars represent SEM.  13 

 14 

Figure 3:  Endogenous genes exhibit amplification of mRNA noise from nucleus to 15 

cytoplasm.  (A-B) smFISH analysis, post extrinsic-noise filtering, for Per1, NR4A2, FoxO, c-16 

Jun, c-Fos, and COX-2 mRNAs in human embryonic kidney cells (293) and for NANOG mRNA 17 

in mouse embryonic stem cells.  Data points are biological replicates, and error bars represent 18 

SEM.  (A) Expected versus measured cytoplasmic CV2 of expressed mRNAs.  (B) Mean mRNA 19 

expression (µ) versus noise (s2/µ) for both nuclear (squares) and cytoplasmic (circles) mRNAs.  20 

(C) Comparison of nuclear versus cytoplasmic noise, (from smFISH) for Per1, NR4A2, FoxO, c-21 

Jun, c-Fos, COX-2, and NANOG shows that cytoplasmic mRNA noise is primarily amplified. 22 

 23 

Figure 4:  Slowed nuclear export can cause apparent attenuation of nuclear-vs-cytoplasmic 24 

RNA noise by amplifying nuclear RNA noise and not decreasing cytoplasmic RNA noise.  25 

(A) Simulations predict that slowing the nuclear export rate shifts the nuclear-to-cytoplasmic 26 

noise ratio by affecting nuclear noise.  (B–C) smFISH analysis of HIV LTR–expressed mRNA 27 

in isoclonal cells treated with the nuclear-export inhibitor leptomycin B (green).  Nuclear mean 28 

and noise increase whereas cytoplasmic mean or noise remain unchanged (grey).  (D) 29 

Comparison of nuclear versus cytoplasmic mRNA noise by smFISH analysis before and after 30 

leptomycin B treatment.  All isoclonal populations remain in the amplification regime. 31 
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(E) Protein (d2GFP) noise of the same isoclones measured by flow cytometry before and after 5 1 

hours of leptomycin B treatment.  As predicted, no change in noise is observed.  Inset: 2 

cytoplasmic mRNA noise from (C) for comparison.  All data points represent means of two 3 

biological replicates, and error bars represent SEM.  4 

 5 

 6 

Figure 5:  Cytoplasmic mRNA noise is further amplified by multi-state mRNA decay.  (A) 7 

Representative smFISH probability distributions of nuclear and cytoplasmic HIV LTR–8 

expressed mRNA in an isoclonal population of human T lymphocytes.  Both the single-state 9 

Poissonian degradation model (dashed green line) and multi-state degradation model (solid 10 

purple line) fit the experimental probability distribution (bar graph) of nuclear mRNA levels (left 11 

column), but the mRNA distribution in the cytoplasm (middle column) is significantly wider 12 

than predicted from Poissonian degradation (dashed green line) and fits a multi-state super-13 

Poissonian degradation model (solid purple line).  Schematics of each degradation model are 14 

shown on the right. P values are from KS test to the experimental data.  (B) Both the super-15 

Poissonian and Poissonian degradation models accurately predict nuclear (circles) and 16 

cytoplasmic (squares) mean mRNA levels – paired t-test p = 0.1623 and 0.3737 respectively.  17 

(C) The Poissonian degradation model (dashed line) does not accurately predict the cytoplasmic 18 

mRNA noise – paired t-test p=0.0002.  Only the super-Poissonian degradation model (solid line) 19 

accurately predicts both nuclear (circles–inset) and cytoplasmic (squares) mRNA noise – paired 20 

t-test p=0.1411 and 0.1623 respectively.  Inset: both models accurately predict nuclear mRNA 21 

noise. (B–C) All data points are mean of two biological replicates, and error bars represent SEM.  22 

Lines are linear regressions.   23 

 24 

Figure 6: Protein noise is linked to cytoplasmic mRNA noise, indicating an overall model 25 

for amplification of transcriptional noise.  (A) Measured versus predicted noise (s2/µ) of 26 

d2GFP levels expressed from the HIV LTR promoter in isoclonal population of human T 27 

lymphocytes, and from the UBC, and EF-1a promoters (grey squares) in isoclonal populations of 28 

human myeloid leukemia cells, determined by microscopy.  The single-state Poissonian 29 
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translation-degradation model (dashed line) poorly predicts the measured d2GFP expression 1 

noise (grey circles).  While the super-Poissonian translation-degradation model (solid line) can 2 

accurately predict protein noise.  Data points are the mean of two biological replicates, and error 3 

bars represent SEM.  (B) Representative probability distribution of experimental data (bar graph) 4 

is significantly wider than the distribution predicted from Poissonian degradation and translation 5 

