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ABSTRACT 

Cellular identity relies on cell type-specific gene expression profiles controlled by           

cis-regulatory elements (CREs), such as promoters, enhancers and anchors of chromatin           

interactions. CREs are unevenly distributed across the genome, giving rise to distinct subsets             

such as individual CREs and Clusters Of cis-Regulatory Elements (COREs), also known as             

super-enhancers. Identifying COREs is a challenge due to technical and biological features that             

entail variability in the distribution of distances between CREs within a given dataset. To              

address this issue, we developed a new unsupervised machine learning approach termed            

Clustering of genomic REgions Analysis Method (CREAM). We demonstrate that COREs           

identified by CREAM are predictive of cell identity, consists of CREs strongly bound by master               

transcription factors according to ChIP-seq signal intensity and are proximal to highly expressed             

genes. We further show that COREs identified by CREAM are preferentially found near genes              

essential for cell growth. Overall, CREAM offers an improved method compared to the             

state-of-the-art to identify COREs of biological function. CREAM is available as an open source              

R package (https://CRAN.R-project.org/package=CREAM) to identify COREs from       

cis-regulatory annotation  datasets from any biological  samples. 
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BACKGROUND 

Over 98% of the human genome consists of sequences lying outside of gene coding              

regions that harbor functional features, including cis-regulatory elements (CREs), important in           

defining cellular identity [1]. CREs such as enhancers, promoters and anchors of chromatin             

interactions, are predicted to cover 20-40% of the noncoding genomic landscape [2]. CREs             

define cell type identity by establishing lineage-specific gene expression profiles [3–5]. Current            

methods to annotate CREs in any given biological sample include ChIP-seq for histone             

modifications (e.g., H3K27ac, H3K4me3, H3K4me1) [3,4,6], for chromatin binding protein (e.g.,           

MED1, P300) [6,7] or through  chromatin  accessibility assays (e.g., DNase-seq, ATAC-seq) [8,9]. 

Clusters Of cis-Regulatory Elements (COREs) were recently introduced as a subset of            

CREs based on different parameters including close proximity to each other [7,10–12]. COREs             

are significantly associated to cell identity and are bound with higher intensity by transcription              

factors than individual CREs [7,11,13]. Furthermore, inherited risk-associated loci preferentially          

map to COREs from disease related cell types [10,14–16]. Finally, COREs found in cancer cells               

lie proximal to oncogenic driver genes [17–19]. Together, these features showcase the utility of              

classifying  CREs into  individual  CREs versus COREs. 

Recent work assessed the role of COREs as a collection of individual CREs proximal to               

each other as opposed to a community of synergizing CREs [20–22]. Partial redundancy             

between effect of individual CREs versus a super-enhancer/CORE on regulating expression of            

genes in embryonic stem cells was observed [20] as well as low synergy between the individual                

CREs within COREs [23]. Whether COREs provide an added value over individual CREs to              

gene expression is still debated. Conclusions may be confounded by the simplistic approach             

commonly used to identify COREs. For instance, the distance between CREs is a critical feature               

that distinguishes COREs from individual CREs. Available methods to identify COREs dismiss            

3 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/222562doi: bioRxiv preprint 

https://paperpile.com/c/bka9Ww/jtvH
https://paperpile.com/c/bka9Ww/6ELQ
https://paperpile.com/c/bka9Ww/CXi6+qcJi+IJFN
https://paperpile.com/c/bka9Ww/HDso+qcJi+CXi6
https://paperpile.com/c/bka9Ww/HDso+IpUtK
https://paperpile.com/c/bka9Ww/ZXLn+Ablm
https://paperpile.com/c/bka9Ww/da6o+IpUtK+oLEp+FPAs
https://paperpile.com/c/bka9Ww/oLEp+IpUtK+tuW3
https://paperpile.com/c/bka9Ww/SPuO+s6JX+Vqrk+da6o
https://paperpile.com/c/bka9Ww/v1Qz+RgXt+Wzjy
https://paperpile.com/c/bka9Ww/a4XO+8uy3+C1pl
https://paperpile.com/c/bka9Ww/a4XO
https://paperpile.com/c/bka9Ww/3C4V
https://doi.org/10.1101/222562
http://creativecommons.org/licenses/by-nc/4.0/


