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Summary 11 

 12 

The olfactory bulb (OB) is the very first site of odor information processing, yet a wealth 13 

of contextual and learned information has been described in its activity. To investigate 14 

the mechanistic basis of contextual modulation, we use whole-cell recordings to 15 

measure odor responses across rapid (<30 min) learning episodes in identified 16 

mitral/tufted cells (MTCs). Across these learning episodes, we found that diverse 17 

response changes occur already during the first sniff cycle. Motivated mice develop 18 

active sniffing strategies across learning, and it is this change of active sampling state 19 

that dynamically modulates odor responses, resulting in enhanced discriminability and 20 

detectability of odor representation with learning. Evoking fast sniffing in different 21 

behavioral states demonstrates that response changes during active sampling exceed 22 

those predicted from purely feed-forward input. Finally, response changes are highly 23 

correlated in tufted cells, but not mitral cells, indicating cell-type specificity in the effect 24 

of active sampling, and resulting in increased odor detectability in the tufted and 25 

enhanced discriminability in the mitral cell population over the rapid learning episodes. 26 

Altogether, we show that active sampling state is a crucial component in modulating 27 

and enhancing olfactory bulb responsiveness on rapid timescales. 28 

 29 
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Introduction 30 

The ability to respond to sensory stimuli according to learning and context is vital for 31 

orchestrating appropriate behavior. Our view of sensory processing has shifted away from the 32 

simplicity of passive feed-forward models driven by sensory stimuli, to one that additionally 33 

incorporates contextual information provided by top-down circuits into the ongoing processing 34 

(Engel et al., 2001).  This has been driven in part by observations that activity in primary 35 

sensory cortex is widely modulated by contextual information: locomotion, attention, reward 36 

timing and experience all modulate visual cortex activity (Chubykin et al., 2013; Fiser et al., 37 

2016; Ito and Gilbert, 1999; Niell and Stryker, 2010), while whisking behavior and social 38 

context modulate barrel cortex activity (Crochet and Petersen, 2006; Ferezou et al., 2006; 39 

Lenschow and Brecht, 2015).  40 

The olfactory bulb (OB) is the very first site of odor information processing, yet already 41 

modulation of OB neural output by a wealth of contexts and behavioral tasks has been 42 

described from recordings of suprathreshold activity, including unit recordings, calcium 43 

imaging, and LFP recordings. These include modulation of odor responses by hunger state 44 

(Pager, 1974; Pager et al., 1972), task-engagement (Fuentes et al., 2008), reward anticipation 45 

(Doucette and Restrepo, 2008), conditioned aversion (Kass et al., 2013), and even non-46 

olfactory events (Kay and Laurent, 1999; Rinberg et al., 2006). Recently, a number of studies 47 

have described changes in mitral and tufted cell (MTC) odor responses over the course of 48 

olfactory learning (Chu et al., 2016; Doucette and Restrepo, 2008; Yamada et al., 2017). 49 

Despite the prominence of such studies, the mechanistic basis underlying contextual 50 

modulation of the circuit is still unclear. In particular, rarely have these contextual modulations 51 

been interpreted in the framework of active sampling behavior, which is known to be controlled 52 

in a complex and context dependent manner (Wachowiak, 2011), including over the learning 53 

of olfactory tasks (Kepecs et al., 2007; Wesson et al., 2008, 2009; Youngentob et al., 1987). 54 

Not only this, but unit recordings as well as imaging do not have access to subthreshold 55 
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activity, while the former also has the potential to misidentify cell types and bias recordings 56 

toward a subpopulation of MTCs that have high baseline firing rates (Kollo et al., 2014). 57 

To investigate the mechanistic basis of task dependent changes in mitral and tufted cell odor 58 

responses, we recorded from identified mitral and tufted cells using blind whole-cell recordings 59 

in vivo in a range of behavioral states. We optimised training protocols for an olfactory task to 60 

facilitate very rapid olfactory discrimination learning episodes, which allowed us to make 61 

whole-cell recordings over the full learning epoch. At the same time, we measured sniffing 62 

behavior using an external flow sensor. Altogether, we provide evidence that learned active 63 

sampling behavior overtly modulates olfactory responses in a cell-type specific way that 64 

cannot be explained by feed-forward input, and overall appears to enhance the representation 65 

of odors across the olfactory bulb. 66 

Results 67 

There are differences in odor responses according to behavioral state 68 

We recorded from 23 MTCs in passive mice exposed to repeated stimulation of odor mixtures 69 

(Figure S1), as well as 21 MTCs in mice during learning of a simple olfactory go/no-go 70 

discrimination task with the same mixtures. In our task-learning mice, after pre-training on 71 

different odorants (Figure S2A), mice underwent very rapid learning on a novel pair of odor 72 

stimuli, reaching criterion within 10-20 minutes (Figure S2B). It was thus possible to make 73 

stable whole-cell recordings over the full timescale of learning. MTCs were distinguished from 74 

interneurons as previously described (Kollo et al., 2014), using independent component 75 

analysis of the AHP waveform. This was confirmed with morphological reconstruction of 9 76 

MTCs (Figure S3; see methods).  77 

To first determine whether the two behavioral states cause any general change in olfactory 78 

bulb physiology, we applied a series of current steps and compared the basic properties of 79 

cells between the passive and learning states. Both the passive properties (resting membrane 80 

potentials, input resistance and membrane time constants) and spontaneous activity 81 
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(spontaneous firing rates and sniff phase-modulation of membrane potential – ‘sniff-Vm mod.’) 82 

of cells revealed little detectable difference in either average values or variance (see 83 

supplemental information; Figure S4A-F). 84 

Next, basic odor response properties were compared between MTCs in passive (Figure 1A; 85 

46 cell-odor pairs) and task-learning mice (Figure 1B; 42 cell-odor pairs). Note that all odor 86 

responses in the manuscript are aligned on each trial to the first inhalation onset. Comparing 87 

passive and learning cohorts by averaging responses across all trials for a given cell-odor pair 88 

revealed that firing rate (FR) responses did not overtly differ in distribution between passive 89 

and behaving mice (Figure S4G-H). Median FR responses were similar (passive: median 90 

= -0.84 Hz, IQR = -2.2-1.1 Hz; learning: median = -0.51 Hz, IQR = -2.8-2.1 Hz, p = 0.84, 91 

Ranksum), as was variance across cell-odor pairs (p = 0.42, Brown-Forsythe test). Measuring 92 

a cell’s input using subthreshold responses offers us a more sensitive measure of many 93 

response parameters, including temporal features and inhibition. Taking average membrane 94 

potential responses revealed that these do not differ much between the two behavioral states 95 

in terms of means (passive: mean = -1.5 mV, SD = 1.8 mV; learning: mean = -1.7 mV, SD = 96 

2.4 mV; p = 0.67, unpaired t-test; Figure 1Ci-ii), however response variance was larger across 97 

cells in learning mice relative to passive mice, due to higher representation of both strong 98 

inhibition and excitatory responses (p = 0.05, unpaired t-test, n = 42 vs 46; Figure 1Cii). 99 

We next compared temporal features of the subthreshold responses. Comparing response 100 

onsets between passive and learning mice revealed a significant shift towards earlier onsets 101 

in learning mice (passive: median = 85 ms, IQR = 70-110 ms, n = 39; learning: median = 70 102 

ms, IQR = 60-90, n = 36; p = 0.004, Ranksum; Figure 1D), with 33% of responses occurring 103 

before 70 ms in learning mice, and only 10% in passive mice. Just as for baseline activity 104 

(Figure S4F), activity during odor response is often locked to the sniff cycle. We calculated the 105 

amplitude of membrane potential modulation when aligned to sniff phase (sniff-Vm modulation 106 

amplitudes) during the odor response (Figure 1E; see methods for details) to quantify to what 107 
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degree each cell-odor pair was locked to the sniff cycle during odor stimulation. Overall, 108 

passive cell-odor pairs showed a significantly higher degree of patterning by the sniff cycle 109 

 

Figure 1. Differences in odor responses according to behavioral state. 

(A) Example odor response traces for three different cell-odor pairs recorded in passive mice, aligned 

to first inhalation onset. (B) As for panel A, but for cell-odor pairs recorded in learning mice. Ci) Heatmap 

of Vm responses averaged across all trials for each cell-odor pair, sorted by mean 500 ms Vm response, 

for both passive (n=46) and learning (n=42) datasets. Black bar indicates odor stimulus, aligned to first 

inhalation onset. (Cii) Left: Histograms of average 500 ms Vm responses for (top) passively exposed 

and (bottom) learning mice. Right: cumulative histograms comparing average Vm response data for 

passive (grey) and learning (gold) cell-odor pairs. (D) Comparison of response onset latency for learning 

and passive mice. Left shows examples: average membrane potential waveforms averaged over all 

trials. t=0 indicates when the odor turned on, aligned to the first inhalation onset. Red dotted lines 

indicate upper bounds and lower bounds (calculated as mean ± SD of the baseline membrane potential). 

