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Abstract

Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, which is

often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon

have culminated in recent years in various promising attempts to decode the attentional state of a listener in a

competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography

(MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based

measures by either regressing the features of each speech stream to the M/EEG channels (the decoding

approach) or vice versa (the encoding approach). These procedures operate in an offline fashion, i.e., require

the entire duration of the experiment and multiple trials to provide robust results. Therefore, they cannot

be used in emerging applications such as smart hearing aid devices, where a single trial must be used in

real-time to decode the attentional state. In this paper, we close this gap by developing an algorithmic

pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main

modules: 1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive

filtering, 2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used

correlation-based measures thereof, and 3) Devising a near real-time state-space estimator that translates the

noisy and variable attention markers to robust and reliable estimates of the attentional state with minimal

delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering,

`1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization.

We validate the performance of our proposed framework using comprehensive simulations as well as application

to experimentally acquired M/EEG data. Our results reveal that the proposed real-time algorithms perform

nearly as accurate as the existing state-of-the-art offline techniques, while providing a significant degree of

adaptivity, statistical robustness, and computational savings.

Keywords: attention, auditory, real-time, dynamic estimation, EEG, MEG, state-space models, Bayesian

filtering

1. Introduction

The ability to select a single speaker in an auditory scene, consisting of multiple competing speakers, and

maintain attention to that speaker is one of the hallmarks of human brain function. This phenomenon has
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been referred to as the cocktail party effect [1, 2, 3]. The mechanisms underlying the real-time process by

which the brain segregates multiple sources in a cocktail party setting has been the topic of active research for

decades [4, 5]. Although the details of these mechanisms are for the most part unknown, various studies have

underpinned the role of specific neural processes involved in this function. As the acoustic signals propagate

through the auditory pathway, they are decomposed into spectrotemporal features at different stages, and a

rich representation of the complex auditory environment reaches the auditory cortex. It has been hypothesized

that the perception of an auditory object is the result of adaptive binding as well as discounting of these

features [6, 7, 8, 9].

From a computational modeling perspective, there have been several attempts at designing so-called

“attention decoders”, where the goal is to reliably decode the attentional focus of a listener in a multi-speaker

environment using non-invasive neuroimaging techniques like electroencephalography (EEG) [10, 11, 12] and

magnetoencephalography (MEG) [13, 14, 15, 16, 17]. These methods are typically based on reverse correlation

or estimating linear encoding/decoding models using off-line regression techniques, and thereby detecting

salient peaks in the model coefficients that are modulated by the attentional state [18]. The aforementioned

salient peaks have been observed at a typical lag of ∼ 200 ms for EEG [11] and ∼ 100 ms for MEG [13],

implying the longer-lasting effect and further processing of the attended stimuli as compared to the unattended

ones.

Although the foregoing approaches have proven successful in reliable attention decoding, they have two

major limitations that make them unsuitable for emerging real-time applications such as Brain-Computer

Interface (BCI) systems and smart hearing aids. First, the temporal resolution for decoding the attentional

state is on the order of tens of seconds, whereas humans can switch their attention from one speaker to

another at a much shorter time scale. This is due to their so-called “batch-mode” design, which requires the

entire data from one or multiple trials at once for processing. Second, approaches based on linear regression

(e.g., reverse correlation) need large training datasets, often from multiple subjects and trials, to estimate the

decoder/encoder reliably. Access to such training data is only possible through repeated calibration stages,

which may not always be possible in real-time applications. While recent results [15, 16] address the first

shortcoming by employing state-space models and thereby producing robust estimates of the attentional state

from limited data, they are not yet suitable for real-time applications.

In this paper, we close this gap by designing a modular framework for real-time attention decoding from

non-invasive M/EEG recordings that overcomes the aforementioned limitations using techniques from Bayesian

filtering. Our proposed framework includes three main modules. The first module pertains to estimating

dynamic models of decoding/encoding in real-time. To this end, we use the forgetting factor mechanism of the

Recursive Least Squares (RLS) algorithm together with the `1 regularization penalty from Lasso to capture

the dynamics in the data while preventing overfitting [17, 19]. The real-time inference is then efficiently

carried out using a Forward-Backward Splitting (FBS) procedure [20]. In the second module, we extract an

attention-modulated feature, which we refer to as “attention marker”, as a function of the M/EEG recordings,

the estimated encoding/decoding coefficients, and the auditory stimuli. For instance, the attention marker

can be a correlation-based measure or the magnitude of certain peaks in the model coefficients. We carefully

design the attention marker features to capture the attention modulation and thereby maximally separate

the contributions of the attended and unattended speakers in the neural response in both MEG and EEG

applications.

The extracted features are then passed to a novel state-space estimator in the third module, and thereby

are translated into robust and dynamic measures of the attentional state. The state-space estimator is based
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on Bayesian fixed-lag smoothing, and operates in near real-time with controllable delay. The fixed-lag design

creates a trade-off between real-time operation and robustness to stochastic fluctuations. In addition, we

modify the Expectation-Maximization algorithm and the nonlinear filtering and smoothing techniques of [16]

for real-time implementation. Compared to existing techniques, our algorithms require minimal supervised

data for initialization and tuning. In order to validate our real-time attention decoding algorithms, we apply

them to both simulated and experimentally recorded EEG and MEG data in dual-speaker environments.

Our results suggest that the performance of our proposed framework is comparable to the state-of-the-art

batch-mode algorithms of [10, 12, 16], while operating in near real-time with ∼ 1 s delay.

The rest of the paper is organized as follows: In Section 2, we develop the three main modules in our

proposed framework as well as the corresponding estimation algorithms. We present the application of our

framework to both synthetic and experimentally recorded M/EEG data in Section 3, followed by discussion

and concluding remarks in Section 4.

2. Material and Methods

Figure 1 summarizes our proposed framework for real-time tracking of selective auditory attention from

M/EEG. In the Dynamic Encoder/Decoder Estimation module, the encoding/decoding models are fit to

neural data in real-time. The Attention Marker module uses the estimated model coefficients as well as the

recorded data to compute a feature that is modulated by the instantaneous attentional state. Finally, in

the State-Space Model module, the foregoing features are refined through a linear state-space model with

nonlinear observations, resulting in robust and dynamic estimates of the attentional state.
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Figure 1: A schematic depiction of our proposed framework for real-time tracking of selective auditory attention from M/EEG.

In Section 2.1, we formally define the dynamic encoding and decoding models, and develop low-complexity

and real-time techniques for their estimation. This is followed by Section 2.2, in which we define suitable

attention markers for M/EEG inspired by existing literature. In Section 2.3, we propose a state-space model

that processes the extracted attention markers in order to produce near real-time estimates of the attentional

state with minimal delay.

2.1. Dynamic Encoding and Decoding Models

The role of a neural encoding model is to map the stimulus to the neural response. Inspired by existing

literature on attention decoding [13, 10, 16], we take the speech envelopes as covariates representing the

stimuli. The neural response is manifested in the M/EEG recordings. Encoding models can be used to predict
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the neural response from the stimulus. In contrast, in a neural decoding model, the goal is to express the

stimulus as a function of the neural response. Inspired by previous studies, we consider linear encoding and

decoding models in this work.

The encoding and decoding models can be cast as mathematically dual formulations. In a dual-speaker

environment, let s
(1)
t and s

(2)
t denote the speech envelopes (in logarithmic scale), corresponding to speakers 1

and 2, respectively, for t = 1, 2, . . . , T . Also, let ect denote the neural response recorded at time t and channel

c, for c = 1, 2, . . . , C. Throughout the paper, we assume the same sampling frequency for both the M/EEG

channels and the envelopes. Consider consecutive and non-overlapping windows of length W , and define

K :=
⌊
T
W

⌋
. We consider piece-wise constant dynamics for the encoding and decoding coefficients, in which

the coefficients assume to be constant over each window.

In the encoding setting, we define the vector s
(i)
t := [s

(i)
t , s

(i)
t−1, . . . , s

(i)
t−Le

]> for i = 1, 2, where Le is the

total lag considered in the model. Also, let Et denote a generic linear combination of e1t , e
2
t , . . . , e

C
t with some

fixed set of weights. These weights can be set to select a single channel, i.e., Et = ect for some c, or they can

be pre-estimated from training data so that Et represents the dominant auditory component of the neural

response [21]. The encoding coefficients then relate s
(i)
t to Et. In the decoding setting, we define the vector

et := [e1t , e
2
t , . . . , e

C
t ]> and Et := [1, et, et+1, . . . , et+Ld

]
>

, where Ld is the total lag in the decoding model and

determines the extent of future neural responses affected by the current stimuli. The decoding coefficients

then relate Et to s
(i)
t .