the variability in the distribution of distances between CREs that stems from technical and              

biological features unique to each CRE dataset. Instead, arbitrary thresholds are considered            

including 1) a fixed stitching distance limit between CREs (such as 12.5 [7] or 20 [12] kilobases)                 

to report them within a CORE, 2) a fixed cutoff in the ChIP-seq signal intensity from the assay                  

used to identify CREs to separate COREs from individual CREs [7], or 3) reporting an individual                

CRE with high signal intensity as a CORE [7,24]. To address these limitations, we developed a                

new methodology termed CREAM (Clustering of genomic REgions Analysis Method) (Fig. 1).            

CREAM is an unsupervised machine learning approach that takes into account the distribution             

of distances between  CREs in  a  given  biological  sample.  

Benchmarking CREAM against Rank Ordering of Super-Enhancers (ROSE) [11], the           

current standard method to call COREs, we demonstrate that CREAM identifies COREs            

predictive of cell identity, proximal to highly expressed genes and associated with high intensity              

transcription factor binding. We further demonstrate the utility of COREs identified by CREAM             

as chromatin  regions associated  with  genes essential  for the  growth  of cancer cells.  

4 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/222562doi: bioRxiv preprint 

https://paperpile.com/c/bka9Ww/IpUtK
https://paperpile.com/c/bka9Ww/FPAs
https://paperpile.com/c/bka9Ww/IpUtK
https://paperpile.com/c/bka9Ww/IpUtK+PKOy
https://paperpile.com/c/bka9Ww/oLEp
https://doi.org/10.1101/222562
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure 1. Schematic representation of the four main steps of Clustering of genomic             

REgions Analysis Method (CREAM): Step 1) CREAM identifies all clusters of 2, 3, 4 and more                

neighboring CREs. The total number of CREs in a cluster defines its “Order”; Step 2)               

Identification of the maximum window size (MWS) between two neighboring CREs in clusters for              

each Order. The MWS corresponds to the greatest distance between two neighboring CREs in              

a given cluster; Step 3) identification of maximum and minimum Order limits of COREs from a                

given dataset; Step 4) CORE reporting according to the criteria set in step 3 from the highest to                  

the lowest Order. 

 

RESULTS 

We compared the number and width of the COREs identified by CREAM and ROSE              

5 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/222562doi: bioRxiv preprint 

https://doi.org/10.1101/222562
http://creativecommons.org/licenses/by-nc/4.0/


using GM12878 and K562 cell lines. We focused on these cell lines because of their extensive                

characterization by the ENCODE project for DNA-protein interactions, namely ChIP-seq profiles           

for over 80 transcription factors. This provides a unique opportunity to assess the biological              

relevance of COREs identified in each cell line. CREAM identified a total of 1,694 and 4,968                

COREs in GM12878 and K562 cell lines, respectively, based on their DNase-seq defined CREs.              

These COREs account for 14.6% and 17.2% of all CREs reported by the DNase-seq profiles               

from these cells. In contrast, ROSE identifies 2,490 and 2,527 COREs in GM12878 and K562,               

respectively. These account for 31% and 30% of the CREs detected in GM12878 and K562 cell                

lines. To determine if CREAM identifies new COREs or simply subdivides those reported by              

ROSE, we assessed the exclusivity of the COREs identified by CREAM and ROSE in GM12878               

or K562 cell lines. The CREAM-identified COREs have 85% and 49% shared genomic regions              

with ROSE-identified COREs in GM12878 and K562 cell lines, respectively (Fig. 2A). However,             

shared genomic regions between ROSE and CREAM-identified COREs account only for 14%            

and 8% of the total identified COREs by ROSE in GM12878 and K562 cell lines, respectively.                