(dashed line), but is fit by a multi-state degradation and translation model (solid line).  P values 6 

are from KS test to the experimental data.  (C) Contributions from extrinsic noise (grey), multi-7 

state translation-degradation (purple) and all other intrinsic noise (green) to total nuclear mRNA, 8 

cytoplasmic mRNA or protein noise.  (D) Schematic of cumulative model showing steps that 9 

amplify (red) or attenuate (blue) expression noise. 10 

  11 
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SUPPLEMENTAL FIGURE LEGENDS 1 

 2 

Figure S1: Simulations predicting nuclear and cytoplasmic mRNA noise, related to Figure 3 

1 (A-B) Nuclear (A) and Cytoplasmic (B) Fano factor of the physiologically possible parameter 4 

space, with 1000 stochastic simulations run per parameter combination. The probable parameter 5 

space is shown in orange.  (C) Left panel: Cumulative frequency distribution of estimated 6 

degradation-to-export ratio (left panel) (Bahar Halpern et al., 2015a).  Right panel: Probable 7 

physiological parameter regime (orange box) was deduced from the cumulative frequency 8 

distribution. 9 

 10 

Figure S2: Analysis and of single-molecule mRNA FISH, related to Figure 2  11 

(A-F) Isoclonal population of Jurkat cells expressing mRNA from HIV’s long terminal repeat 12 

(LTR) promoter.  (A) Maximum intensity projection of representative smFISH images (top) with 13 

mRNA spots marked in green (bottom). (B) Probability distribution of mRNA spot intensities of 14 

Naïve cells (black), cells expressing the target mRNA before thresholding (blue) and after 15 

thresholding (red).  (C-D) DNA-stain intensity (C), Cellular volume (D, top) and shape (D, 16 

bottom), indicating that mRNA copy number scales most tightly with cell size (n=411). Insets: 17 

respective probability distributions.  (E) Extrinsic noise filtering steps using cellular volume 18 

(top) and shape (bottom), show that size-dependent extrinsic-noise filtering has the strongest and 19 

most consistent effect on mRNA noise.  More extrinsic noise steps cause a lower cell count and 20 

thus increased the effect of outliers, which can cause higher mRNA noise (shaded area marks < 21 

100 cells).  (F) The noise filtering steps used for volume (size filtering step #4) and shape 22 

(eccentricity step #2), resulted in an insignificant Pearson’s correlation. (H) The constraints used 23 

for each extrinsic noise filtering step.  24 

 25 

Figure S3: Experimental data falls in the predicted probable parameter regime, related to 26 

Figure 2.   27 

(A) Mean mRNA expression (µ) versus CV2 (s2/µ2) for both nuclear (squares) and cytoplasmic 28 

(circles) mRNAs expressed from the HIV-1 LTR promoter in isoclonal populations of human T 29 

lymphocytes (Jurkat) and from the UBC, SV40 and EF-1a promoters in isoclonal populations of 30 

human myeloid leukemia cells (K562).  Data points are biological replicates, and error bars 31 
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represent SEM.  The expected cytoplasmic noise due to Poisson scaling is shown by the dashed 1 

line.  (B) The export and degradation rates of the experimental data (green box) fall within the 2 

most probable genome-wide parameter regime (black box).  (C) Mean mRNA expression versus 3 

CV2 for both nuclear (squares) and cytoplasmic (circles) mRNAs for Per1, NR4A2, FoxO, c-Jun, 4 

c-Fos, and COX-2 mRNAs in human embryonic kidney cells (293) and for NANOG mRNA in 5 

mouse embryonic stem cells (mESCs).  Data points are biological replicates, and error bars 6 

represent SEM.  The expected cytoplasmic noise due to Poisson scaling is shown by the dashed 7 

line.   8 

 9 

Figure S4. Slowed nuclear export amplifies nuclear RNA noise, related to Figure 4.  10 

(A) Predicted change (normalized to max) in cytoplasmic mRNA noise when altering only kexp.  11 

Simulations predict that when kexp > kdeg, slowed export does not affect cytoplasmic noise. 12 

However, when kexp < kdeg, slowed export can cause a decrease in cytoplasmic noise.  Data points 13 

are mean and error bars are standard deviation of change in cytoplasmic noise across the possible 14 

parameter regimes for kon, koff and ktx. The shaded area represents ~85% of genes from a previous 15 

genome wide study (Bahar Halpern et al., 2015a).  (B)  Predicted change in protein noise 16 