Our goal is to recursively estimate the encoding/decoding coefficients in a real-time fashion as the new

data samples become available. In addtion, we aim to simultaneously induce adaptivity of the parameter

estimates and capture their sparsity. To this end, we employ the following generic optimization problem:

θ̂k = arg min
θ

k∑
j=1

λk−j ‖yj −Xjθ ‖22 + γ ‖θ ‖1 , k = 1, 2, . . . ,K (1)

where yj and Xj are the vector of response variables and the matrix of covariates pertinent to window j, θ is

the parameter vector, λ ∈ (0, 1] is the forgetting factor, and γ is a regularization parameter. The optimization

problem of Eq. 1 is a modified version of the LASSO problem [22].

For the encoding problem, we define yk :=
[
E(k−1)W+1;E(k−1)W+2; . . . ;EkW

]>
and X

(i)
k :=

[
s
(i)
(k−1)W+1;

s
(i)
(k−1)W+2; . . . ; s

(i)
kW

]>
, for k = 1, 2, . . . ,K and i = 1, 2. Therefore, the full encoding covariate matrix at the kth

window is defined as Xk :=
[
1W×1,X

(1)
k ,X

(2)
k

]>
, where the all-ones vector 1W×1 corresponds to the regression

intercept. In the decoding problem, we define yk = s
(i)
k :=

[
s
(i)
(k−1)W+1; s

(i)
(k−1)W+2; . . . ; s

(i)
kW

]>
, where i ∈ {1, 2}.

Also, the full decoding covariate matrix at the kth window is Xk :=
[
E(k−1)W+1;E(k−1)W+1; . . . ;EkW

]>
, for

k = 1, 2, . . . ,K.

The optimization problem of Eq. (1) has a useful Bayesian interpretation: if the observation noise were i.i.d.

Gaussian, and the parameters were exponentially distributed, it is akin to the maximum a posteriori (MAP)

estimate of the parameters. The quadratic terms correspond to the exponentially-weighted log-likelihood of the

observations up to window k, and the `1-norm corresponds to the log-density of an independent exponential

prior on the elements of θ. The exponential prior serves as an effective regularization to promote sparsity

of the estimate θ̂k. Note that we have θ ∈ R1+2(Le+1) for the encoding model and θ ∈ R1+C(Ld+1) for the

decoding model in (1).
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Remark 1. The hyperparameter λ provides a tradeoff between the adaptivity and the robustness of estimated

coefficients, and it can be determined based on the inherent dynamics in the data. The case of λ = 1

corresponds to the natural data log-likelihood, i.e., the batch-mode parameter estimates. It has been shown

that W
1−λ can serve as the effective number of recent samples used to calculate θ̂k in (1) [23]. The parameter

W
1−λ can also be viewed as the dynamic integration time: it needs to be chosen long enough so that the

estimation is stable, but also short enough to be able to capture the dynamics of neural process involved in

switching attention. The hyperparameter γ controls the tradeoff between the Maximum Likelihood (ML) fit

and the sparsity of estimated coefficients, and it is usually determined through cross-validation.

Remark 2. In the decoding problem, Eq. (1) is solved separately at each window for each speech envelope,

resulting in a set of decoding coefficients per speaker. In the encoding setting, we combine the stimuli

as explained and solve Eq. (1) once at each window to obtain both of the encoder estimates. If the

encoding/decoding coefficients are expected to be sparse in a basis represented by the columns of a matrix G,

such as the Haar or Gabor bases, we can replace Xj in (1) by XjG, for j = 1, 2, . . . , k, and solve for θ̂k as

before. Then, the final encoding/decoding coefficients are given by Gθ̂k. In the context of encoding models,

the coefficients are referred to as the Temporal Response Function (TRF) [13, 17]. The TRFs are known to

exhibit some degree of sparsity and smoothness in the lag domain, which can be represented over a basis

consisting of shifted Gaussian kernels (see [17] for details).

Remark 3. Throughout the paper, we assume that the envelopes of the clean speeches are available. Given that

this assumption does not hold in practical scenarios, recent algorithms on the extraction of speech envelopes

from acoustic mixtures [24, 25, 26, 27, 28] can be added as a pre-processing module to our framework.

Among the many existing algorithms for solving the modified LASSO problem of Eq. (1), we choose

the Forward-Backward Splitting (FBS) algorithm [20], also known as the proximal gradient method. When

coupled with proper step-size adjustment methods, FBS is well-suited for real-time and low-complexity updates

of θ̂k at each window. In this work, we have used the FASTA software package [29] available online [30],

which has built-in features for all the FBS stepsize adjustment methods. A detailed overview of the FBS

algorithm and its properties is given in Section S1 of the Supplementary Material.

2.2. Attention Markers

We define the attention marker as a mapping function from the estimated encoding/decoding coefficients

for each speaker as well as the data in each window to positive real numbers. To be more precise, at window

k and for speaker i, in the context of encoding models, the attention marker takes the speaker’s estimated

encoding coefficients θ̂
(i)
k , the speaker’s covariate matrix X

(i)
k , and the M/EEG responses yk as inputs;

similarly, in the context of decoding models, the attention marker takes the speaker’s estimated decoding

coefficients θ̂
(i)
k , the M/EEG covariate matrix Xk, and the speaker’s speech envelope vector y

(i)
k as inputs. In

both cases, the attention marker outputs a positive real number, which we denote by m
(i)
k henceforth, for

i = 1, 2 and k = 1, 2, . . . ,K. Thus, in the modular design of Fig. 1, at each window k, the two outputs m
(1)
k

and m
(2)
k are passed from the Attention Maker module to the State-Space Model module as measures of the

attentional state at window k.

In [10], a correlation-based measure has been adopted in the decoding model to classify the attended

and the unattended speeches in a dual-speaker environment. The approach in [10] is based on estimating an

attended decoder from the training data to reconstruct the speech envelope from EEG for each trial. Then, the

correlation of this reconstructed envelope with each of the two speech envelopes is computed, and the speaker

with the larger correlation coefficient is deemed as the attended speaker. This method cannot be directly
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applied to the real-time setting, since the lack of abundant training data hinders a reliable estimate of the

attended decoder. However, assuming that the auditory M/EEG response is more influenced by the attended

speaker than the unattended one, we can expect that the decoder corresponding to the attended speaker

exhibits a higher performance in reconstructing the speech envelope it has been trained on, as suggested by

the classification comparisons in [10]. Inspired by these results, we can define the attention marker in the

decoding scenario as the correlation magnitude between the speech envelope and its reconstruction by the

corresponding decoder, i.e., m
(i)
k = f

(
θ̂
(i)
k ,Xk,y

(i)
k

)
:=
∣∣∣corr

(
y
(i)
k ,Xkθ̂

(i)
k

)∣∣∣ for i = 1, 2 and k = 1, 2, . . . ,K.

As we will demonstrate later in Section 3, this attention marker is suitable for the analysis of EEG recordings.

In the context of cocktail party studies using MEG, it has been shown that the magnitude of the negative

peak in the TRF of the attended speaker around a lag of 100 ms, referred to as the M100 component, is

higher than that of the unattended speaker [13, 17, 16]. Inspired by these findings, in the encoding scenario

applied to MEG data, we can define the attention marker m
(i)
k to be the magnitude of the θ̂

(i)
k coefficients

corresponding to the M100 component, for i = 1, 2 and k = 1, 2, . . . ,K.

Due to the inherent uncertainties in the M/EEG recordings, the limitations of non-invasive neuroimaging

in isolating the relevant neural processes, and the unknown and likely nonlinear processes involved in auditory

attention, the foregoing attention markers derived from linear models are not readily reliable indicators of the

attentional state. Given ample training data, however, these attention markers have been validated using

batch-mode analysis. However, their usage in a real-time setting requires more care, as the limited data

in real-time applications adds a major source of uncertainty to the foregoing list. To address this issue, a

state-space model is required in the real-time setting to correct for the uncertainties and stochastic fluctuations

of the attention markers caused by the limited integration time in real-time application. We will discuss in

detail the formulation and advantages of such a state-space model in the following subsection.