Hence, while many COREs are identified by both methods, CREAM and ROSE differ sufficiently              

that a number of COREs are uniquely identified by each method. Moreover, ROSE-identified             

COREs occupy significantly larger genomic regions (average 138 kb width) than those identified             

by CREAM (average 5kb width) (Fig. 2B). We therefore compared COREs identified by CREAM              

and ROSE according to a series of biological features previously shown to discriminate COREs              

from individual  CREs.  

 

DNase  I hypersensitive  signal is  elevated within COREs  

COREs are reported to associate with higher levels of binding for a wide range of               

chromatin binding proteins [11]. Our results show that COREs identified by CREAM have 2 to 5                
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fold higher average DNaseI hypersensitivity signal per base pair (bp) compared to individual             

CREs (Fig. 2C). This is in contrast to COREs identified by ROSE, which show an equivalent                

DNaseI hypersensitivity to individual CREs in K562 cells and less than a 1.5 fold increased in                

GM12878 cells (Fig. 2C). The distinct behavior between CREAM and ROSE-identified COREs            

could be due to their size difference that translates in more base pairs free of CRE (CRE-free                 

gaps) in ROSE-identified COREs (102 mbp and 208 mbp in GM12878 and K562 cells,              

respectively) compared to CREAM-identified COREs (14.7 mbp and 18.7 mbp in GM12878 and             

K562 cells, respectively) (Fig. 2D). This stems from a permissive <12.5kb distance between             

CREs criteria in ROSE. In contrast, a learned maximum distance limit between CREs criteria is               

used by CREAM resulting in smaller average of maximum distances (<1.7 kb in GM12878 and               

<1  kb  in  K562  cells for their respective  DNase-seq  delineated  CREs). 
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Figure 2. Comparison of genomic characteristics of the COREs identified by CREAM            

versus ROSE in GM12878 and K562 cell lines. (A) Percentage of the identified COREs by               

CREAM and ROSE which are unique or shared regarding the genomic coverage. (B)             

Distribution of CORE widths. (C) Enrichment of DNase I signal profile in individual CREs and               

COREs. Each CORE (or individual CREs) plus its flanking regions are binned into 300 binned               

regions in total (100 bins each). (D) Distribution of CRE-free gaps within COREs. (E)              

Transcription of associated genes to individual CREs and COREs. (F) Enrichment of number of              
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essential genes among the associated genes to individual CREs and COREs in K562 cell line.               

(G) Transcription level of essential genes which are associated with individual CREs and             

COREs. 

 

CREAM-identified COREs  are  proximal to highly  expressed genes. 

In agreement with previous reports [7,11], COREs identified by ROSE are proximal to             

genes expressed at higher levels than those near individual CREs (Fig. 2E). This also applies to                

COREs identified by CREAM in both GM12878 (>4 fold difference) and K562 cell lines (>2.5               

fold difference)(Fig. 2E). Noteworthy, genes proximal to CREAM-identified COREs have a 1.5            

fold higher expression levels compared to genes proximal to ROSE-called COREs (p < 0.001)              

(Fig. 2E). We further assessed expression of genes in proximity of COREs specific to CREAM               

and ROSE. Expression of genes in proximity of CREAM-specific COREs were significantly            

higher than genes in proximity of ROSE-specific COREs in both GM12878 and K562 cell lines               

(p<0.001) (Supplementary Fig. 1). Moreover, comparing the percentage of COREs which           

overlap with promoters, exons, introns, and intergenic regions reveals a very similar distributions             

for COREs identified by CREAM or ROSE in GM12878 and K562 cell lines. (Supplementary Fig.               

2). Taken together, our results show that COREs identified by CREAM share similarities with              

those identified by ROSE in term of genomic distribution but are associated with stronger              

differences in  gene  expression  compared  to  individual  CREs. 
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Figure 3. Transcription factor (TF) binding enrichment in identified individual CREs and            

COREs for GM12878 and K562 cell lines. A) Comparison of enrichment of TF binding              

intensity in the identified COREs by CREAM or ROSE or the individual CREs. Volcano plots               

represent -log10(FDR) versus log2(fold change [FC]) of comparison of signal intensities           
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comparing COREs and individual CREs (each dot is one transcription factor). The barplots also              

shows how many transcription factors have higher signal intensity with FDR<0.001 and            

log2(FC)>1 comparing COREs and CREs. Fold change (FC) is defined as division of average              

signal per base pair in COREs versus CREs or CREAM COREs versus ROSE COREs. B)               

Normalized signal intensity for TCF3 and EBF1 as examples of master TFs in GM12878 [25]               

and for GABP and CREB1 as examples of master TFs for K562 [26–28]. C) Examples of                

genomic regions which are identified by both CREAM and ROSE (with different coverage) and              

enriched for the illustrated TFs  in panel (B). 