When the Vm waveform rises above or below the upper or lower bound respectively for at least 50 ms, 

this is when response onset is defined (blue dotted line, ON). Right: cumulative histograms to compare 

response onsets for passive and learning mice. (E) Left: example of a highly sniff-locked odor response 

from a passive mouse across the first 4 sniff cycles. ‘Flow’ shows nasal flow trace. Below trace shows 

example average phase aligned membrane potential for first four sniffs of the odor response. Shaded 

area shows SD. ‘Sniff-Vm mod.’ indicates the calculation of sniff-Vm modulation amplitude (see 

methods). Right: Cumulative histograms to compare sniff-modulation amplitudes for passive and 

learning mice. 
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than learning cell-odor pairs (passive sniff-Vm modulation amplitude=3.1±1.7 mV, n=42; 110 

learning: 2.4±1.4 mV, n=38, p=0.03, unpaired t-test; Figure 1E).  111 

Overall, this analysis revealed that the most overt differences between passive and learning 112 

mice were measurable in subthreshold responses, which showed increased variance, shorter 113 

latency and less sniff coupling in learning mice. We thus focused primarily on subthreshold 114 

responses for the next set of analyses. 115 

Diverse odor response changes occur within the very first sniff cycle in learning mice 116 

Recent imaging work has suggested that MTC responses are subject to change in both 117 

learning and passive mice over long timescales (Chu et al., 2016; Doucette and Restrepo, 118 

2008; Yamada et al., 2017). To assess whether the increased response variance apparent in 119 

learning animals (Figure 1Cii) developed across rapid go/no-go task learning (Figure 2A), we 120 

compared the subthreshold response of each cell-odor pair in early trials where the mouse is 121 

performing at chance levels, with the response in late trials where the mouse is performing at 122 

criterion or above (Figure 2B). Since median reaction times in the task were 500 ms (Figure 123 

S2C), we focused our analyses on the first 500 ms of odor response. 124 

We noticed that there were diverse changes in odor response occurring over the course of 125 

learning: for example, overt increases in excitatory response (Figure 2C and S5A), as well as 126 

increases in inhibitory response (Figure 2D), which developed across trials. Overall, in learning 127 

mice, 30% (13/42) of cell-odor pairs showed a significant change across learning (p<0.01, 128 

unpaired t-test between 5 early and 5 late trials), with 19% (8/42) showing a positive change, 129 

and 11% (5/42) showing a negative change (Figure 2E; Figure S5C). These changes led to 130 

an increase in the diversity of responses between early and late trials across the sample, 131 

though this did not quite reach significance (early SD = 2 mV, late SD = 2.6 mV; p = 0.06, 132 

Bartlett test). On a trial by trial basis, changes in excitatory subthreshold response were 133 

reflected by changes in firing rate, though this was not clear for changes in inhibition (Figure 134 

S5A-B). In contrast to learning mice, cell-odor pairs recorded in passive mice showed far less 135 
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frequent significant changes (4%, 2/46 cell-odor pairs), and no change in variance across the 136 

sample (SD early = 1.9 mV, SD late = 2.0 mV, p = 0.58, Bartlett test; Figure 2E and S5D). 137 

Overall, there was significantly higher variance in response changes for cell-odor pairs 138 

recorded in learning compared to passive mice (learning ΔVm SD = 1.5 mV; passive ΔVm SD 139 

= 1.1 mV; p = 0.02, Bartlett test; Figure 2F). Learning-related changes were not due to time-140 

dependent effects of recording, since recording durations in passive and learning were 141 

matched (Figure S5E). Response changes did not reflect the contingency of the odor or 142 

response of the animal, since the distribution of changes showed no significant difference 143 

between CS+ and CS- stimuli (p = 0.77, paired t-test; Figure S5F), and were even correlated 144 

(R2 = 0.44, p = 0.001; Figure S5G).  145 

What aspects of the response change could potentially be used to aid decision making? Mice 146 

are known to make simple olfactory discriminations within the timescale of a single sniff cycle. 147 

Congruently here, we find reaction times as low as 170 ms (Figure S2C-D). By identifying the 148 

onset of response change (see methods), we could show that 71% of identifiable changes 149 

occurred prior to 170 ms (median ΔVm onset = 120 ms, IQR = 20-220 ms, Figure 2G and S5H), 150 

and 45% occurred prior to the 1st percentile of sniff durations (107 ms; Figure S5J). Thus, 151 

changes occur within the timescale of a single sniff cycle, and therefore could contribute to 152 

decision making.  To assess the functional consequence of the learning-related changes for 153 

odor representation within this short timescale, we constructed a population response vector 154 

from the full sample of cell-odor pairs (similar to Figure S5C-D) and calculated the Euclidean 155 

distance of this population response vector from baseline data (see methods for details). We 156 

found that peak detectability within the first 170 ms of odor response significantly increased 157 

between early and late trials (peak early = 31.9 ± 0.8 mV, late = 40.1 ± 1.0 mV; p = 4x10-5, 158 

unpaired t-test, n-5; Figure 2H), while no such significant changes were observed for passive 159 

exposure (peak early = 35.3 ± 0.3 mV, late = 37.1 ± 1.6 mV; p = 0.06 unpaired t-test, n-5; 160 

Figure 2H). By calculating Euclidean distances between response vectors for CS+ and CS- 161 

stimuli, we also observed a significant increase in discriminability of the two odors across the 162 
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Figure 2. Diverse odor response changes occur within the very first sniff cycle in learning 

mice 

(A) Diagram of the recording paradigm (left) and schematic of go/no-go task sequence (right). (B) 

Example learning curve for one mouse across the recording timeframe. Responses are compared 

between five early trials (unlearned) and five late trials (learned) to assess learning-related changes. 

(C) Left: example odor response traces in early and late for a cell-odor pair undergoing increase in 

excitation across learning (spikes have been clipped). Shaded area indicates odor stimulus (aligned 

to first inhalation onset). Right: heatmap showing 5-trial moving average of membrane potential 

response across trials (D) As for panel C, but for a response undergoing an increase in inhibition. 

(E) Plot of early and late membrane potential responses (first 500 ms) for learning mice (left; n=42 

cell-odor pairs) and passive mice (right; n=46 cell-odor pairs) separately. Thick red lines indicate 

significant positive change (p<0.01), thick blue lines indicate significant negative change. (F) 

Comparison of response changes (late-early) for learning and passive mice. Red dots show 

significant positive changes, blue dots show significant negative changes. (G) Response change 

heatmaps (late-early average membrane potential waveforms) normalized by baseline SD. Black 

boxes indicate onset of change (>2 SD for at least 5 consecutive points). T=170 ms is indicated as 

the minimal detected reaction time. Continued on next page… 
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recording for learning (peak early = 19.8 ± 1 mV, late = 25.0 ± 2 mV, p = 5x10-4; Figure 2J) but 164 

not passive mice (peak early = 20.4 ± 1.9 mV, late = 19.9 ± 1.3 mV, p = 0.68). Since both 165 

discriminability and detectability peaked within 100 ms from odor onset, this enhanced 166 

representation occurred within the timescale of the first sniff cycle.   167 

Thus, diverse response changes specifically occur across learning occurring on the timescale 168 

of a single sniff cycle, giving rise to enhanced early odor representation.  169 

Active sampling strategies emerge across task learning 170 

What are the mechanisms underlying these response changes? Odors are acquired from the 171 

environment through sniffing behavior, which is subject to complex contextual modulation 172 

(Kepecs et al., 2007; Wachowiak, 2011; Wesson et al., 2009). To analyze sniff changes within 173 

the short 500 ms time-window of the odor stimulus, we measured sniffing using an external 174 

flow sensor and quantified the mean inhalation duration (MID) of all inhalations completed 175 

within the first 500 ms of the stimulus (Figure 3A). When comparing early and late learning 176 

trials, we noticed that mice showed significant changes in sniff behavior during the odor 177 

stimulus, with faster, sharper inhalations emerging gradually across learning (reduced MID, 178 

Figure 3B). Reductions in MID mirrored increases in sniffing frequency across trials (Figure 179 

3C), and are thus indicative of faster sniffing. 180 

Across all cell-odor pairs, a large fraction underwent significant changes in MID during learning 181 

(26%, 10/38 cell odor pairs; Figure 3D). In stark contrast, passively exposed mice showed far 182 

(H) Left plots: Euclidean distance as a function of time since odor onset (t=0, aligned to first inhalation 

onset) between population vectors for odor response, and control vectors initiated by an inhalation 

during the inter-trial interval. This gives an indication of the detectability of the odor response across 

the sample. Black plot is calculated from early trials, maroon plot is calculated from mid-point trials, 

and red plot is calculated from late trials. Each is averaged over 5 trial subsets (see methods for 

details), and shaded area indicates standard deviation.  Right: plot to show peak detectability within 

the first 170 ms of the stimulus across early, mid-point and late trials. Plot shows mean across the 5 

trial subsets, and errorbars show standard deviation. Gold plot is for learning mice (n=42 cell-odor 

pairs), and grey plot is for passive mice (n=46 cell-odor pairs). (J) As for H, but with the Euclidean 

distance measured between population vectors for the CS+ and CS- to give an indication of the 

discriminability of the two responses across the sample. 
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more stable MID, with only 12% of cell odor pairs showing significant change (Figure 3D), and 183 

substantially less variation in the ∆MID; learning: SD = 24 ms, passive: SD = 9 ms, p = 3x10-8, 184 

Bartlett test; Figure S6A). Comparing cumulative histograms of the MID change between 185 

learning and passive mice revealed that a significantly larger proportion of learning mice 186 

underwent reductions in MID exceeding 20 ms (learning: 26%, passive: 2%; p<0.01, 187 

bootstrapping; Figure 3E). Changes in MID across the population of learning mice again 188 

correlated very well with changes in sniff frequency (R2 = 0.59, p = 3x10-8; Figure 3F). 189 

In learning mice, changes in MID were highly correlated between rewarded and unrewarded 190 

odors (R2 = 0.54, p = 3x10-4, Figure S6B) and already the first inhalation after odor onset 191 

showed a pronounced reduction in duration (Figure 3G), with a tight correlation between 192 

changes in MID and changes in the first inhalation duration (FID; R2 = 0.77, p = 7x10-13; Figure 193 

3H). Together this suggests that rapid sniffing in learning mice is likely to reflect an active 194 

sampling strategy rather than changes concomitant with reward anticipation or licking 195 

response.  196 

What causes the variance in sniff changes across mice? Response vigour has previously been 197 

used as a measure of motivation levels in mice (Berditchevskaia et al., 2016). We noted that 198 

some mice would respond more eagerly to the CS+ stimulus than others, with larger frequency 199 

of anticipatory licking (licking 500-2000 ms after odor onset) in the late trials after learning was 200 

complete, while others would wait during the odor stimulus and only lick during the subsequent 201 

response period (Figure 3J). The number of anticipatory licks in late trials correlated well with 202 

the change in MID across learning, with reductions in MID associated with higher frequency 203 

anticipatory licking (R2 = 0.54, p = 4x10-4; MID change averaged across CS+ and CS- for each 204 

cell-odor pair; Figure 3K). Since the correlations existed for changes in MID for both CS+ and 205 

CS- alone (Figure S6C), these associations were not due to simple motor effects relating to 206 

the go response or reward expectation. Reduced MID was also significantly associated with 207 

shorter reaction time (Figure 3L; R2 = 0.23, p = 0.04, MID change averaged across CS+ and 208 

CS- for each cell-odor pair).  209 
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Figure 3. Active sampling strategies emerge across task learning. 