2.3. State-Space Model

In order to translate the attention markers m
(1)
k and m

(2)
k , for k = 1, 2, . . . ,K, into a robust and statistically

interpretable measure of the attentional state, we employ state-space models. Inspired by the models used in

[16], we design a new state-space model and a corresponding estimator that operates in a fixed-lag smoothing

fashion, and thereby admits real-time processing while maintaining the benefits of batch-mode state-space

models. Recall that the index k corresponds to a window in time ranging from t = (k−1)W + 1 to t = kW ;

however, we refer to each index k as an instance when talking about the state-space model not to be confused

with the sliding window of the fixed-lag design.

Figure 2 displays the fixed-lag smoothing design of the state-space estimator. Suppose that we are at the

instance k = k0. We consider a window of length KW = KB +KF + 1 as shown in Fig. 2, where KF and

KB are respectively called the forward-lag and the backward-lag. In order to carry out the computations in

real-time, we assume all of the attentional state estimates to be fixed prior to this window and only update our

estimates for the instances within, based on m
(1)
k ’s and m

(2)
k ’s inside the window. In a fixed-lag framework, at

k = k0, the goal is to provide an estimate of the attentional state at instance k = k∗, where k∗ = k0−KF . The

parameter KF creates a tradeoff between real-time and robust estimation of the attentional state. For KF = 0,

the estimation is carried out fully in real-time; however, the estimates lack robustness to the fluctuations

of the outputs of the attention marker block. The backward-lag KB incorporates the information before k∗

in order to make the estimates more reliable, and controls the computational cost of the state-space model

for fixed values of KF . Throughout the rest of the paper, we use the expression real-time for referring to

algorithms that operate with a fixed forward-lag of KF . We will discuss specific choices of KF and KB and

their implications in Section 3.
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Figure 2: The parameters involved in state-space fixed-lag smoothing.

Suppose we are in a window of length KW where the instances are indexed by k = 1, 2, . . . ,KW . Inspired

by [16], we assume a linear state-space model on the logit-probability of attending to speaker 1. We define the

binary random variable nk=1 when speaker 1 is attended and nk=2 when speaker 2 is attended, at instance

k. The goal is to obtain estimates of pk := P (nk=1) together with its confidence intervals for 1 ≤ k ≤ KW .

The state dynamics are given by:

pk = P (nk=1) = 1− P (nk=2) = 1
1+exp(−zk)

zk = c0zk−1 + wk

wk ∼ N (0, ηk)

ηk ∼ Inverse-Gamma (a0, b0)

(2)

The dynamics of the main latent variable zk are controlled by its transition scale c0 and state variance ηk. The

hyperparameter 0 ≤ c0 ≤ 1 ensures the stability of the updates for zk. The state variance ηk is modeled using

an Inverse-Gamma conjugate prior with hyper-parameters a0 and b0. The log-prior of the Inverse-Gamma

density takes the form ln P (ηk) = −(a0 + 1) ln ηk − b0
ηk

+ C for ηk > 0, where C is a normalization constant.

By choosing a0 greater and sufficiently close to 2, the variance of the Inverse-Gamma distribution takes large

values and therefore can serve as a non-informative conjugate prior. Considering the fact that we do not

expect the attentional state to have high fluctuations within a small window of time, we can further tune

the hyperparameters a0 and b0 for the prior to promote smaller values of ηk’s. This way, we can avoid large

consecutive fluctuations of the zk’s, and consequently the pk’s.

Next, we develop an observation model relating the state dynamics of Eq. (2) to the observations m
(1)
k

and m
(2)
k for k = 1, 2, . . . ,KW . To this end, we use the latent variable nk as the link between the states and

observations: 


m

(i)
k

∣∣∣ nk= i ∼ Log-Normal
(
ρ(a), µ(a)

)
m

(i)
k

∣∣∣ nk 6= i ∼ Log-Normal
(
ρ(u), µ(u)

) , i = 1, 2

ρ(a) ∼ Gamma
(
α
(a)
0 , β

(a)
0

)
, µ(a)

∣∣∣ ρ(a) ∼ N (µ(a)
0 , ρ(a)

)
ρ(u) ∼ Gamma

(
α
(u)
0 , β

(u)
0

)
, µ(u)

∣∣∣ ρ(u) ∼ N (µ(u)
0 , ρ(u)

)
(3)

When speaker i = 1, 2 is attended to, we use a Log-Normal distribution on m
(i)
k ’s, with log-prior given

by ln P
(
m

(i)
k

∣∣ nk= i
)

= − lnm
(i)
k + 1

2 ln ρ(a) − ρ(a)

2

(
lnm

(i)
k −µ(a)

)2
+ C(i), where µ(a) ∈ R, ρ(a) ∈ R>0, and

C(i) is a normalization constant, for i = 1, 2, and k = 1, 2, . . . ,KW . Similarly, when speaker i = 1, 2 is not

attended to, we use a Log-Normal prior on m
(i)
k with parameters ρ(u) and µ(u). As mentioned before, choosing
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an appropriate attention marker results in a statistical separation between m
(1)
k and m

(2)
k , if only one speaker

is attended. The Log-Normal distribution is a distribution on R>0 which lets us capture this concentration

in the values of m
(i)
k ’s. In contrast to [16], this distribution also leads to closed form update rules, which

significantly reduces computational costs. We have also imposed conjugate priors on the joint distribution of

(ρ, µ)’s, which factorizes as ln P(ρ, µ) = ln P(ρ) + ln P(µ | ρ). The hyperparameters α0, β0, and µ0 serve to

tune the attended and the unattended Log-Normal distributions to create separation between the attended

and unattended cases. These hyperparameters can be determined based on the mean and variance information

of m
(i)
k ’s in a supervised manner, where the attended speaker is known.

The parameters of the state-space model are therefore Ω =
{
z1:KW

, η1:KW
, ρ(a), µ(a), ρ(u), µ(u)

}
, which

have to be inferred from m
(1)
1:KW

and m
(2)
1:KW

. As mentioned before, our goal in the fixed-lag smoothing

approach is to estimate zk∗ and ηk∗ in each window, where k∗ = KW −KF . However, in order to do so

in our model, we perform the inference step over all the parameters in Ω and output the estimates of

{zk∗ , ηk∗} ∈ Ω. The estimated Ω would then serve as the initialization for parameter estimation in the next

window. The parameters in Ω can be inferred through two nested EM algorithms as in [16]. In Section 2 of

the Supplementary Material, we have given a detailed derivation of the EM framework and update rules in

the real-time setting, as well as solutions to further reduce the computational costs thereof.

Remark 4. The state-space models given in Eqs. 2 and 3 have two major differences with the one used in

[16]. First, in [16], the distribution over the correlative measure for the unattended speaker is assumed to be

uniform. However, this assumption may not hold for other attention markers in general. For instance, the

M100 magnitude of the TRF estimated from MEG data is a positive random variable, which is concentrated

on higher values for the attended speaker compared to the unattended speaker. In order to address this issue,

we consider a parametric distribution in Eq. (3) over the attention marker corresponding to the unattended

speaker and infer its parameters from the data. If this distribution is indeed uniform and non-informative, the

variance of the unattended distribution, which is estimated from the data, would be large enough to capture

the flatness of the distribution. Second, the parametrization of the observations using Log-Normal densities

and their corresponding priors factorized using Gamma and Gaussian priors, admits fast and closed-form

update equations in the real-time setting. As we have shown in Section 2 of the Supplementary Material, these

models also have the advantage of incorporating low-complexity updates by simplifying the EM procedure. In

addition, the Log-Normal distribution as a generic unimodal distribution allows us to model a larger class of

attention markers.

2.4. EEG Recording and Experiment Specifications

64-channel EEG was recorded using the actiCHamp system (Brain Vision LLC, Morrisville, NC, US) and

active EEG electrodes with Cz channel being the reference. The data was digitized at a 10 KHz sampling

frequency. Insert earphones ER-2 (Etymotic Research Inc., Elk Grove Village, IL, US) were used to deliver

sound to the subjects while sitting in a sound-attenuated booth. The earphones were driven by the clinical

audiometer Piano (Inventis SRL, Padova, Italy), and the volume was adjusted for every subject’s right and

left ears separately until the loudness in both ears was matched at a comfortably loud listening level. Three

normal-hearing adults participated in the study. The mean age of subjects was 49.5 years with the standard

deviation of 7.18 years. The study included a constant-attention experiment, where the subjects were asked

to sit in front of a computer screen and restrict motion while any audio was playing. The data used in this

paper corresponds to 3 subjects, 24 trials each.