 

CREAM identifies  COREs  bound by  master  transcription factors. 

Transcription factors bind to CREs to modulate the expression of cell-type specific gene             

expression patterns [29,30]. COREs were previously found to associate with strong transcription            

factor binding intensity based on ChIP-seq signal [11]. Hence, we assessed transcription factors             

binding intensities within COREs using the extensive characterization of transcription factor           

binding profiles performed by the ENCODE project in GM12878 and K562 cells [31]. We find               

that more than 25% of transcription factors show binding intensity significantly higher over             

CREAM-identified COREs compared to individual CREs in both GM12878 and K562 cell lines             

(FC > 2; FDR < 0.001) (Fig. 3A). In contrast, less than 15% of all transcription factors bind with                   

higher intensity in ROSE-identified COREs compared to individual CREs in both GM12878 and             

K562  cell  lines (FDR < 0.001, FC>2; Fig. 3A).  

Difference in transcription factor binding intensity at CREAM versus ROSE-identified          

COREs is showcased by the master transcription factors TCF3 and EBF1 [25] in GM12878 cells               

and GABP and CREB1 [26–28] in K562 cells. Indeed, over a 2 fold difference in binding                

intensity of TCF3 and EBF1 is observed for CREAM-identified COREs compared to individual             
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CREs in GM12878 cell (Fig. 3B). This is exemplified over the CORE proximal to the ZFAT gene                 

in GM12878 cells (Fig. 3C). Similarly, over a 3 fold difference in GABP and CREB1 binding                

intensity is observed over COREs compared to individual CREs in K562 cells (Fig. 3B) and               

exemplified at the 7q36 locus harboring a series of COREs bound strongly by GABP and CREB                

1  in  K562  cells (Fig. 3C).  

The binding intensity of transcription factors over COREs was calculated as the average             

ChIP-seq signal within each CORE. We assessed if the difference between enrichment of             

transcription factor binding intensity within CREAM- and ROSE-identified COREs is not merely            

due to the difference in their burden of CRE-free gaps. We calculated the transcription factor               

binding intensity excluding the CRE-free gaps within ROSE-identified COREs (Supplementary          

Fig. 3). More than 25% of the transcription factors have significantly higher binding intensity              

within CREAM- identified COREs compared to the signal over the CREs in COREs identified by               

ROSE (FC > 2; FDR < 0.001).  
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Figure 4. Specificity of COREs to the phenotype of the cell lines in ENCODE. (A)               

Distribution of number of COREs identified for the available DNase I samples in ENCODE. (B)               

Positive correlation of number of COREs with number of individual CRE in the samples. (C)               

Relation between median width of the COREs and number of individual CRE. (D) Heatmap of               

similarities of the ENCODE samples based on Jaccard index of overlap of their corresponding              

identified COREs by CREAM. (E) Matthew correlation coefficient (MCC) for classification of            

ENCODE samples as normal or cancerous using CREAM-versus ROSE-identified COREs. (F)           

Matthew correlation coefficient for classification of ENCODE samples based on their tissue of             

origin using CREAM- versus ROSE-identified COREs. 

 

Generalizability  of CORE identification across  cell and tissue  types 

ROSE-identified COREs were reported to discriminate cell types [7]. We therefore           

assessed the predictive value of CREAM-identified COREs to discriminate cellular identity.           