(A) Diagram to show extraction of inhalation duration from example nasal flow trace. (B) Example nasal 

flow traces from one mouse showing emergence of rapid sniffing between early and late trials. (C) MID 

for example cell-odor pair in panel B calculated for each trial (first 500 ms of stimulus) in black dots. 

Orange crosses show corresponding sniff frequency for each trial. (D) Plot showing how MID changes 

between early and late trials, for learning (n=38) and passive (n=42) mice. Thick red lines show 

significant reductions in MID (faster sniffing), thick blue lines show significant increases in MID (slower 

sniffing). (E) Cumulative histograms of MID change for learning and passive mice compared. Black 

arrowhead shows significant difference in the histograms (see methods). (F) Scatter between change 

in MID and change in sniff frequency between early and late trials for all learning cell-odor pairs. (G) 

Left: example flow traces showing duration of the first inhalation (FID) after odor onset between early 

and late trials. Right: heatmap to show change in inhalation duration as a function of sniff number since 

odor onset, sorted by change in MID. (H) Scatter of changes in FID versus changes in MID. (J) Example 

nasal flow traces during CS+ presentations for ‘high motivation’ (left) and ‘low motivation’ mice (right). 

‘Motivation’ here refers to the number of licks during the odor stimulus (‘anticipatory’ licks). Note sniff 

changes only occur for the ‘high motivation’ mouse. (K) MID change (averaged for each cell across CS+ 

and CS- stimuli) across learning as a function of the mean number of anticipatory licks in late trials for 

CS+ trials. (L) MID change (averaged for each cell across CS+ and CS- stimuli) across learning as a 

function of the reaction time calculated from divergent lick patterns. 
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Thus, mice displayed changes in active sampling strategy forming across the learning session, 211 

with the development of fast sniffing associated with high motivation and short reaction times.  212 

Positive response changes are tightly linked to changes in active sampling 213 

Since the MTCs recorded in awake animals were widely modulated by sniffing (Figure 1E), 214 

and mice displayed changes in sniff strategy (Figure 3), we next wanted to test what impact 215 

the changes in active sampling had on the response changes observed across learning. We 216 

first split the dataset according to MID change: large MID change (>20 ms absolute change 217 

between early and late trials, n=18), and small MID change (<20 ms absolute change, n=20). 218 

Comparing heatmaps of response change between early and late trials for each dataset 219 

revealed that positive changes were exclusively displayed alongside large MID change (Figure 220 

4A). There was a significant increase in response variance for cell-odor pairs recorded 221 

alongside large MID change (early SD=1.8 mV, late SD=3.2 mV, p=0.02 Bartlett test), but not 222 

for small MID change (early SD=2.2 mV, late SD=2.2 mV; p=0.98 Bartlett test; Figure 4B). 223 

Altogether, responses recorded alongside large MID changes accounted for 7/8 significant 224 

positive response changes, and 2/5 inhibitory response changes, and showed significantly 225 

larger variance in response changes compared to those recorded alongside small MID 226 

changes (large sniff change: SD=1.9 mV, n=18; small sniff change: SD=1.1 mV, n=20; 227 

p=0.002, Bartlett test), and response changes in passive mice (passive SD=1.1 mV, p=0.002, 228 

Bartlett test, n=18 vs 46), while the small change dataset was indistinguishable from passive 229 

controls (p=0.94, Bartlett test, n=20 vs 46). In particular, there were significantly more positive 230 

response changes (>1 mV) in the large sniff change group (39%) compared to small sniff 231 

change (5%) and passive mice (11%; p<0.01, bootstrapping, see methods; Figure 4C). 232 

To test the strength of associations between Vm response and active sampling further, we 233 

correlated the mean MID and Vm response across trials for each cell-odor pair. For cells 234 

undergoing positive response changes across learning, this resulted in robust significant 235 

correlations, as in Figure 4D, while those undergoing increases in inhibition showed no such 236 

tight correlation (Figure 4E). Overall, 88% (7/8) cell-odor pairs showing significant positive 237 
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changes across learning displayed highly significant correlations (p<0.01) between Vm 238 

response and MID across trials. Increased inhibition however could not be explained by active 239 

sampling changes, with no significant correlations between changes in Vm response and 240 

inhalation duration for these 5 cell-odor pairs. This effect across the population resulted in a 241 

significant positive relationship between the response change occurring across learning and 242 

the R2 of the correlation between MID and response across trials (R2=0.38, p=4x10-5, n=42; 243 

Figure 4F). 244 

We also assessed whether sniffing could account for the differences in response onsets and 245 

sniff-Vm modulation amplitudes seen between passive and task-learning state (Figure 1D and 246 

E). Analysing these parameters over trials selected to match sniff parameters for each group 247 

demonstrated that differences in sniffing indeed accounted for differences in response onset 248 

and average sniff-Vm modulation amplitudes, although passive cell-odor pairs still showed a 249 

tendency toward very large sniff-Vm modulation amplitudes (Figure S7; see supplemental 250 

information).  251 

How did changes in active sampling impact on changes in odor representation across the 252 

dataset? To test this we split the learning population according to MID change as before 253 

(Figure 4A-C). When recalculating the Euclidean distances for these individual datasets, we 254 

found that the increase in detectability largely occurred alongside large MID change (early 255 

peak=25.1±1.0 mV, late peak=33.7±1.4 mV; p=7x10-4, unpaired t-test; Figure 4G), and was 256 

far smaller and less significant in those undergoing small MID change (early peak=20.0±1.2 257 

mV, late peak=23.1±2.6 mV; p=0.04, unpaired t-test; Figure 4G). We found the same result 258 

for changes in discriminability, with a significant increase only in cases where ΔMID for both 259 

CS+ and CS- stimuli was large (large ΔMID: peak early=13.2±0.8 mV, late=19.6±1.8 mV, 260 

p=0.002, unpaired t-test; small ΔMID: peak early=15.4±1.0 mV, late=16.1±1.5 mV, p=0.28, 261 

unpaired t-test; Figure 4H).  262 
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Figure 4. Positive response changes are tightly linked to changes in active sampling. 

All data is from the learning dataset. (A) Response change heatmaps (late-early average Vm 

response) normalized by baseline SD, for small MID change (ΔMID<20 ms) and large MID change 

(ΔMID>20 ms). (B) Plot of early and late membrane potential responses (first 500ms) across learning 

for large ΔMID (left; n=18 cell-odor pairs) and small ΔMID (right; n=20 cell-odor pairs) separately. 

Thick red lines indicate significant positive change (p<0.01), thick blue lines indicate significant 

negative change. (C) Cumulative histograms for response changes in large ΔMID, small ΔMID and 

passive mice. Black arrowheads show significant differences between large ΔMID vs both small 

ΔMID and passive histograms (see methods). (D) Above: example nasal flow and Vm traces 

overlayed for 3 early and 3 late trials for a cell-odor pair undergoing significant increase in excitation 

across learning. Spikes have been clipped for display. Below: Scatter between MID and Vm response 

across trials for this cell-odor pair. Points have been colored according to trial number. (E) As for 

panel D, but for a cell undergoing a significant increase in inhibition across learning. (F) Scatter 

between the response change across learning (late-early), and the R2 value for correlations as in 

panels D-E, colored according to the p-value of the correlation. Note how all cases of strong positive 

response change exclusively show strong correlations with sniffing. (G) Left: Euclidean distance 

between population response vectors and baseline data, now split into cell-odor pairs recorded 

alongside large MID (>20 ms change, n=18), and small MID (<20 ms change, n=20). Right: plot to 

show peak detectability within the first 170 ms of the stimulus across early, mid-point and late trials. 