The stimulus set contained eight story segments, each approximately ten minutes long. Four segments

were narrated by male speaker 1 (M1) and the other four by male speaker 2 (M2). The stimuli were presented
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to the subjects in a dichotic fashion, where various stories read by M1 were played in the left ear, while

stories read by M2 were played in the right ear for all the subjects. Each subject listened to twenty four trials

of the dichotic stimulus. Each trial had a duration of approximately one minute, and for each subject, no

storyline was repeated in more than one trial. During each trial, the participants were instructed to look at

an arrow at the center of the screen, which determined whether to attend to the right-ear story or to the left

one. The arrow remained fixed for the duration of each trial, making it a constant-attention experiment. At

the end of each trial, two multiple choice semantic questions about the attended story were displayed on the

screen to keep the subjects alert. The responses of the subjects as well as their reaction time were recorded

as a behavioral measure of the subjects’ level of attention, and above eighty percent of the questions were

answered correctly by each subject. Breaks and snacks were given between stories if requested. All the audio

recordings, corresponding questions, and transcripts were obtained from a collection of stories recorded at

Hafter Auditory Perception Lab at UC Berkeley.

2.5. MEG Recording and Experiment Specifications

MEG signals were recorded with a sampling rate of 1 KHz using a 160-channel whole-head system

(Kanazawa Institute of Technology, Kanazawa, Japan) in a dimly lit magnetically shielded room (Yokogawa

Electric Corporation). Detection coils were arranged in a uniform array on a helmet-shaped surface on the

bottom of the dewar with 25 mm between the centers of two adjacent 15.5 mm diameter coils. Also, sensors

are set as first-order axial gradiometers with a baseline of 50 mm, resulting in field sensitivities of 5 fT√
Hz

or

better in the white noise region.

The two speech signals had approximately 65 dB SPL and were presented using the software package

Presentation (Neurobehavioral Systems Inc., Berkeley, CA, US). The stimuli were delivered to the subjects’

Õ ears with 50 Ω sound tubing (E-A-RTONE 3A; Etymotic Research), attached to E-A-RLINK foam plugs

inserted into the ear canal. Also, the whole acoustic delivery system was equalized to give an approximately

flat transfer function from 40 Hz to 3000 Hz. A 200 Hz low-pass filter and a notch filter at 60 Hz were applied

to the magnetic signal in an online fashion for noise removal. Three of the 160 channels were magnetometers

separated from the others and used as reference channels. Finally, to quantify the head movement, five

electromagnetic coils were used to measure each subject’s head position inside the MEG machine once before

and once after the experiment.

Nine normal-hearing, right-handed young adults (ages between 20 and 31) participated in this study.

The study includes two sets of experiments: the constant-attention experiment and the attention-switch

experiment, in both of which six subjects participated. Three subjects took part in both of the experiments.

The experimental procedure were approved by the University of Maryland Institutional Review Board (IRB),

and written informed consent was obtained from each subject before the experiment.

The stimuli included four non-overlapping segments from the book A Child’s History of England by

Charles Dickens. Two of the segments were narrated by a man and the other two by a woman. Three different

mixtures, each 60 s long, were generated and used in the experiments to prevent reduction in the attentional

focus of the subjects. Each mixture included a segment narrated by the male speaker and one narrated the

the female speaker. In all trials, the stimuli were delivered diotically to both ears using tube phones inserted

into the ear canals at a roughly 65 dB SPL, as mentioned. The constant-attention experiment consisted of

two conditions: 1) attending to the male speaker in the first mixture, 2) attending to the female speaker

in the second mixture. In the attention-switch experiment, subjects were instructed to focus on the female

speaker in the first 28 s of the trial, switch their attention to the male speaker after hearing a 2 s pause (28th

to 30th seconds), and maintain their focus on the latter speaker through the end of the trial. Each mixture
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was repeated three times in the experiments, resulting in six trials per speaker for the constant-attention

experiment and three trials per speaker for the attention-switch experiment. After the presentation of each

mixture, subjects answered comprehensive questions related to the segment they were instructed to focused

on, as a way to keep them motivated on attending to the target speaker. Eighty percent of the questions were

answered correctly on average. Furthermore, a pilot study for each of the nine participating subjects was

performed prior to the main experiments. In this study, the subjects listened to a single speech stream, first

segment in the stimuli set narrated by the male speaker, for three trials each 60 s long. The MEG recordings

in the pilot study were used to calculate the subject-specific linear combination of MEG channels which

forms the auditory component of the response, as will be explained next. Note that for each subject, all the

recordings were performed in a single session resulting in a minimal change of the subject’s head position

with respect to the MEG sensors.

3. Results

In this section, we apply our real-time attention decoding framework to synthetic data as well as M/EEG

recordings. Subsection 3.1 includes the simulation results, and subsections 3.2 and 3.3 demonstrate the results

for the analysis of EEG and MEG recordings, respectively.

3.1. Simulations

In order to validate our proposed framework, we perform two sets of simulations. The first simulation

pertains to our EEG analysis and employs a decoding model, which we will describe below in full detail. The

second simulation for our MEG analysis using an encoding model, is deferred to the Supplementary Material

Section 3, in the interest of space.

3.1.1. Simulation Settings

In order to simulate EEG data under a dual-speaker condition, we use the following generative model:

et = w
(1)
t

(
s
(1)
t ∗ ht

)
+ w

(2)
t

(
s
(2)
t ∗ ht

)
+ µ+ nt (4)

where s
(1)
t and s

(2)
t are respectively the speech envelopes of speakers 1 and 2 at time t; the output et is the

neural response, which denotes an auditory component of the EEG recordings or the measured EEG response

at a given channel at time t for t = 1, 2, . . . , T . Motivated by the analysis of LTI systems, ht can be considered

as the impulse response of the neural process resulting in et, and ∗ represents the convolution operator; the

scalar µ is an unknown constant mean, and nt denotes a zero-mean i.i.d Gaussian noise. The weight functions

w
(1)
t and w

(2)
t are signals modulated by the attentional state which determine the contributions of speakers 1

and 2 to et, respectively. In order to simulate the attention modulation effect, we assume that when speaker 1

(resp. 2) is attended to at time t, we have w
(1)
t > w

(2)
t (resp. w

(1)
t < w

(2)
t ).

We have chosen two 60 s-long speech segments from those used in the MEG experiment (See section 2.5)

and calculated s
(1)
t and s

(2)
t as their envelopes for a sampling rate of fs = 200 Hz. Also, we have set µ = 0.02

and nt
iid∼N (0, 2.5×10−5) in Eq. (4). Fig. 3-A shows the location and amplitude of the lag components in the

impulse response, which is then smoothed using a Gaussian kernel with standard deviation of 10 ms to result

in the final impulse response ht, shown in Fig. 3–B. The significant components of ht are chosen at 50 ms and

100 ms lags, with few smaller components at higher latencies [16]. The weight signals w
(1)
t and w

(2)
t in Eq.

(4) are chosen to favor speaker 1 in the [0 s, 30 s) interval and speaker 2 in the (30 s, 60 s] interval, with the

transition happening within a 3 s interval around the 30 s mark.

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2017. ; https://doi.org/10.1101/222661doi: bioRxiv preprint 

https://doi.org/10.1101/222661
http://creativecommons.org/licenses/by/4.0/


0.005

-0.005

0

0.2

-0.2

0

Lag (s)

0 0.1 0.2 0.3 0.4

sparse lag components smooth filter

Lag (s)

0 0.1 0.2 0.3 0.4

A) B)

Figure 3: Impulse response ht used in Eq. (4). A) sparse lag components, B) the smooth impulse response.

3.1.2. Parameter Selection

We aim at estimating decoders in this simulation, which linearly map et and its lags to s
(1)
t and s

(2)
t . To

estimate the decoders, we have considered consecutive non-overlapping windows of length 0.25 s resulting

in K=240 windows of length W =50 samples. Also, we have chosen γ=0.001 through cross-validation and

λ=0.95 in estimating the decoding coefficients, which results in an effective data length of 5 s for decoder

estimation. The forward lags of the neural response have been limited to a 0.4 s window, i.e., Ld = 80 samples.