Running CREAM on the DNase-seq defined CREs from 102 cell lines provided by the ENCODE               

project [31] reveals between 1,022 to 7,597 COREs per cell line (Fig. 4A). The number of                

COREs correlates with the total number of CREs identified in each cell line (Fig. 4B). However,                

the average width of COREs across cell lines shows low correlation with the total number of                

CREs (|Spearman correlation| ρ < 0.25; Fig. 4C). Hence, CORE widths are specific to each               

biological  sample  irrespective  of the  total  number of CREs.  

To test whether COREs can discriminate cells with respect to their tissue source and               

their malignant status, we clustered the ENCODE cell lines based on their CREAM- and              

ROSE-identified COREs (Fig. 4D). Predicting each cell line based on its nearest neighbor, we              

could classify tissue source with high accuracy using CREAM-identified COREs (Matthew           

correlation coefficient [MCC] of 0.90 for tissues with ≥ 5 cell lines; Fig. 4E). However,               
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ROSE-identified COREs yielded substantially lower predictive value (MCC of 0.74; Fig. 4E).            

Similarly, CREAM-identified COREs were more discriminative of non-malignant versus         

malignant cell lines than ROSE-identified COREs (MCC of 0.80 versus 0.67 for CREAM and              

ROSE, respectively; Fig. 4F). 

 

CREAM-identified COREs  are  proximal to essential genes. 

COREs are reported to lie in proximity to genes essential for self-renewal and             

pluripotency of stem cells, respectively [32]. A CRISPR/Cas9 gene essentiality screen was            

recently reported in K562 cells by Wang et al. (2015) [33]. Merging these genomic screening               

data with CORE identification from K562 cells reveals a significant enrichment of gene essential              

for growth proximal to CREAM-identified COREs (FDR < 1e-4; Fig. 5A). BCR is the top               

essential gene in proximity of CREAM-identified COREs. Oncogenic BCR-ABL gene fusion           

plays an essential role in pathogenesis of Chronic Myelogenous Leukemia which is the tumor of               

origin  of K562  cell  line  [34].  

In contrast, genes proximal to individual CREs or ROSE-identified COREs are not            

enriched with essential genes (CRE: FDR=0.26; ROSE-identified CORE: FDR=0.92; Fig. 5B).           

Moreover, expression of genes essential for growth in K562 proximal to CREAM-identified            

COREs is significantly higher than expression of the essential genes associated with individual             

CREs or ROSE-identified COREs (p < 0.001; Fig. 5C). Hence, CREAM identifies COREs             

associated with essential genes in K562 cell line. To further assess the specificity of COREs’               

association with essential genes we extended our analysis to essentiality score from other             

model cell lines tested by Wang et al. (2015) [33]. Essentiality score of genes proximal to K562                 

CREAM-identified COREs in KBM-7, Jiyoye, and Raja cell lines were significantly less negative             
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than for the genes proximal to the COREs in K562 cells (FDR<0.001; Fig. 5D). This supports                

the  cell  type-specific nature  of COREs and  their association  with  essential  genes.  

 

 

 

Figure 5. Essentiality of genes in proximity of COREs in K562 cell lines. (A) Volcano plot                

of significance (FDR) and effect size (essentiality score) of genes in proximity of COREs in K562                

cell line. (B) Enrichment of number of essential genes among the associated genes to              

individual CREs and COREs in K562 cell line. (C) Transcription level of essential genes which               
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are associated with individual CREs and COREs. (D) Comparing essentiality score of genes in              

100kb proximity of COREs (of K562) in K562, KBM-7, Jiyoye, and Raji cell line to check                

specificity of essentialities to  K562. 

 

CONCLUSIONS 

State-of-the-art approach for CORE calling (ROSE) dismiss the variability in the           

distribution of distances between CREs, unique to each CRE dataset, hence limited by             

considering a fixed threshold of 12.5 to 20 kilobases in distance between CREs within COREs,               

and a fixed cutoff in the ChIP-seq signal intensity from the assay used to identify CREs to                 

separate COREs from individual CREs [11,12]. To overcome these limitations, we developed            

CREAM as an unsupervised machine learning method providing a systematic approach for            

identifying  COREs.  