Plot shows mean across the 5 trial subsets, and errorbars show standard deviation. (H) As for panel 

G, but for the Euclidean distance between population response vectors for CS+ and CS- for learning 

data that is now split into cell-odor pairs  recorded alongside large MID change (>20 ms change for 

both CS+ and CS-, n=8 cells) and small MID change (any other cell, n=11 cells). 
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Thus, positive response changes are associated with changes in active sampling, which 264 

enhances early odor representation in terms of both detectability and discriminability while 265 

negative response changes (increased inhibition), cannot be explained by sniff changes. 266 

Active sampling and associated response changes are dynamically linked to task 267 

engagement 268 

We next wanted to investigate the effect of dynamic changes in behavioral state on the 269 

changes in active sampling and odor responses observed. To do this, we recorded from 8 cell-270 

odor pairs in an entirely new cohort of mice who were trained to criterion on the task prior to 271 

recording. If the rapid sniffing is indeed an active strategy for odor acquisition during behavior, 272 

we would expect the strategy to disappear if the task comes to an end (i.e. transition to passive 273 

odor exposure), and re-emerge when the task reinitiates.  To test this, we implemented a 274 

paradigm in which task engagement could be reversibly changed by physically removing and 275 

re-introducing the water reward spout (Figure 5A), resulting in rapid switches between 276 

olfactory behavior and passive exposure as indicated by animal licking responses (Figure 5A 277 

and S8A-B). As predicted, animals robustly adapted their sniffing strategy upon elimination of 278 

the licking response after removal of the reward port (Figure 5B), with MID increasing (slower 279 

sniffing). Reintroduction of the reward port rapidly restored fast sniff behavior (reduced MID).  280 

If active sampling determines positive response change as predicted from learning mice 281 

(Figure 3), we would expect positive changes to occur alongside the rapid sniffing strategy. 282 

We found that responses could change robustly and reversibly between task engagement, 283 

disengagement and re-engagement, with some examples showing dramatic and reversible 284 

switches between excitation and inhibition (Figure 5C-D and S8C). Consistent with the 285 

learning-related changes, positive changes always occurred alongside reduced MID (Figure 286 

5E-G) and were again tightly linked to the sniff changes on a trial-by-trial basis (Figure 5H-J), 287 

consistent with the idea that changes in neural responses are directly driven by sniff strategy. 288 

Strikingly, response changes could occur within only a single trial upon recognition of task re- 289 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2017. ; https://doi.org/10.1101/222588doi: bioRxiv preprint 

https://doi.org/10.1101/222588
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

  290 

 

 

Figure 5. Active sampling and associated response changes are dynamically linked to task 

engagement 

For all panels: green = task engaged, black = task disengaged. (A) Left shows experimental 

paradigm. Right shows lick raster across task switches for CS+ and CS- stimuli for an example 

mouse. (B) Example MID changes for one response across changes in task engagement (averaged 

over 500 ms, panels B-D correspond to same example). (C) Example FR response changes, (spikes 

partially clipped for display, averaged over 2 s). (D) Example Vm response changes (spike-

subtracted, averaged over 500 ms). (E) For all 8 responses, changes in MID between task 

engagement, disengagement and re-engagement (asterisks denote result of paired T-test). (F) As 

for E, but for changes in 2 s FR responses. (G) As for E, but for changes in 500 ms Vm responses. 

(H) Scatter of MID versus Vm response across trials for an example cell-odor pair. (J) Left: boxplots 

to show corresponding R2 values (as for example in panel H) for all six FR responses showing 

significant changes across engagement shifts, alongside shuffle control. Right: as for left, but for Vm 

responses. 
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engagement (Figure S8D) emphasizing the dynamic nature with which changes in active 291 

sampling state influence neural responses. 292 

Odor response changes associated with active sampling are dependent on behavioral 293 

state 294 

We next wanted to assess whether the response changes observed during active sampling 295 

require attention to an olfactory stimulus, or whether any similar change in sniffing would cause 296 

the same response change regardless of behavioral state.  297 

MTC activity is strongly patterned by sensory input locked to the sniff cycle in anaesthetized 298 

mice, giving rise to sniff-coupling of membrane potential (Adrian, 1950; Cang and Isaacson, 299 

2003; Fukunaga et al., 2012; Macrides and Chorover, 1972; Margrie and Schaefer, 2003). 300 

Similarly, in our awake animals, we found that membrane potential during odor stimulation 301 

showed widespread modulation by the sniff cycle, with a variety of sniff-Vm modulation 302 

amplitudes (Figure 1E). Thus, it is possible that changes in response occurring with rapid 303 

sniffing at least partially result from bottom-up changes in the sniff-locked input pattern from 304 

OSNs. 305 

We thus assessed whether evoking changes in sniffing similar to those observed in behaving 306 

animals could directly elicit response changes even in the absence of olfactory behavior. We 307 

found that unexpected whisker stimulation briefly increased sniff rates in passive mice (Figure 308 

6A), quantitatively reproducing (and even exceeding) the sniff changes seen during learning 309 

(Figure S9). When paired with odor delivery, this resulted in a variety of largely positive odor 310 

response changes (∆Vm=+0.65±0.82 mV, p=0.03, paired T-test, n=10; Figure 6B). If these are 311 

mediated by bottom-up effects on the sniff-locked input, we may expect the changes to 312 

correlate with the degree to which the response is sniff-coupled. Indeed, the response 313 

changes were strongly correlated with the amplitude of sniff-Vm modulation, such that highly 314 

sniff locked cells underwent the largest changes when sniffing was altered (Figure 6C). These 315 

response changes are unlikely to be due to changes in arousal or from somatosensory input, 316 
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since they were similarly present in anaesthetized mice, where using a double tracheotomy 317 

the frequency of artificial sniffing (airflow through the nose) could be altered independent of 318 

free tracheal breathing (Figure 6D-E). Response changes in anaesthetized mice were also 319 

significantly correlated with sniff-Vm modulation amplitude (R2=0.71, p=0.006, n=9; Figure 6F). 320 

Thus, in absence of olfactory behavior, evoking sniff changes results in response changes 321 

which depend on the amount of sniff-locked input to the cell.  322 

We next wanted to assess whether this was the case in behaving mice. We thus pooled 323 

response changes from learning and task-engagement mice where MID underwent a change 324 

exceeding 20 ms (early-late or engaged-disengaged respectively). This gave us 26 cell-odor 325 

pairs in total. Plotting the absolute response change against the sniff-modulation amplitude 326 

resulted in a considerably different picture compared to passive and anaesthetized mice: there 327 

was no correlation between sniff-Vm modulation strength and response change magnitude 328 

(R2=0.02, p=0.6, n=26; Figure 6G). Using the linear model resulting from the correlation 329 

calculated in passive mice (ΔVex=0.26*T+0.21 mV, where ΔVex=expected Vm response 330 

change, and T= sniff-Vm modulation amplitude), we generated expected values for Vm 331 

response change based on the sniff-Vm modulation amplitude of each cell odor pair, and 332 

compared these to actual values for response change. On average, only response changes 333 

in behaving mice exceeded that expected based on their sniff-Vm modulation amplitude (mean 334 

actual-expected error=0.5±1.2 mV, p=0.03, paired t-test), and there was significantly more 335 

variance in the prediction error for response changes in behaving animals (actual-expected 336 

SD=1.2 mV) relative to passive (SD=0.3, p=3x10-4) and anaesthetized mice (SD=0.26, 337 

p=1x10-4; Figure 6H).  338 

While this suggests that sniff-evoked response changes in behaving mice exceed those 339 

expected based purely on sniff-locked feed-forward input, this does not mean that such 340 

response changes are any less linked to the sampling behavior of the animal. When 341 

comparing R2 values for the correlation between MID and Vm response across trials for each 342 

cell-odor pair, we found no significant differences in the distributions between anaesthetized, 343 
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passive and behaving mice (Figure 6J), and the latter if anything displayed larger R2 values 344 

(behaving: median=0.16, IQR=0.03-0.27; passive: median=0.10, IQR=0.03-0.21; 345 

anaesthetised: median=0.03, IQR=0.01-0.19; p>0.05, ranksum) and more frequent significant 346 

relationships (behaving: 46%; passive: 40%; anaesthetised: 20%; p<0.05 linear regression). 347 

Thus, sniff changes in all behavioral states will evoke response changes to a degree, but in 348 

the behaving, actively sampling animal, these changes exceed those expected based only on 349 

the feed-forward input to the cell. This likely indicates a state-dependent top-down component 350 

 

Figure 6. Response changes associated with active sampling are dependent on behavioral state 

(A) Left: Experimental set up for tactile stimulation of passive mice. Example traces show nasal flow 

(middle) and Vm (right) for one cell: top = control trial (slow sniffing); bottom = tactile stimulus trial (fast 

sniffing). (B) Mean responses (first 500 ms of stimulus) averaged across 5 ‘slow’ and 5 ‘fast’ sniff trials 

for 10 cell-odor pairs (p<0.05, paired T-test). (C) Scatter of response change between slow and fast 

sniff trials versus odor sniff-Vm modulation amplitude during the odor. (D)-(F) as for the panels above, 

but for data from ‘simulated’ sniff changes in anaesthetized mice via a double tracheotomy procedure. 

(G) As for panels C and F, but for mice showing large sniff changes across learning (MID>20 ms) 

Correlations from C and F have been included for comparison. (H) Plot comparing deviation of response 

change from the linear regression model calculated from passive mice (linear fit in panel E), for 

anaesthetised, passive and behaving mice. (J) Comparion of R2 values between MID and Vm response 

calculated across trials for each cell odor pair undergoing large MID change in anaesthetised, passive 

and behaving mice. 
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underlying response changes during active sampling. 351 

Effect of fast sniffing in absence of odor depends on feed-forward input in learning and 352 

passive mice 353 

A previous study in the visual system has shown that modulation of visual responses happens 354 

temporally locked to saccade generation (Han et al., 2009). Since activity even in absence of 355 

odor is widely modulated by the sniff cycle (Cang and Isaacson, 2003; Fukunaga et al., 2012; 356 

Macrides and Chorover, 1972; Figure S4F), and sniff changes evoke activity changes in all 357 

behavioural states given that they are highly sniff-coupled (Figure 6), this made it likely that 358 

sniff changes even in absence of odor would cause activity changes. We wanted to test 359 

whether the enhancement of response change during active sampling (Figure 6G-H) occurred 360 

only during the odor stimulus, or whether there is a generally increased sensitivity to sniff 361 

changes during behavior that extends outside the stimulus sampling period.  362 

To examine this, we made use of spontaneous bouts of rapid (>5 Hz) sniffing that occur in 363 

awake mice during the inter-trial interval – i.e. in absence of odor (Figure 7A). Consistent with 364 

previous imaging data (Kato et al., 2013), it was clear that in certain cells, overt depolarising 365 

and hyperpolarising changes in activity would occur coinciding with such rapid sniff bouts 366 