Given that the decoder corresponds to the inverse of a smooth kernel ht, it may not have the same smoothness

properties of ht. Hence, we do not employ a smooth basis for decoder estimation. We have used the FASTA

package [29] with Nesterov’s acceleration method to implement the forward-backward splitting algorithm for

encoder/decoder estimation. As for the state-space model estimators, we have considered 20 (inner and outer)

EM iterations for the batch-mode estimates that use the entire data, while for the real-time estimates, we

use 1 inner EM iteration and 20 outer EM iterations (See Section 2 of the Supplementary Material for more

details).

There are three criteria for choosing the fixed-lag smoothing parameters: First, how close to the true

real-time analysis the system operates is determined by KF . Second, the computational cost of the system

is determined by KW . Third, how close the output of the system is to that of batch-mode processing is

determined by both KF and KW . These three criteria form a tradeoff in tuning the parameters KW and KF .

Specific choices of these parameters are given in the next subsection.

For tuning the hyperparameters of the priors on the attended and unattended distributions, we have used

a separate 15 s sample trial generated from the same simulation model in Eq. (4) for each of the three cases.

The parameters
(
α
(a)
0 , α

(u)
0 , β

(a)
0 , β

(u)
0 , µ

(a)
0 , µ

(u)
0

)
have been chosen by fitting the Log-Normal distributions to

the attention marker outputs from the sample trials in a supervised manner (with known attentional state).

The variance of the Gamma priors
α

(a)
0

β
(a)
0

2 and
α

(u)
0

β
(u)
0

2 have been chosen large enough such that the priors are

non-informative. This step can be thought of as the initialization of the algorithms prior to data analysis. For

the Inverse-Gamma prior on the state-space variances, we have chosen a0 =2.008 and b0 =0.2016, resulting in

a mean of 0.2 and a variance of 5. This prior favors small values of ηk’s to ensure that the state estimates

are immune to large fluctuations of the attention markers, while the large variance (compared to the mean)

results in a non-informative prior.

3.1.3. Estimation Results

Fig. 4 shows the results of our estimation framework for a correlation-based attention marker. Row A

in Fig. 4 shows three cases considered for modulating the weights w
(1)
t and w

(2)
t , where the weights are
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Figure 4: Estimation results of application to simulated EEG data for the correlation-based attention marker: A) Input weights

w
(1)
t and w

(2)
t in Eq. (4), which determine the relative effect of the two speeches on the neural response. Based on our generative

model, the attention is on speaker 1 for the first half of each trial and on speaker 2 for the second half. Case 1 corresponds to a
scenario where the effects of the attended and unattended speeches in the neural response are well-separated. This separation
decreases as we move from Case 1 to Case 3. B) Estimated decoder for speaker 1. C) Estimated decoder for speaker 2. In
Case 1, the significant components of the estimated decoders near the 50 ms, 100 ms, and 150 ms lags are notably modulated
by the attentional state as highlighted by the red boxes. This effect weakens in Case 2 and visually disappears in Case 3. D)
Output of the correlation-based attention marker for each speaker. E) Output of the batch-mode state-space estimator for the
correlation-based attention marker as the estimated probability of attending to speaker 1. F) Output of the real-time state-space
estimator, i.e., fixed-lag smoother, for the correlation-based attention marker as the estimated probability of attending to speaker
1. The real-time estimator is not as robust as the batch-mode estimator to the stochastic fluctuations of the attention marker in
row D and is more prone to misclassifications. The red arrows in rows E and F of Case 2 show that the batch-mode estimator
correctly classifies the instance as attending to speaker 2, while the real-time estimator is unable to determine the attentional
state.

contaminated with Gaussian noise N (0, 4×10−4). Cases 1, 2, and 3 exhibit increasing levels of difficulty

in discriminating the contributions of the two speakers to the neural response. Rows B and C in Fig. 4

respectively show the decoder estimates for speakers 1 and 2. As expected, the significant components of the

decoders around 50 ms, 100 ms, and 150 ms lags, are modulated by the attentional state, and the modulation

effect weakens as we move from Case 1 to 3. In Case 1, these components are less significant overall for the

decoder estimates of speaker 2 in the [0 s, 30 s] time interval and become larger as the attention switches to

speaker 2 during the rest of the trial (red boxes in row C of Case 1). On the other hand, in Case 3, the

magnitude of the said components do not change notably across the 30 s mark.

We have considered two different attention markers for this simulation. Row D in Fig. 4 displays the output

of a correlation-based attention marker for speakers 1 and 2, which is calculated as m
(i)
k =

∣∣∣corr
(
y
(i)
k ,Xkθ̂

(i)
k

)∣∣∣
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for i = 1, 2 and k = 1, 2, . . . ,K. As discussed in subsection 2.2, this attention marker is a measure of how

well a decoder can reconstruct its target envelope. As observed in row D of Fig. 4, the attention marker is

a highly variable surrogate of the attentional state at each instance, i.e., on average the attention marker

output for speaker 1 is higher then that of speaker 2 in the [0 s, 30 s) interval and vice versa in the (30 s, 60 s]

interval. The reliability of the attention marker significantly degrades going from Case 1 to 3. This highlights

the need for state-space modeling and estimation in order to optimally exploit the attention marker.

Rows E and F in Fig. 4 respectively show the batch-mode and real-time estimates of the attentional state

probabilities pk = P (nk = 1) for k = 1, . . . ,K, for the correlation-based attention marker, where colored

halls indicate 90% confidence intervals. Row F in Fig. 4 corresponds to the fixed-lag smoother, using a

window of length 15 s (KW = b15fs/W c), and a forward-lag of 1.5 s (KF = b1.5fs/W c). We refer to this

estimator as the real-time estimator henceforth. Note that by accounting for the forward-lag in the decoder

(Ld), the overall delay in estimating the attentional state is 1.9 s. Recall that in batch-mode processing, all

of the attention marker outputs across the trial are available the state-space estimator, as opposed to the

fixed-lag estimator which has access to a limited number of the attention markers. Therefore, the output

of the batch-mode estimator (Row E) is a more robust measure of the instantaneous attentional state as

compared to the real-time estimator (Row F), since it is less sensitive to the stochastic fluctuations of the

attention markers in row D. For example, in the instance marked by the red arrows in rows E and F of Case

2 in Fig. 4, the batch-mode estimator classifies the instance correctly as attending to speaker 2, while the

real-time estimator cannot make an informed decision since pk = 0.5 falls within the 90% confidence interval

of the estimate at this instance. However, the real-time estimator exhibits performance closely matching that

of the batch-mode estimator for most instances, while operating in real-time with limited data access and

significantly lower computational complexity.

Row A in Fig. 5 exhibits the output of another attention marker computed as the `1-norm of the decoder

given by m
(i)
k :=

∥∥∥ θ̂(i)
k

∥∥∥
1

for i = 1, 2 and k = 1, 2, . . . ,K, where the first element of θ̂
(i)
k ∈ RLd+2 (the intercept

parameter) is discarded in computing the `1 norm. This attention marker captures the effect of the significant

peaks in the decoder. The rationale behind using the `1-norm based attention marker is the following: in
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Figure 5: Estimation results of application to simulated EEG data for the `1-based attention marker: A) Output of the `1-based
attention marker for each speaker, corresponding to the three cases in Figure 4. B) Output of the batch-mode state-space
estimator for the `1-based attention marker as the estimated probability of attending to speaker 1. C) Output of the real-time
state-space estimator for the `1-based attention marker as the estimated probability of attending to speaker 1. Similar to the
preceding correlation-based attention marker, the classification performance degrades when moving from Case 1 (strong attention
modulation) to Case 3 (weak attention modulation).

13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2017. ; https://doi.org/10.1101/222661doi: bioRxiv preprint 

https://doi.org/10.1101/222661
http://creativecommons.org/licenses/by/4.0/


the extreme case that the neural response is solely driven by the attended speech, we expect the unattended

decoder coefficients to be small in magnitude and randomly distributed across the time lags. The attended

decoder, however, is expected to have a sparse set of informative and significant components corresponding

to the specific latencies involved in auditory processing. Thus, the `1 norm serves to distinguish between

these two cases. Rows B and C in Fig. 5 show the batch-mode and real-time estimates of the attentional

state probabilities for the `1-norm attention marker, respectively, where colored halls indicate 90% confidence

intervals. Consistent with the results of the correlation-based attention marker (Rows E and F in Fig. 4),

the real-time estimator exhibits performance close to that of the batch-mode estimator. Comparing Figs. 4

and 5 reveals the dependence of the attentional state estimation performance on the choice of the attention

marker: while the correlation-based attention marker is more widely used, the `1-based attention marker

provides smoother estimates of the attention probabilities, and can be used as a more robust alternative to

the correlation-based attention marker.