(normalized to max) when altering only kexp.  In the regime where kexp approaches or is < kdeg, 17 

simulations predict that for a translation rate of 10 hr-1 and a two-hour protein half-life, a 18 

decrease in export rate does not propagate to protein noise.  (C)  Nuclear (open) and cytoplasmic 19 

(full) mean mRNA count (error bars represent population SEM) and (D) ratio of cytoplasmic-to-20 

nuclear noise ratio during treatment with 0.3 (red), 0.6 (blue) and 1 (green) ng/mL of leptomycin 21 

B for a range of time periods.  mRNA is expressed in an isoclonal populations of Jurkat cells 22 

from HIV’s LTR promoter. Observed cytotoxicity marked by the shaded area.  (E) Calculated 23 

rates for all isoclonal populations of Jurkat cells expressing mRNA from HIV’s LTR promoter.  24 

(F) Calculated export and degradation rates of mRNA expressed from the LTR, in untreated cells 25 

(blue), TNF treated cells (yellow) and from fitting an exponential decay to mRNA levels in cells 26 

post-Actinomycin D treatment–a transcriptional inhibitor (grey).  (G) Treatment of Jurkat cells 27 

expressing mRNA from the SV40 and UBC promoters with leptomycin B, showed no significant 28 

difference in the nuclear mRNA distributions.  29 

 30 
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Figure S5. Series of models of increasing complexity compared to experimental mRNA and 1 

protein distribution, related to Figure 5.  2 

(i-viii) Model used (first column) to compare to experimental cytoplasmic mRNA (grey bars, 3 

second column) and protein (grey bars, third column) distribution and to model mRNA 4 

degradation kinetics (fourth column).  (i-iii) Single to multiple mRNA states followed by first 5 

order mRNA degradation.  (iv-v) Single to multiple mRNA states with zero-order mRNA 6 

degradation (blue arrow).  (vi-viii) Multiple mRNA states with the rate of mRNA entering the 7 

degradation-competent state exhibiting zero-order kinetics (blue arrow), followed by first order 8 

mRNA degradation.  9 

 10 

Figure S6. Translation inhibition changes degradation kinetics, related to Figure 5.  11 

(A) Flow cytometry histogram of human T lymphocytes (Jurkat) expressing d2GFP from the 12 

LTR promoter (iso. A3), treated with either 100 µM of CHX (top) or 50 µM of LTM (bottom).  13 

(B) Cumulative frequency distribution of nuclear mRNAs expressed from the HIV-1 LTR 14 

promoter (iso. A3), treated with either 100 µM of CHX (top) or 50 µM of LTM (bottom), KS-15 

test is against the DMSO control. (C) Lactimidomycin (LTM) and cyclohexamide (CHX) are 16 

predicted to have opposite effects on two-state degradation.  (D) HIV LTR–expressed 17 

cytoplasmic mRNA (squares) increases over time in an isoclonal population of human T 18 

lymphocytes treated with CHX and decreases over time in cells treated with LTM, while mean 19 

nuclear mRNA (circles) remains constant in both cases (black).  Simulated nuclear and 20 

cytoplasmic means for decreasing (blue) and increasing (red) kon_deg are shown by the dashed 21 

lines. 22 

 23 

Figure S7. Protein noise correlates with cytoplasmic mRNA noise, related to Figure 6.  24 

(A) Recombinant eGFP calibration curve for confocal microscope.  (B) Isoclonal population of 25 

Jurkat cells expressing mRNA from HIV’s long terminal repeat (LTR) promoter.  Non-26 

Poissonian degradation and translation model, simulated using experimentally derived rate 27 

parameters, accurately predicted protein mean.  (C) Trend in protein noise (s2/µ) versus mean 28 

(µ), when only transcription rate is varied (grey), only translation rate is varied (green) and 29 

multi-state degradation is introduced (purple).  30 
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 1 

Figure S8. Extrinsic noise contributions to total cell-cell variability, related to Figure 6.  2 

(A) Representative flow cytometry dot plot showing the different sized gates used for the 3 

extrinsic noise analysis for human T lymphocytes (Jurkat), human myeloid leukemia cells 4 

(K562) and mouse embryonic stem cells (mESCs).  (B-D) Noise (s2/µ) normalized to max 5 

versus number of cells in the respective gates from (A) d2GFP expressed from:  (C) the UBC and 6 

EF-1a promoters, and GFP expressed from the SV40 promoter;  (C) the LTR promoter and;  (D) 7 

from the NANOG promoter.  (E) Contributions from extrinsic (red) and intrinsic (blue) noise 8 

towards total noise for 5 different promoters.  9 
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Figure S7
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