(Figure 7A). Quantifying the change in mean membrane potential evoked by fast sniffing 367 

across 26 MTCs revealed almost two thirds significantly changed their mean potential during 368 

fast sniffing, with 7 depolarizing and 9 hyperpolarizing (p<0.05, bootstrapping – see methods, 369 

Figure 7A). Thus, sniff changes evoke response changes even in absence of odor. To test 370 

how these depended on bottom-up sniff-locked input, we again compared the magnitude of 371 

the response changes to their sniff-Vm modulation amplitudes. This resulted in a robust 372 

correlation (R2=0.46, p=0.001, n=26; Figure 7B), indicating that these changes are again likely 373 

the result of changes in feed-forward input. 374 

To test any differences in sensitivity to sniff change caused by behavioral state, we split the 375 

data into those from behaving mice (n=16) and those from passive mice (n=10). Comparing 376 

the actual Vm change to the expected Vm change (as calculated using the linear model 377 
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generated from the linear regression, ΔVex=0.31*T+0.01 mV, where ΔVex=expected absolute 378 

Vm change, and T= sniff-Vm modulation amplitude), showed that the difference between 379 

expected and actual Vm change did not significantly differ from zero for either passive (mean 380 

actual-expected=0.17±0.57 mV, p=0.37, paired t-test, n=10) or behaving cell-odor pairs (mean 381 

actual-expected=-0.11±0.36 mV, p=0.25, paired t-test, n=16; Figure 7C), and did not 382 

significantly differ between passive and behaving datasets (p=0.14, unpaired t-test; p=0.1, 383 

Bartlett test). Altogether this indicates that enhanced response change during rapid sniffing in 384 

a behaving animal is only true during the odor sampling period. 385 

Since cells could depolarise or hyperpolarise during fast sniffing, we sought to determine 386 

whether the sign of response change was also predictable from sniff-locking properties. 387 

Evidence from anaesthetized mice suggests that MCs are driven by feed-forward inhibition 388 

and lock to inhalation, while TCs are driven by feed-forward excitation and lock to exhalation 389 

(Fukunaga et al., 2012). To test this in awake mice, we recovered 9 morphologies of MTCs 390 

(e.g. Figure 7D), and identified them as MCs (n=5) or TCs (n=4). Congruent with the previous 391 

data, the two cell types had subthreshold membrane potential which locked to different phases 392 

of the sniff cycle: morphologically-confirmed MCs locked to inhalation, while TCs locked to 393 

exhalation (Figure 7E). We next examined the relationship between phase preference and the 394 

effect of fast sniffing across the full sample of cells. The sign of the change in activity during 395 

fast sniffs was strongly related to the phase coupling of the cell to the sniff cycle (Figure 7F), 396 

with inhalation-locked cells hyperpolarising and exhalation-locked cells depolarising. We 397 

calculated the phase boundaries for best separation of hyperpolarising and depolarising cells 398 

(as drawn in Figure 7F; see methods), and the phase preferences of morphologically identified 399 

MCs and TCs conformed to these boundaries (Figure 7F, red triangles and blue diamonds). 400 

Cells within the inhalation boundaries (0.39-4.11 rad; putative MCs) showed significantly more 401 

hyperpolarising effects of fast sniffing than those within the exhalation boundaries (4.11-0.39 402 

rad; putative TCs) (putative MC, median ΔVm=-0.39 mV, IQR=-0.66 to -0.17 mV, n=16; 403 

putative TC median ΔVm= 0.19, IQR=0.08-0.66, n=11; p=9x10-4, Ranksum; Figure 7G). 404 
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Figure 7. Response changes in absence of odor are dependent on sniff-locked input 

(A) Right: awake mice will sometimes make spontaneous rapid sniff bouts in absence of odor during 

the inter-trial interval. Example traces show such sniff bouts, and coincident Vm traces showing overt 

activity changes. Left: Histogram to show distribution of Vm changes during spontaneous rapid sniffs (>5 

Hz) for 26 MTCs in which there were >20 fast sniffs. (B) Correlation between absolute sniff change 

between slow and fast sniffs, and amplitude of baseline theta modulation. Grey dots show data from 

passive mice (n=10), gold dots show data from behaving mice (n=16). (C) Comparison of errors (actual-

expected) when calculating expected Vm change based on the sniff-Vm modulation amplitude of the 

baseline membrane potential for passive (grey), and behaving (gold) cell-odor pairs. (D) Morphologies 

of a reconstructed TC (left) and MC (right), with mean membrane potential as a function of phase shown 

below (shaded area=SD), with their respective phase preferences. Bb=brain border; EPL=external 

plexiform layer; MCL=mitral cell layer. (E) Phase plot to show preferences of 5 reconstructed MCs (red) 

and 4 reconstructed TCs (blue). (F) Vm change between fast and slow sniffing (fast-slow) as a function 

of the phase preference of the cell. Red shaded region corresponding to inhalation and subsequent 

pause shows the phases which best encompass hyperpolarising cells, thought to be MCs, and blue 

region best encompasses depolarising cells, thought to be TCs. Symbols show phase preferences of 

morphologically recovered cells: red triangles=MCs; blue diamonds=TCs. Black filled dots show 

significant Vm changes. (G) Comparison of Vm change due to fast sniffing for putative TCs and MCs 

defined by the phase boundaries shown in panel F.  
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Thus, in absence of odor, the effect of fast sniffing on response is predicted by the sniff-driven 406 

input of the cell regardless of behavioural state, and the sign of response allows identification 407 

of putative MCs and TCs. 408 

Tufted cells show more highly correlated changes than mitral cells 409 

Since our data suggests involvement of extrabulbar circuits in shaping responses during active 410 

sampling, and previous work has suggested that both learning and neuromodulatory activity 411 

may have divergent effects on MC responses compared to TC responses (Kapoor et al., 2016; 412 

Yamada et al., 2017), we wanted to compare the response changes across learning for the 413 

two groups of cells. To this end we used the phase preference boundaries found earlier (Figure 414 

7F) to designate putative mitral (pMC) and tufted cell (pTC) phenotype. Consistent with the 415 

idea that these boundaries can separate TCs and MCs, mean firing rate responses to odors 416 

in pTCs showed a significant tendency toward strong excitation compared to pMCs (Figure 417 

S10), as has previously been demonstrated (Nagayama et al., 2004). 418 

The distribution of early subthreshold responses (prior to learning) for pMCs and pTCs did not 419 

significantly differ (pTCs: -1.1±1.9 mV, n=16; pMCs: -1.8±2 mV n=26; p=0.26, unpaired t-test; 420 

Figure 8A), however pTCs showed significantly more positive responses compared to pMCs 421 

in late responses after learning was complete (pTCs: median=0.3 mV, IQR=-1.3-1.1 mV, 422 

n=16; pMCs: median=-2.1 mV, IQR=-3.2-0.5 mV, n=26; p=0.01, Ranksum), consistent with 423 

previous findings that TCs show more excitatory responses and receive less lateral inhibition 424 

than MCs (Christie et al., 2001; Nagayama et al., 2004). Comparing response changes across 425 

learning for putative MCs and TCs, we found that the two groups did not significantly differ in 426 

terms of mean or variance of response change (pTCs: 0.64±1.7 mV; pMCs: -0.14±1.4 mV; 427 

p=0.1, unpaired t-test; p=0.46, Bartlett test; Figure 8B). Comparing the R2 values for the 428 

correlations between inhalation duration and Vm response across trials also indicated that in 429 

general, pMCs and pTCs do not show differing effects of sniffing on responses (pTCs: median 430 

R2=0.09, IQR=0.01-0.29; pMCs: median R2= 0.06, IQR=0.03- 0.18; p=0.88, Ranksum; p=0.35, 431 

Brown-Forsythe test; Figure 8C).  432 
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We next compared the response changes for CS+ and CS- stimuli across learning for pMCs 433 

and pTCs individually. For tufted cells, response changes for the two stimuli were highly 434 

significantly correlated (R2=0.65, p=0.002, n=12 cells), whereas this was not the case for 435 

pMCs (R2=0.21, p=0.13, n=13 cells; Figure 8D). The same difference was seen when looking 436 

at the R values between MID and Vm response across trials: pTCs showed highly correlated 437 

R values between CS+ and CS- stimuli (R2=0.72, p=0.001, n=11), while pMCs did not 438 

(R2=0.26, p=0.1, n=12; Figure 8E).  439 

Since response changes were overall less correlated between CS+ and CS- for MCs, we 440 

wanted to compare the change in discriminability of the responses across learning for pMCs 441 

compared to pTCs. Using the Euclidean distance between population response vectors for 442 

CS+ and CS- stimuli, we found that pTCs did not show a significant change in peak 443 

discriminability across learning (mean peak early=9.4±1.6; late=10.4±2.6 mV, p=0.41 444 

unpaired t-test, n=5), however pMCs did show a significant increase in peak discriminability 445 

(mean peak early=10.1±0.4; late=13.1±1.9 mV, p=0.01 unpaired t-test, n=5; Figure 8F). Both 446 

cell types however significantly contributed to increased detectability of the stimulus across 447 

learning, though this was more pronounced for TCs rather than MCs (TCs: peak early= 448 

15.9±1.2 mV, peak late=21.5±1.8 mV, p=0.001, unpaired t-test; MCs: peak early=31.0±2.2 449 

mV, peak late= 33.9±1.1 mV, p=0.01, unpaired t-test; Figure 8G). 450 

Thus, while response changes across learning were generally quite similar for MCs and TCs, 451 

TCs showed more highly correlated changes while the less correlated changes in MCs appear 452 

to enhance discriminability of the stimuli. 453 

Discussion 454 

Active sampling behavior is a fundamental feature of sensory information acquisition. 455 

Theoretical and psychophysical evidence has driven hypotheses that active sampling 456 

strategies during behavior may be used to optimize sensory information flow (Ahissar and 457 

Assa, 2016; Laing, 1983; Yang et al., 2016). Here using whole-cell recordings in awake mice,  458 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2017. ; https://doi.org/10.1101/222588doi: bioRxiv preprint 

https://doi.org/10.1101/222588
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

we found a number of differences in subthreshold responses between passive and learning 459 

mice (Figure 1), with variance in responses developing across the rapid learning episode 460 

(Figure 2). In parallel, we found that active sniffing develops across learning in motivated mice 461 

 

Figure 8. Tufted cells show more highly correlated changes than mitral cells. 