3.1.4. Discussion and Further Analysis

Going from Case 1 to Case 3 in Fig. 4 and Fig. 5, we observe that the performance of all estimators

degrades, causing a drop in the classification accuracy and confidence. This performance degradation is

due to the declining power of the attention markers in separating the contributions of the attended and

unattended speakers. However, comparing the outputs of the real-time and batch-mode estimators with their

corresponding attention marker outputs in row D of Fig. 4 and row A of Fig. 5, highlights the role of the

state-space model in suppressing the stochastic fluctuations of the attention markers and thereby providing a

robust and smooth measure of the attentional state.

It is noteworthy that all the estimators exhibit a systematic delay in detecting the deflection point at 30 s,

even for the well-separated Case 1 and batch-mode estimation. This delay is due to two main factors: first,

the transition period of 3 s in the design of the weight signals contributes to this delay. Second, although the

forgetting factor mechanism used in estimating the decoder coefficients results in more stable estimates, it

causes an extra delay to the overall performance of the estimator.

Comparing the batch-mode and the real-time estimators in Fig. 4 and Fig. 5, we observe that the real-time

estimators closely follow the output of the batch-mode estimators, while having access to data in an online

fashion. A significant deviation between the batch-mode and real-time performance is observed in rows B and

C (Cases 1 and 2) of Fig. 5 in the form of sharp drops in the real-time estimates of the attentional state

probability. Given that the real-time estimator has only access to the attention marker within KF samples in

the future, the confidence intervals significantly narrow down within the first half of the trial, as all the past

and near-future observations are consistent with attention to speaker 1. However, shortly after the 30 s mark

the estimator detects the change and the confidence bounds widen accordingly (see red arrows in row C of

Case 2 in Fig. 5).

In order to further quantify the performance gap between the batch-mode and real-time estimators, we

define their relative Mean Squared Error (MSE) as:

MSE=
1

K

K∑
k=1

 1

1 + exp
(
−ẑ(B)

k

) − 1

1 + exp
(
−ẑ(R)

k

)
 (5)

where ẑ
(R)
1:K and ẑ

(B)
1:K denote the real-time and batch-mode state estimates over a given trial, respectively.

We have considered the logistic transformation of ẑ
(B)
1:K and ẑ

(R)
1:K , which gives the probability of attending to

speaker 1.
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Figure 6: Effect of the forward-lag KF on the MSE for the two attention markers in case 2 of Fig. 4 and Fig. 5. A) Correlation-
based attention marker, B) `1-based attention marker. As the forward-lag increases, the MSE decreases, and the output of the
real-time estimator becomes more similar to that of the batch-mode. This results in more robustness for the real-time estimator
at the expense of more delay in decoding the attentional state. The right panels show that the incremental improvement to the
MSE decreases as KF increases.
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Figure 7: Estimated attention probabilities together with their 90% confidence intervals for the correlation-based attention marker
in Case 2 of Fig. 4. The blue, red and green curves correspond to KF = 0 s, KF = 5 s, and batch-mode estimation, respectively.
The estimator for KF = 5 s is nearly as robust as the batch-mode. However, the fully real-time estimator with KF = 0 s is
sensitive to the stochastic fluctuations of the attention markers, which results in the misclassification of the attentional state at
the instances marked by red arrows.

Figure 6 shows the effect of varying the forward-lag KF from 0 s (i.e., fully real-time) to 5 s with 0.5 s

increments for the two attention markers in Case 2 of Fig. 4 and Fig. 5, as an example. All of the other

parameters in the simulation have been fixed as before. The left panels in Fig. 6 show the MSE for different

values of KF in the real-time setting. As expected, for both attention markers, the MSE decreases as the

forward-lag increases. The right panels in Fig. 6 display the incremental MSE defined as the change in MSE

when KF is increased by 0.5 s, starting from KF = 0 s. Notice that even a 0.5 s forward-lag significantly

decreases the MSE from KF =0 s. The subsequent improvements of the MSE diminish as KF is increased

further. Our choice of KF =1.5 s in the foregoing analysis was made to maintain a reasonable tradeoff between

the MSE improvement and the delay in real-time operation.

Finally, Fig. 7 shows the estimated attention probabilities and their 90% confidence intervals for the

correlation-based attention marker in Case 2 of Fig. 4, as an example. The three curves correspond to the

extreme values of KF in Fig. 6 given by KF = 0 s (blue) and KF = 5 s (red), and the batch-mode estimate

(green). All the other parameters have been fixed as explained before. The fixed-lag smoothing approach with

KF = 5 s is as robust as the batch-mode estimate. The fully real-time estimate with KF = 0 s follows the
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same trend as the other two. However, it is susceptible to the stochastic fluctuations of attention marker,

which may lead to misclassifications (see the red arrows in Fig. 7).

3.2. Application to EEG

In this subsection, we apply our real-time attention decoding framework to EEG recordings in a dual-speaker

environment. Details of the experimental procedures are given in Section 2.4.

3.2.1. Preprocessing and Parameter Selection

Both the EEG data and the speech envelopes were downsampled to fs = 64 Hz using an anti-aliasing

filter. As the trials had variable lengths, we have considered the first 53 s of each trial for analysis. We

have considered consecutive windows of length 0.25 s for decoder estimation, resulting in W = 16 samples

per window and K = 212 instances for each trial. Also, we have considered lags up to 0.25 s for decoder

estimation, i.e., Ld = 16. The latter is motivated by the results of [10] suggesting that the most relevant

decoder components are within the first 0.25 s lags. Prior studies have argued that the effects of auditory

attention and speech perception are strongest in the frontal and close-to-ear EEG electrodes [11, 31, 32, 33].

We have only considered 28 EEG channels in the decoder estimation problem, i.e., C = 28, including the

frontal channels Fz, F1-F8, FCz, FC1-FC6, FT7-FT10, C1-C6, and the T complex channels T7 and T8.

According to [12], using only this number of electrodes in the decoding process results in nearly the same

classification performance as in the case of using all the electrodes. Note that for our real-time setting, a

channel selection step can considerably decrease the computational cost and the dimensionality of the decoder

estimation step, given that a vector of size 1+C(Ld+1) needs to be updated within each 0.25 s window.

We have determined the regularization coefficient γ=0.4 via cross-validation and the forgetting factor

λ=0.975, which results in an effective data length of 10 s in the estimation of the decoder and is long enough

for stable estimation of the decoding coefficients. It is worth noting that small values of λ, and hence small

effective data lengths, may result in an under-determined inverse problem, since the dimension of the decoder

is given by 1+C(Ld+1). Finally, in the FASTA package, we have used a tolerance of 0.01 together with

Nesterov’s accelerated gradient descent method to ensure that the processing can be done in an online fashion.

In studies involving correlation-based measures, such as [10, 16], the convention is to train attended and

unattended decoders/encoders using multiple trials and then use them to calculate the correlation measures

over the test trials. The correlation-based attention marker, however, did not produce a statistically significant

segregation of the attended and the unattended speakers in our analysis. This discrepancy seems to stem from

the fact that the estimated encoders/decoders and the resulting correlations in the aforementioned studies are

more informative and robust due to the use of batch-more analysis with multiple trials, as compared to our

real-time framework. The `1-based attention marker, however, resulted in a meaningful statistical separation

between the attended and the unattended speakers. Therefore, in what follows, we present our EEG analysis

results using the `1-based attention marker.

The parameters of the state-space models have been set similar to those used in simulations, i.e., KW =

b15fs/W c, KF = b1.5fs/W c, a0 = 2.008, b0 = 0.2016. Considering the 0.25 s lag in the decoder model, the

total delay in estimating the attentional state for the real-time system is 1.75 s. For estimating the prior

distribution parameters for each subject, we use the first 15s of each trial. As mentioned before, considering the

15 s-long sliding window, we can treat the first 15 s of each trial as a tuning step in which the prior parameters

are estimated in a supervised manner and the state-space model parameters are initialized with the values

estimated using these initial windows. Thus, similar to the simulations,
(
α
(a)
0 , α

(u)
0 , β

(a)
0 , β

(u)
0 , µ

(a)
0 , µ

(u)
0

)
for

each subject have been set according to the parameters of the two fitted Log-Normal distributions on the
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`1-norm of the decoders in the first 15 s of the trials, while choosing large variances for the priors to be

non-informative.