(A) Plot of early and late membrane potential responses (first 500 ms) across learning for pTCs (left; 

n=16 cell-odor pairs) and pMCs (right; n=26 cell-odor pairs) separately. Lick black lines show 

significant changes. (B) Comparison of response changes (late-early) for pTCs and pMCs cell-odor 

pairs. Black dots show significant changes (p<0.01). (C) Comparison of R2 values between MID and 

Vm response across trials for pTC and pMC cell-odor pairs. Color shows p-value of the correlation 

(-log10). (D) Scatter of response change for CS+ vs response change for CS- for pTCs (left) and 

pMCs (right) independently. Triangles show data from task-engaged/disengaged recordings (as in 

Figure 5), where response change is calculated as engaged-disengaged response, while circles are 

from learning data (response change=late-early response). (E) As for G, but for the R value between 

MID and Vm response across trials for each cell odor pair. (F) Left: Euclidean distances for the 

discriminability between CS+ and CS- during early (black), mid (maroon) and late (red) trials, for 

pTCs (bottom) and pMCs (top) independently. Right: Left: plot of average peak discriminability in 

the first 170 ms of the stimulus for early, mid and late trials for pTCs (blue) and pMCs (red) Plot 

shows mean, and error bars show SD across 5 trial subsets. (G) Right: Euclidean distances (as in 

Figure 4) for the detectability between CS+ and CS- during early (black), mid (maroon) and late 

(red) trials, for pTCs (bottom) and pMCs (top) independently. Left: plot of average peak detectability 

in the first 170 ms of the stimulus for early, mid and late trials for pTCs (blue) and pMCs (red) Plot 

shows mean, and errorbars show SD across 5 trial subsets.  
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(Figure 3), which corresponds to changes in odor response (Figure 4 and 5), ultimately serving 462 

to improve odor representation. Moreover, we show that this cannot be predicted from simple 463 

feed-forward mechanisms (Figure 6), a feature which only holds true during odor sampling 464 

(Figure 7), and occurs in a cell-type specific manner (Figure 8). Thus, we provide new 465 

evidence for coordinated modulation of early sensory processing during active sampling 466 

epochs, which serves to enhance early odor representation. 467 

Rodents alter their sniffing pattern in all kinds of contexts (Wachowiak, 2011), both in absence 468 

of odor (Bramble and Carrier, 1983; Ikemoto and Panksepp, 1994; Wesson et al., 2008), as 469 

well as during odor sampling in behavioral tasks (Kepecs et al., 2007; Roland et al., 2016; 470 

Wesson et al., 2009; Youngentob et al., 1987). We show that a portion of the variance in odor 471 

sampling strategy can be explained by motivational state (Figure 3J-K). Thus, active sampling 472 

strategies are highly context dependent. Sniff changes will have an overt effect on highly sniff 473 

locked cells in absence of olfactory behavior dependent on their feed-forward input (Figure 6C 474 

and F), and an even more profound effect on a wider range of cells if the animal is engaged 475 

in odor-directed active sampling (Figure 6G-H).  As such, the precise effect of sniff changes 476 

on mitral/tufted cell activity is itself dependent on behavioral context. Changes in sniffing 477 

strategy could therefore provide a common mechanistic basis for a number of different 478 

contextual modulations described in OB activity (Beshel et al., 2007; Chu et al., 2016; Di Prisco 479 

and Freeman, 1985; Freeman and Schneider, 1982; Fuentes et al., 2008; Kay and Laurent, 480 

1999; Pager et al., 1972; Rinberg et al., 2006; Doucette and Restrepo 2008). However, we 481 

note that some variance in response cannot be explained by active sampling, such as the 482 

increases in inhibition during learning we note here (Figure 4E and F). The enhancement of 483 

odor representation seen during active sampling could explain the improvement in 484 

discrimination performance previously reported for mice displaying active sniffing strategies 485 

(Kepecs et al., 2007), as well as the faster reaction times noted here (Figure 3L). 486 

Odor responses during active stimulus sampling are enhanced compared to changes seen 487 

during sniff changes in absence of olfactory behavior (Figure 6). This suggests the 488 
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involvement of top-down centers that serve to coordinate sensory processing at the periphery 489 

with the active sampling state of the animal (Wachowiak et al., 2011). Congruently, several 490 

neuromodulatory centers which project to the OB interact with respiratory control centers in 491 

the brainstem, including serotonergic fibers and the noradrenergic locus coeruleus (Dugué 492 

and Mainen, 2009; Yackle et al., 2017). We find a cell-type specificity in the effect of active 493 

sampling on response changes congruent with recent imaging across learning (Yamada et al., 494 

2017), and neuromodulatory centers have recently been shown to have divergent effects on 495 

MCs and TCs – with serotonin having more heterogeneous effects on MCs and TCs (Kapoor 496 

et al., 2016). As such, neuromodulators are a prime candidate to coordinate OB state with 497 

active sampling behavior. In the whisker system, cholinergic afferents in the barrel cortex are 498 

known to be active during spontaneous whisking and mediate changes in physiology 499 

(Eggermann et al., 2014), while in vivo activation of these afferents boosts sensory input to 500 

the OB (Bendahmane et al., 2016). Future investigation will be required to address which 501 

centers are activated during active sampling, alongside their targets within the olfactory bulb 502 

circuit. 503 

Complex orchestration of active sampling is similarly present in other sensory systems; 504 

whisking shows modulations during exploratory behavior (Mitchinson et al., 2007), and eye 505 

movement varies between tasks and individuals (Hayhoe and Ballard, 2014; Rayner et al., 506 

2007) with both behaviours affecting sensory cortical activity (Crochet and Petersen, 2006; 507 

McFarland et al., 2015). Whether and how directed adjustments to such active sampling during 508 

behavior might also improve early sensory representations in these other modalities remains 509 

to be seen.  510 

In conclusion, early sensory activity in the olfactory bulb is modulated by dynamic adjustments 511 

in the closed-loop pathway that coordinates active sniffing (Ahissar and Assa, 2016), yielding 512 

enhanced sensory representation during olfactory behavior. 513 
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 654 

Methods 655 

All animal experiments were approved by the local ethics panel of the Francis Crick Institute 656 

(previously National Institute of Medical Research) and UK Home Office under the Animals 657 

(Scientific Procedures) Act 1986. All mice used were C57BL/6 Jax males aged between 5 and 658 
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8 weeks obtained by in house breeding. All chemicals were obtained from Sigma-Aldrich 659 

(Missouri, USA). 660 

Head-fixation 661 

For surgical procedures, strict sterile technique was adhered to. Mice were anaesthetized with 662 

isoflurane in 95% oxygen (5% for induction, 1.5-3% for maintenance), and received general 663 

analgesia (Carprofen, 5mg/kg s.c.) as well as local analgesia around the dorsal surface of the 664 

head (Levobupivicaine or Mepivicaine, 0.5% s.c.). A custom-made stainless steel headplate 665 

was affixed to the intraparietal and parietal skull plates with a combination of cyanoacrylate 666 

and dental cement, while a recording chamber was constructed upon the bone overlying the 667 

right olfactory bulb using a plastic ring and dental cement. The chamber was filled with silicone 668 

(Quik-Cast - World Precision Instruments, Florida, USA) and sealed during the recovery and 669 

training periods prior to recordings. After 48 hours recovery, mice going on to passive 670 

experiments were head-fixed under very light isoflurane anesthezia (identical to the trained 671 

mice, see below) and allowed to awaken on a custom-made treadmill. Mice were allowed to 672 

accustom themselves to the treadmill in this initial 20 minute session, by the end of which mice 673 

showed no stress behavior and learned to walk and sit calmly on the treadmill. Mice going on 674 

to behavioral training underwent 2 days of additional water scheduling prior to head-fixation, 675 

and in the initial head-fixation session were additionally allowed access to abundant free 676 

rewards (diluted sweetened condensed milk) upon licking at the reward spout.  677 

Go/No-Go behavior 678 

The day following head-fixation habituation, mice undergoing go/no-go training progressed to 679 

two more days of pre-training for acquisition of the go/no-go task. On the first day mice were 680 

presented only the CS+ odor and were trained to acquire the ‘go’ licking pattern following odor 681 

offset via a delay classical conditioning procedure. Note that no measure was in place to 682 

prevent or punish licking behavior during the odor stimulus, and some mice would additionally 683 

lick during the odor stimulus prior to the allotted response time after odor offset (termed 684 

‘anticipatory licking’). Following successful learning of this lick pattern, the next day mice were 685 
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presented both the CS+ and CS- on a pseudorandom basis. Mice had to learn to respond to 686 

these odors differentially, learning to inhibit responses (‘no-go’ behavior) for the CS- to avoid 687 

a 5 s addition to the ITI. Only when mice had successfully demonstrated learning of this task 688 