3.2.2. Estimation Results

Fig. 8 shows the results of applying our proposed framework to EEG data. For graphical convenience, the

data have been rearranged so that speaker 1 is always attended. The left, middle and right panels correspond

to subjects 1, 2, and 3, respectively. For each subject, three example trials have been displayed in rows A, B,

and C. Row A includes trials in which the attention marker clearly separates the attended and unattended

speakers, while Row C contains trials in which the attention marker fails to do so. Row B displays trials in

which on average the `1-norm of the estimated decoder is larger for the attended speaker; however, occasionally,

the attention marker fails to capture the attended speaker.

Consistent with our simulations, the real-time estimates (third graphs in rows A, B and C) generally
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Figure 8: Examples of the `1-based attention markers (first panels), batch-mode (second panels), and real-time (third panels)
state-space estimation results for nine selected EEG trials. A) Representative trials in which the attention marker reliably
separates the attended and unattended speakers. B) Representative trials in which the attention marker separates the attended
and unattended speakers on average over the trial. C) Representative trials in which the attention marker either does not separate
the two speakers or results in a larger output for the unattended speaker.
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follow the output of the batch-mode estimates (second graphs in rows A, B and C). However, the batch-mode

estimates yield smoother transitions and larger confidence intervals in general, both of which are due to having

access to future observations.

Figure 9 shows the effect of forward-lag KF on the performance of real-time estimates, similar to that

shown in Fig. 6 for the simulations. The forward-lag KF is increased from 0 s to 5 s with 0.5 s increments

while all the other parameters of the EEG analysis remain the same. The MSE in Fig. 9 has been averaged

over all trials for each subject. As we observe in the incremental MSE plot, even a 0.5 s lag can significantly

decrease the MSE from the case of KF = 0 s (corresponding to the fully real-time setting). Similar to the

simulations, we have chosen KF =1.5 s for the EEG analysis, since the incremental MSE improvements are

significant at this lag, and this choice results in a tolerable delay for real-time applications.

Finally, Fig. 10 summarizes the real-time classification results of our EEG analysis at the group level.
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Figure 9: Effect of the forward-lag KF on MSE in application to real EEG data. The left panel shows the MSE with respect to
the batch-mode output averaged over all the trials for each subject. The right panel displays the incremental MSE at each lag,
from KF =0 s to KF =5 s with 0.5 s increments.
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Figure 10: Summary of the real-time classification results in application to real EEG data. A) a generic example of the
state-space output for a trial illustrating the classification conventions. B) Classification results per trial for all subjects; each
circle corresponds to a trial and the subjects are color-coded. The trials falling below the dashed line have more incorrectly
classified instances than correctly classified ones. C) Average classification performance over all trials for the three subjects.

18

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2017. ; https://doi.org/10.1101/222661doi: bioRxiv preprint 

https://doi.org/10.1101/222661
http://creativecommons.org/licenses/by/4.0/


Fig. 10-A shows a cartoon of the estimated attention probabilities for a generic trial in order to illustrate the

classification conventions. We define an instance (i.e., K consecutive windows of length W ) to be correctly

(incorrectly) classified if the estimated attentional state probability together with its 90% confidence intervals

lie above (below) 0.5. If the 90% confidence interval at an instance includes the 0.5 attention probability

line, we do not classify it as either correct or incorrect. Figure 10-B displays the correctly classified instances

(y-axis) versus those incorrectly classified (x-axis) for each trial. The subjects are color-coded and each circle

corresponds to one trial. The average classification results over all trials for each subject are shown in Figure

10-C. In summary, our framework provides ∼ 80% average hit rate and ∼ 15% average false-alarm per trial

per subject. The group-level hit rate and false alarm rate are respectively given by 79.63% and 14.84%.

3.3. Application to MEG

In this subsection, we apply our real-time attention decoding framework to MEG recordings of multiple

subjects in a dual-speaker environment. The MEG experimental procedures are discussed in Section 2.5.

3.3.1. Preprocessing and Parameter Selection

The recorded MEG responses were band-pass filtered between 1 Hz-8 Hz (delta and theta bands),

corresponding to the slow temporal modulations in speech [14, 13], and downsampled to 200 Hz. MEG

recordings, like EEG, include both the stimulus-driven response as well as the background neural activity,

which is irrelevant to the stimulus. For the encoding model used in our analysis, we need to extract the

stimulus-driven portion of the response, namely the auditory component. In [34, 21], a blind source separation

algorithm called the Denoising Source Separation (DSS) has been introduced which decomposes the data into

temporally uncorrelated components ordered according to their trial-to-trial phase-locking reliability. In doing

so, DSS only requires the responses in different trials and not the stimuli. Similar to [17, 16], we only use the

first DSS component as the auditory component, since it tends to capture a significant amount of stimulus

information and to produce a bilateral stereotypical auditory field pattern.

Since DSS is an offline algorithm operating on all the data at once, we cannot readily use it for real-time

attention decoding. Instead, we apply DSS to the data from pilot trials from each subject in order to calculate

the subject-specific linear combination of the MEG channels that compose the first DSS component. We

then use these channel weights to extract the MEG auditory responses during the constant-attention and

attention-switch experiments in a real-time fashion. Note that the MEG sensors are not fixed with respect to

the head position across subjects and are densely distributed in space. Therefore, it is not reasonable to use

the same MEG channel weights for all subjects. The pilot trials for each subject can thus serve as a training

and tuning step prior to the application of our proposed attention decoding framework.

The MEG auditory component extracted using DSS is used as Et in our encoding model. Similar to our

foregoing EEG analysis, we have considered consecutive windows of length 0.25 s resulting in W = 50 samples

per window and a total number of K = 240 instances, at a sampling frequency of 200 Hz. The TRF length,

or the total encoder lag, has been set to 0.4 s resulting in Le = 80 in order to include the most significant

TRF components [13]. The `1-regularization parameter γ in Eq. (1) has been adjusted to 1 through two-fold

cross-validation, and we have chosen a forgetting factor of λ = 0.975 for capturing the data dynamics resulting

in an effective data length of 10 s, long enough to ensure estimation stability.

As for the encoder model, we have used a Gaussian dictionary G0 to enforce smoothness in the TRF

estimates. The columns of G0 consist of overlapping Gaussian kernels with the standard deviation of 20 ms

whose means cover the 0 s to 0.4 s lag range with Ts = 5 ms increments. The 20 ms standard deviation is

consistent with the average full width at half maximum (FWHM) of an auditory MEG evoked response (M50
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or M100), empirically obtained from MEG studies [17]. Thus, the overall dictionary discussed in Remark 2

takes the form G = diag (1,G0,G0). Also, similar to [17], we have used the logarithm of the speech envelopes

as the regression covariates. Finally, the parameters of the FASTA package in encoder estimation have been

chosen similar to those in the foregoing EEG analysis.

The M100 component of the TRF has shown to be more significant for the attended speaker than the

unattended speaker [13, 17]. Thus, at each instance k, we extract the magnitude of the negative peak close to

the 0.1 s delay in the real-time TRF estimate of each speaker as the attention markers m
(1)
k and m

(2)
k . For

the state-space model and the fixed-lag window, we have used the same configuration as in our foregoing

EEG analysis, i.e. KW =b15fs/W c, KF =b1.5fs/W c, a0 =2.008, and b0 =0.2016. Note that the total delay

in estimating the attentional state is now only 1.5 s, given that we use an encoding model for our MEG

analysis. Furthermore, the prior distribution parameters for each subject were chosen according to the two

fitted Log-Normal distributions on the extracted M100 values in the first 15 s of the trials, while choosing

large variances for the Gamma priors to be non-informative. Similar to the preceding cases, the first 15 s of

each trial can be thought of as an initialization stage.

3.3.2. Estimation Results

Figure 11 shows our estimation results for four sample trials from the constant-attention (cases 1 and

2) and attention-switch (cases 3 and 4) experiments. For graphical convenience, we have rearranged the

MEG data such that in the constant-attention experiment, the attention is always on speaker 1, and in the

attention-switch experiment, speaker 1 is attended from 0 s to 28 s. Cases 1 and 3 corresponds to trials in

which the extracted M100 values for the attended speaker are more significant than those of the unattended

speaker during most of the trial duration. Cases 2 and 4, on the other hand, correspond to trials in which

the extracted M100 values are not reliable representatives of the attentional state. Row A in Fig. 11 shows

the estimated TRFs for speakers 1 and 2 in time for each of the four cases. The location of the M100

peaks is shown and tracked with a narrow line (yellow) on the extracted M100 components (blue). The M50

components are also evident as positive peaks occurring around the 50 ms lag. The M50 components do not

strongly depend on the attentional state of the listener [17, 13, 35, 36], which is consistent with those shown

in Fig. 11-A.