(two consecutive 10-trial blocks of at least 80% correct responses) they were moved on to 689 

whole-cell recording procedures the next day. After successful acquisition of a recording, mice 690 

were presented a novel pair of odor stimuli assigned each to CS+ or CS-, and had to learn the 691 

go/no-go behavior for these new stimuli. Criterion within a recording was considered one block 692 

of at least 80% performance. Learning of the task with the second pair of stimuli was always 693 

far more rapid than for the original acquisition (Figure S2B), well within whole-cell recording 694 

timescale in awake mice. For mice undergoing the task engagement/disengagement 695 

paradigm, acquisition of the task occurred prior to recording such that criterion performance 696 

was already achieved from the start of the recording. After 20-30 trials, the water port was 697 

manually moved away to disengage the task. Mice would continue to attempt to lick (as 698 

detected by infrared beam) for a variable number of trials before ‘giving up’ (i.e. 5 consecutive 699 

‘miss’ trials), after which the port was returned. Often a free reward was used as a salient 700 

stimulus to the mouse that the task was re-engaged. 701 

Odor delivery 702 

Odor stimuli were delivered using a custom-made airflow dilution olfactometer with electronic 703 

dilution control. All odor stimuli were calibrated using a mini photoionization detector (miniPID, 704 

Aurora Scientific, Ontario, Canada) to form square-pulses of 1% concentration (relative to 705 

maximum recorded vapor-pressure in air, Figure S1).  Odor stimuli used for initial go/no-go 706 

training purposes consisted of peppermint oil and almond oil - components that were not 707 

present in the odor mixtures later presented in recordings. For stimuli during whole-cell 708 

recordings, 2 were randomly selected from 4 potential odor mixtures (Figure S1), and for 709 

behaving mice randomly assigned to CS+ or CS-. Odor mixtures were comprised of 4 to 6 710 

monomolecular odorants selected for their reported ability to activate dorsal glomeruli 711 

(Takahashi et al., 2004), grouped according to similarity of vapor pressure, and added to the 712 
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mixture in an undiluted quantity inversely proportional to their relative vapor pressures (Figure 713 

S1).  Odors were presented with a minimum inter-trial interval of 10 s. To minimize 714 

contamination, a high flow clean air stream was passed through the olfactometer manifolds 715 

during this time. Constant air-flow going to the animal was achieved using a final valve, 716 

minimizing any tactile component accompanying the odor stimulus. 717 

Whole-cell recordings 718 

Animals were again anaesthetized under isoflurane as before, and recording chambers were 719 

re-opened. A 1-2 mm craniotomy and durectomy was made over the right olfactory bulb. The 720 

craniotomy was then covered with a 0.5-1 mm layer of 4% low melting-point agar, which 721 

greatly contributed to the stability of recordings. This layer was removed and re-applied after 722 

every descent of a recording micropipette. The recording chamber was then filled with cortex 723 

buffer (125 mM NaCl, 5 mM KCl, 10 mM HEPES, 2 mM MgSO4, 2 mM CaCl2, 10 mM glucose), 724 

and the mice were transitioned to head-fixation and allowed 30 minutes to recover from 725 

anesthezia. After this time, behaving animals would demonstrate retention of go/no-go 726 

behavior acquired the day previously prior to attempt for a recording. Micropipettes were 727 

prepared with a resistance of 5-8 MΩ from borosilicate glass (Hilgenberg, Malsfeld, Germany) 728 

capillaries, and filled with intracellular solution (130 mM KMeSO4, 10 mM HEPES, 7 mM KCl, 729 

2 mM ATP-Na, 2 mM ATP-Mg, 0.5 mM GTP, 0.05 mM EGTA, and in some cases 10 mM 730 

biocytin). Signals were amplified using an Axoclamp 2B amplifier (Molecular devices – West 731 

Berkshire, UK) and digitized by a Micro 1401 (Cambridge Electronic Design – Cambridge, UK) 732 

at 25 kHz. Drift in membrane potential, corrected for by spike thresholds, between the start 733 

and end of recordings was 0.9±1 mV, with an average duration of 14±4 minutes, and access 734 

resistance of 36±19 MΩ. 735 

Sniff measurement 736 

Sniffing behavior was recorded either with a pressure sensor or flow sensor (Sensortechnics 737 

– Rugby, UK), externally located in close proximity to the left naris (contralateral to recording 738 
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side). The precise orientation relative to the nostril was manually optimized prior to each 739 

recording in order to acquire the full sniff waveform in spite of any movement of the naris.  740 

Double tracheotomy   741 

Two mice were anaesthetized with ‘sleep-mix’ (0.05 mg/kg Fentanyl, 5 mg/kg Midazolam, 0.5 742 

mg/kg Medetomidine), and both local and general analgesia applied as above for head-743 

fixation. After the head-plate surgery, a double tracheotomy was performed by exposing the 744 

trachea and inserting two catheters, one directed to the lungs through which the mouse could 745 

freely breathe, and the other directed to the nasal passages through which flow was controlled. 746 

To mimic sniffing, a peristaltic pump (Ismatec, Wertheim, Germany) was used to generate flow 747 

inward through the nares, with a flow controller to buffer out fluctuations and the periodic 748 

opening of a 3-way valve used to simulate regular inhalations, either at 3.3 Hz (100 ms opening 749 

times), or 6.6 Hz (50 ms opening times).  750 

Neuronal numbers 751 

Altogether we report here recordings from 66 mitral and tufted cells. We report data from 42 752 

cell-odor pairs from behaving animals over the timescale of learning (21 cells from 20 animals), 753 

46 cell-odor pairs from passively exposed animals (23 cells from 20 animals), 8 cell-odor pairs 754 

from animals undergoing the task engagement/disengagement paradigm (4 cells from 4 755 

animals), 10 cell-odor pairs from passive mice undergoing the unexpected puff experiment (9 756 

cells from 9 animals), and 9 cells from two anaesthetized mice with a double tracheotomy. 757 

None of these cohorts are overlapping. Of the cells from mice across learning, 2 were 758 

excluded from any sniff analysis due to poor sniff signals (resulting in 38 cell-odor pairs, 20 759 

accompanied by small (<20 ms) sniff changes, 18 by large sniff changes), and 2 were 760 

excluded similarly from the passively exposed dataset (42 cell-odor pairs).  761 
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Data analysis 762 

All data was pre-processed in Spike2 version 7.1 (Cambridge Electronic Design – Cambridge, 763 

UK) and analyzed in Matlab 2015b (Mathworks - Massachusetts, USA) and R using custom 764 

scripts and functions.  765 

Statistics 766 

In all cases, 5-95% confidence intervals were used to determine significance unless otherwise 767 

stated. In all figures, a single asterisk denotes p<0.05, double asterisk denoted p<0.01 and a 768 

triple asterisk denotes p<0.001. Where these are preceded by ‘SD’, the p-value refers to the 769 

variances rather than the averages of the datasets. Means and error bars showing a single 770 

standard deviation either side are used in all cases for normally distributed data of equal 771 

variance. Two-sided Student’s t-tests were used for comparison of means and Bartlett tests 772 

used to compare variances, unless otherwise stated. Boxplots are used to represent any other 773 

data (data comparisons of unequal variance, or non-normally distributed data), where median 774 

is plotted as a line within a box formed from 25th (q1) and 75th (q3) percentile. Points are drawn 775 

as outliers if they are larger than q3 + 1.5 x (q3 - q1) or smaller than q1 – 1.5 x (q3 - q1). For 776 

such data, Ranksum tests were used to compare the medians, and Browne-Forsythe tests 777 

used to compare variance, unless otherwise stated. To determine points of significant 778 

difference between cumulative histograms, a bootstrapping method was used. Firstly, data 779 

underlying the two histograms would be shuffled between datasets, and cumulative 780 

histograms would be calculated from these shuffled sets. The difference at each point between 781 

the two histograms would then be calculated. This was repeated 10,000 times, and the 782 

differences between the real cumulative histograms would then be compared to the shuffled 783 

distribution at each point. An arrow was drawn on the points at which the actual difference 784 

exceeded the 99th percentile of the shuffled distribution. 785 

Sniffing analysis 786 

To extract inhalation durations, firstly inhalation peaks were detected as any peak above a 787 

certain threshold set according to the amplitude of the signal.  Inhalation onset was set at the 788 
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nearest point pre-peak that the flow trace crossed zero, while inhalation offset was set at the 789 

nearest point post-peak that the flow trace crossed zero. The distance between these points 790 

was taken as the inhalation duration. The mean inhalation duration for the first 500ms of each 791 

odor presentation was calculated from the duration of all complete inhalations within that time 792 

period. 793 

Principal cell identification 794 

Mitral and tufted cells were distinguished from interneurons as previously (Kollo et al., 2014). 795 

The current data set was pooled with the entire data set of neurons recorded in the OB of 796 

awake mice acquired previously (Kollo et al., 2014), and independent component analysis was 797 

performed on the AHP waveform (2 to 25 ms from spike onset) to reveal three independent 798 

components, upon which hierarchical cluster analysis was used to band the cells into two 799 

groups, ‘principal’ and ‘other’. Based on cell morphologies from the previous data set, and an 800 

additional 12 acquired in the current data set, 100% of the 22 morphologies obtained from the 801 

‘principal’ group were confirmed as mitral/tufted cells, while 86 % of the 11 morphologies from 802 

the ‘other’ group were confirmed interneurons. Morphologies from the current data set were 803 

acquired as previously (Fukunaga et al., 2012; Kollo et al., 2014): mice were perfused 804 

following recordings with cold phosphate-buffered saline, followed by 4% (wt/vol) 805 

paraformaldehyde solution in phosphate-buffered saline. Fixed olfactory bulbs were 806 

embedded in porcine gelatin (10% wt/vol), before being fixed overnight in 4% 807 

paraformaldehyde. The OBs were then cut into 150 µm slices with a vibratome (Thermo 808 

Scientific – Massachusetts, USA) and stained with avidin-biotinylated peroxidase (ABC kit - 809 

Vector Labs, California, USA) and the DAB reaction. Biocytin-stained cells were traced using 810 

a Neurolucida system (MBF Bioscience, Vermont, USA). Principal cells were identified via 811 

soma size, cell body location with respect to the mitral cell layer, an apical dendrite reaching 812 

the glomerular layer and lateral dendrites branching in the external plexiform layer. MCs were 813 

distinguished from TCs based on proximity to the mitral cell layer. 814 
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Odor responses and changes 815 

For all analyses, the first presentation of each odor was excluded due to the elicitation of high 816 

frequency sniffing by the novel odorant, which rapidly decayed by the second presentation 817 

(Wesson et al., 2008). General response calculations: All traces were aligned to first 818 

inhalation onset following final valve opening. For Vm response calculations, spike waveforms, 819 

including the AHP, were subtracted from the Vm trace (-5 to 20 ms after spike peak). 820 

Responses for each trial were calculated as the mean Vm within the first 500 ms post odor 821 

onset, normalized to the baseline membrane potential in the 2 s prior to odor onset. FR 822 

responses were calculated as the mean number of spikes per 0.25 s time bin in the first 500 823 

ms post odor onset, normalized to that calculated for 2 s prior to odor onset. Significant 824 

responses were determined for both Vm and FR using a paired t-test to compare baseline and 825 

odor-evoked activity for all trials. For response changes across learning: Significant 826 

changes between early and late trials for each odor response were identified by comparing 827 

the five ‘early trials’ in block 1 (stimulus presentation #2 to 6), with the 5 last presentations of 828 

the stimulus (‘late trials’). Significant change was determined using an unpaired t-test, p<0.05. 829 

To determine onset of response change: For each response, the mean Vm response 830 

waveform calculated for early trials was subtracted from that calculated from late trials, to 831 

generate a response change waveform at each time-point from odor onset. This was then 832 

normalised by the standard deviation of this resulting waveform during the baseline period 2 833 

s prior to odor onset. Response change onset was detected where the response change 834 

magnitude first exceeded 2 standard deviations and remained there for at least 50 ms. For 835 

task engagement/disengagement changes: The first 500 ms of the stimulus was analyzed 836 

for Vm responses, and the full 2 s for FR responses. 5 trials of initial engagement were defined 837 

as the last 5 trials of each stimulus prior to physical port removal, disengagement trials were 838 

defined as 5 trials with at least 3 consecutive misses within the block, and re-engagement 839 

trials were based on the first 5 trials of the stimulus after the mouse initiates licking after port 840 

return. 841 
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Detectability and discriminability analysis 842 

For each response, five mean Vm response waveforms were generated from different sets of 843 

3 early trials, 3 mid-point trials (mid-point trial ± 2 trials either side) and 3 late trials (aligned to 844 

first inhalation post odor onset). 3 early, 3 mid-point, and 3 late corresponding mean baseline 845 

waveforms were made by averaging inhalation-triggered waveforms from the ITI. Population 846 

response vectors were then constructed from these mean response waveforms for all cell-847 

odor pairs recorded. At each time point relative to inhalation onset, the Euclidean distance 848 

was calculated between response and baseline vectors, and this was repeated five times for 849 

each baseline vector to gain a mean detectability over time, and a standard deviation. 850 

Minimum detection times were calculated as the first time post-inhalation where the mean 851 

detectability exceeded 2.5 x the SD of the baseline mean detectability, and remained so for at 852 

least 50 ms. The average baseline Euclidean distance 200 ms prior to odor onset was 853 

subtracted from the trace, normalizing the baseline to zero. Peaks of detectability were defined 854 

as the maximum detectability within the first 170 ms after odor onset. Discriminability was 855 

analyzed similarly, however the response vectors used to calculate the Euclidean distances 856 

were calculated between CS+ and CS- mean Vm response waveforms for the five sets of early, 857 

mid-point and late trials, i.e. the Euclidean distance was generated between population 858 

responses for CS+ and CS- separately. 859 

Sniff-Vm modulation amplitudes and preferences 860 

The sniff-Vm modulation properties of each cell were calculated as previously (Fukunaga et 861 

al., 2012).  Baseline sniff-Vm modulation: due to the high variability of sniff behavior in awake 862 

mice, analysis was restricted to sniff cycles between 0.25 and 0.3s in duration, where also the 863 

preceding sniff cycle was within this range. Mean Vm from the spike-subtracted Vm trace was 864 

taken as a function of sniff cycle phase for at least 150 sniffs, and this was plotted as Cartesian 865 

coordinates. The angle of the mean vector calculated by averaging these Cartesian 866 

coordinates was taken as the phase preference of the cell, while the difference between the 867 

mean Vm at the preferred phase, and the minimum value on the mean Vm waveform was taken 868 
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as the amplitude of modulation. Odor sniff-Vm modulation: This was calculated as for 869 

baseline, but based on the first four sniffs post odor onset for the 10 trials of lowest sniff rates. 870 

As odor responses can have both tonic and sniff-modulated components, the phase-Vm trace 871 

for each sniff had to be normalized according to the linear vector connecting the Vm at the 872 

beginning and end of the sniff. To determine significance, a bootstrapping method was used: 873 

100 ms segments of Vm data were randomly selected for each cell and connected to form a 874 

shuffled dataset. The phase analysis was then performed on these shuffled datasets, and a 875 

modulation amplitude calculated and this was repeated 100 times. Significant modulation was 876 

assigned when the actual modulation amplitude exceeded that of the 95th percentile of shuffled 877 

data amplitudes. 878 

Putative mitral cell versus tufted cell identification 879 

For each ITI, the mean Vm was calculated during sniffs of duration of <200 ms where also the 880 

preceding sniff was within this duration range (‘fast sniffs’). This mean Vm was then normalized 881 

by subtracting the mean Vm during sniffs of duration 0.25 and 0.3s within the same ITI to 882 

calculate the ‘fast-sniff evoked Vm’. Only cells with at least 20 such ‘fast sniffs’ within the 883 

recording were considered for the analysis. To determine significance, a bootstrapping 884 

method was used: the mean Vm for all sniffs within a trial was randomly shuffled, and the 885 

shuffled data analyzed as before 100 times. The actual fast-sniff evoked Vm was then 886 

compared to the 5th and 95th percentiles of the shuffled distribution in order to assign 887 

significance.  888 

We noted that, consistent with anaesthetized mice (Fukunaga et al., 2012), there was a 889 

bimodal distribution of phase preferences for the sniff cycle in baseline membrane potential, 890 

one within exhalation phase, and another within inhalation phase. We hypothesized that these 891 

may correspond to MC and TC phenotypes respectively, as reported previously for 892 

anaesthetized animals (Fukunaga et al., 2012). The putative assignment to MC or TC was 893 

confirmed morphologically for 8 cells (Figure 7F), with MC and TC distinction based largely on 894 
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soma location relative to the mitral cell layer, as dendritic reconstruction was in many cases 895 

incomplete (Fukunaga et al., 2012).  896 

Unexpected tactile stimulus experiments in passive mice  897 

In 10 passive mice, odors were presented as before, but this time with a random chance of an 898 

unexpected tactile stimulus to accompany the odor (25% chance) to evoke fast sniffing. Since 899 

the sniffing response to the tactile stimulus eventually habituated, for each response, the five 900 

trials with lowest MID were selected and compared to the five trials with highest MID. The 901 

difference in response for these sets of trials was then calculated for the first 500 ms of the 902 

stimulus as for learning mice.  903 

Reaction times 904 

Reaction time calculations were based on 10 or more trials of 80% performance. From lick 905 

behavior: For each CS+ and CS-, lick probability was calculated in a moving time window of 906 

100 ms, aligned to the first inhalation after final valve opening. The difference between the 907 

probability of licking for CS+ and CS- for each time window was calculated, and the leading 908 

edge of the first window at which this calculated difference significantly deviated from the 909 

values calculated from the 2 s window prior to odor onset was considered the reaction time 910 

(Figure S2C). From sniff behavior: Inhalation and exhalation duration values were calculated 911 

for CS+ and CS- as a function of sniff number from odor onset. These values were compared 912 

between those calculated for CS+ and CS- using a t-test, and the decision time was calculated 913 

based on the first inhalation or exhalation within the series to show a significant difference 914 

(Figure S2D). For 12/21 mice there was a significant difference between CS+ and CS- sniffing.  915 

Response onset analysis 916 

For each response, the mean Vm response waveform calculated for early trials was subtracted 917 

from that calculated from late trials, to generate a response change waveform at each time-918 

point from odor onset. This was then normalized by the standard deviation of this resulting 919 

waveform during the baseline period 2 s prior to odor onset. Response change onset was 920 
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detected where the response change magnitude first exceeded 2 standard deviations and 921 

remained there for at least 50 ms. To determine the effect of sniff changes on response onset, 922 

only the first inhalation after odor onset was considered, since only response onsets ≤250 ms 923 

– within the first sniff cycle – were analyzed. For each response, trials were categorized into 924 

‘slow’ (>90 ms inhalation duration) or ‘fast’ (<90 ms) sniff trials. The mean normalized Vm 925 

response waveform was averaged across these trials. Response onsets were calculated as 926 

before using these waveforms. Only cases where there were 5 or more trials in each category 927 

were analyzed. Cases where the mean 500 ms Vm response for either slow or fast sniffs was 928 

less than 0.5 mV in amplitude were also discarded. Response onsets from fast vs. slow trials 929 

were then compared across all responses for either behaving or passive mitral/tufted cells 930 

only to determine the effect of sniffing within each group. Response onsets were then 931 

compared between passive and behaving mitral/tufted cells for either slow or fast sniffs only, 932 

to determine any effect of behavioral state independent of sniff duration. To determine 933 

significant differences, a paired T-test was implemented for slow vs fast sniff groups within 934 

passive or behaving cohorts, or Ranksum tests were used when comparing between passive 935 

and behaving cohorts. 936 
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