Row B in Fig. 11 displays the extracted M100 peak magnitudes over time for speakers 1 and 2. The

attention modulation effect is more significant in cases 1 and 3. Rows C and D respectively show the

batch-mode and real-time estimates of the attentional state based on the extracted M100 values. As expected,

the batch-mode output is more robust to the fluctuations in the extracted M100 peak values, with smoother

transitions and larger confidence intervals. Despite the poor attention modulation effect in cases 2 and 4,

we observe that both the real-time and the batch-mode state-space models show reasonable performance

in translating the extracted M100 peak values to a robust measure of the attentional state. This effect is

notable in Rows C and D of Case 4. We performed the same analysis as in Fig. 9 to assess the effect of the

forward-lag parameter KF . Since the results were quite similar to those in Figures 6 and 9, we have omitted

them for brevity and chose the same forward-lag of 1.5 s.

Finally, Fig. 12 summarizes the real-time classification results for the constant-attention (left panels) and

attention-switch (right panels) MEG experiments. The classification convention is similar to that used in

our EEG analysis, and is illustrated in Fig. 12-A for the completeness. For the attention-switch experiment,

the 28 s-30 s interval is removed from the classification analysis, as it pertains to a silence period during

which the subject is instructed to switch attention. Fig. 12-B shows the corresponding classification results,

consisting of 36 trials for the constant-attention and 18 trials for the attention-switch experiments. Each circle
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Figure 11: Examples from the constant-attention and attention-switch MEG experiments, using the M100 attention marker,
for trials with reliable (cases 1 and 3) and unreliable (cases 2 and 4) separation of the attended and unattended speakers. A)
TRF estimates for speakers 1 and 2 over time with the extracted M100 peak positions tracked by a narrow yellow line. B)
Extracted M100 peak magnitudes over time for speakers 1 and 2 as the attention marker. In cases 1 and 3, the M100 components
exhibit a strong modulation effect of the attentional state, i.e., the attended speaker has a larger M100 peak, in contrast to
cases 2 and 4, where there is a weak modulation. C) Batch-mode state-space estimates of the attentional state. D) Real-time
state-space estimates of the attentional state. The strong or weak modulation effects of attentional state in the extracted M100
components directly affects the classification accuracy and the width of the confidence intervals for both the batch-mode and
real-time estimators.

corresponds to a single trial and the subjects in each experiment are color-coded. The average classification

results per trial are shown in Fig. 12-C for each subject. The average hit rate and false alarm rates in

the constant-attention experiments are respectively given by 71.67% and 20.81%. These quantities for the

attention-switch experiment are respectively given by 64.12% and 26.16%, showing a reduction in hit rate and

increase in false alarm.
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Figure 12: Summary of real-time classification results for the constant-attention (left panels) and attention-switch (right panels)
MEG experiments. A) a generic instance of the state-space output for a trial illustrating the classification convention. B)
Classification results per trial for all subjects; each circle corresponds to a trial and the subjects are color-coded. The trials
falling below the dashed line have more incorrectly classified instances than correctly classified ones. C) Average classification
performance over all trials for the six subjects.

4. Discussion

In this work, we have proposed a framework for real-time decoding of the attentional state of a listener in

a dual-speaker environment from M/EEG. This framework consists of three modules. In the first module, the

encoding/decoding coefficients, relating the neural response to the envelopes of the two speech streams, are

estimated in a low-complexity and real-time fashion. Existing approaches for encoder/decoder estimation
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operate in an offline fashion using multiple experiment trials or large training datasets [10, 16, 28, 25], and

hence are not suitable for real-time applications. To address this issue, we have integrated the forgetting

factor mechanism used in adaptive filtering with `1-regularization, in order to capture the coefficient dynamics

and mitigate overfitting.

In the second module, a function of the estimated encoding/decoding coefficients and the acoustic data,

which we refer to as the attention marker, is calculated in real-time for each speaker. The role of the

attention marker is to provide dynamic features that create statistical separation between the attended and the

unattended speakers. Examples of such attention markers include correlation-based measures (e.g. correlation

of the acoustic envelopes and their reconstruction from neural response), or measures solely based on the

estimated decoding/encoding coefficients (e.g. the `1-norm of the decoder coefficients or the M100 peak of the

encoder).

Finally, the attention marker is passed to the third module consisting of a near real-time state-space

estimator. To control the delay in state estimation, we adopt a fixed-lag smoothing paradigm, in which the

past and near future data are used to estimate the states. The role of the state-space model is to translate

the noisy and highly variable attention markers to robust measures of the attentional state with minimal

delay. We have archived a publicly available MATLAB implementation of our framework on the open source

repository GitHub in order to ease reproducibility [37].

We validated the performance of our proposed framework using simulated EEG and MEG data, in which

the ground truth attentional states are known. We also applied our proposed methods to experimentally

recorded MEG and EEG data. As for a comparison benchmark, we considered the offline state-space attention

decoding approach of [16]. Our MEG analysis showed that although the proposed real-time estimator has

access to significantly fewer data points, it closely matches the outcome of the offline state-space estimator in

[16], for which the entire data from multiple trials are used for attention decoding. In particular, our analysis

of the MEG data in constant-attention conditions revealed a hit rate of ∼ 70% and a false alarm rate of

∼ 20% at the group level. While the performance is slightly degraded compared to the offline analysis of [16],

our algorithms operate in real-time with 1.5s forward delay, over single trials, and using minimal tuning.

Similarly, our analysis of EEG data provided ∼ 80% hit rate and ∼ 15% false alarm rate at a single trial level.

These performance measures are slightly degraded compared to the results of offline approaches such as [10].

Our proposed modular design admits the use of any attention-modulated statistic or feature as the

attention marker, three of which have been considered in this work. While some attention markers perform

better than the rest in certain applications, our goal in this work was to provide different examples of attention

markers which can be used in the encoding/decoding models based on the literature, rather than comparing

their performance against each other. The choice of the best attention marker that results in the highest

classification accuracy is a problem-specific matter. Our modular design allows to evaluate the performance of

a variety of attention markers for a given experimental setting, while fixing the encoding/decoding estimation

and state-space modules, and to choose one that provides the desired classification performance.

A practical limitation of our proposed methodology in its current form is the need to have access to clean

acoustic data in order to form regressors based on the speech envelopes. In a realistic scenario, the speaker

envelopes have to be extracted from the noisy mixture of speeches recorded by microphone arrays. Thanks to

a number of fairly recent results in attention decoding literature [28, 24, 26, 25, 27], it is possible to integrate

our methodology with a pre-processing module that extracts the acoustic features of individual speech streams

from their noisy mixtures. We view this extension as a future direction of research.

Our proposed framework has several advantages over existing methodologies. First, our algorithms require
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minimal amount of offline tuning or training. The subject-specific hyperparameters used by the algorithms

are tuned prior to real-time application in a supervised manner. The only major offline tuning step in our

framework is computing the subject-specific channel weights in the encoding model for MEG analysis in order

to extract the auditory component of the neural response. This is due to the fact that the channel locations

are not fixed with respect to the head position across subjects. It is worth noting that this step can be avoided

if the encoding model treats the MEG channels separately in a multivariate model. Given that recent studies

suggest that the M100 component of the encoder obtained from the MEG auditory response is a reliable

attention marker [13, 14, 17], we adopted the DSS algorithm for computing the channel weights that compose

the auditory response in an offline fashion.

Second, our analysis allows to characterize the performance of the attentional state classification using

single trials, which is important for practical applications such as smart hearing aids. Existing studies based

on offline algorithms perform classification based on cross-trial performance. For instance, in [10], for each 1

min of test trial, 29 mins of training data are used. In addition, the probabilistic output of our attentional

state decoding framework can be used for further statistical analysis and soft-decision mechanisms which

are desired in smart hearing aid applications. Finally, the modular design of our framework facilitates its

adaptation to more complex auditory scenes (e.g. with multiple speakers and realistic noise and reverberation

conditions) and integration of other covariates relevant to real-time applications (e.g. electrooculography

measurements).
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