Here, we show that CREAM identifies COREs that, (i) have higher transcription factor             

binding intensity with respect to individual CREs, (ii) associated with identity of normal and              

cancer cell lines, and (iii) have significantly higher probability of being essential for growth of the                

cells compared to the rest of epigenetic landscape. Hence, CREAM can open a new avenue of                

research for personalized therapeutic identification in clinical cancer setting. Taken all together,            

we  show that CREAM can  be  used  to  further characterize  cis-regulatory landscapes of cells. 

 

METHODS 

 

CREAM 

CREAM uses genome-wide maps of cis-regulatory elements (CREs) in the tissue or cell             

type of interest, such as those generated from chromatin-based assays including DNase-seq,            
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ATAC-seq or ChIP-seq. CREs can be identified from these profiles by peak calling tools such as                

MACS [35]. The called individual CREs then will be used as input of CREAM. Hence, CREAM                

does not need the signal intensity files (bam, fastq) as input. CREAM considers proximity of the                

CREs within each sample to adjust parameters of inclusion of CREs into a CORE in the                

following  steps (Fig. 1): 

Step 1: Clustering of individual CREs throughout genome. CREAM initially groups           

neighboring individual CREs throughout the genome. Each group (or cluster) can have different             

number of individual CREs. Then it categorizes the clusters based on their included CRE              

numbers. We defined Order (O) for each cluster as its included CRE number. In the next steps,                 

CREAM identifies maximum allowed  distance  between  individual  CREs for COREs of a  given  O.  

Step 2: Maximum window size identification. We defined maximum window size (MWS) as             

the maximum distance between individual CREs included in a CORE. For each Order, CREAM              

builds a distribution of window sizes, as the maximum distance between individual CREs in              

each CORE, in all clusters of that Order within the genome. Afterward, MWS will be identified as                 

follows 

                                  MWS = Q1(log(WS))-1.5*IQ(log(WS)) 

where MWS is the maximum distance between neighboring individual CREs within a CORE.             

Q1(log(WS)) and IQ(log(WS)) are the first quartile and interquartile of distribution of window             

sizes (Fig. 1). 

Step 3: Maximum Order identification. After determining MWS for each Order of COREs,             

CREAM identifies maximum O (Omax) for the given sample. By increasing O of COREs, the               

individual CREs should be allowed to have further distance from each other as a result of gain                 

of information within the clusters. Hence, starting from COREs of O=2, the O increases up to a                 
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plateau at which an increase of O does not result an increase in MWS. This threshold is                 

considered  as maximum O (Omax) for COREs within  the  given  sample.  

Step 4: CORE calling. CREAM starts to identify COREs from Omax down to O=2. For each O,                 

it calls clusters with window size less than MWS as COREs. As a result, many COREs with                 

lower Os are clustered within COREs with higher Os. Therefore, remaining lower O COREs, for               

example O=2 or 3, have individual CREs with distance close to MWS (Fig. 1). These clusters                

could have been identified as COREs because of the initial distribution of MWS derived mainly               

by COREs of the same O which are clustered in COREs of higher Os. Hence, CREAM eliminate                 

these  low O COREs as follows. 

Step 5: Minimum Order identification. COREs that contain individual CREs with distance            

close to MWS can be identified as COREs due to the high skewness in the initial distribution of                  

MWS. To avoid reporting these COREs, CREAM filters out the clusters with (O < Omin) which                

does not follow monotonic increase of maximum distance between individual CREs versus O             

(Fig. 1). 

 

ROSE 

ROSE clusters the neighboring individual CREs in a given sample if they have distance              

less than 12.5kb. It subsequently identifies the signal overlap on the clusters and sorts the               

identified clusters based on their signal intensity. It then stratifies the clusters based on the               

inflation point in the sorted clusters and call the clusters with signal intensity higher than the                

inflation point as super-enhancers (or COREs). This method is comprehensively explained in            

Whyte   et al. (2013) [11]. We  ran  ROSE using  the  default parameters. 

 

Genomic overlap  of COREs 
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Bedtools (version 2.23.0) is used to identify unique and shared genomic coverage            

between  CREAM and  ROSE-identified  COREs. 

 

Comparison of CORES  identified  by CREAM  and ROSE and single enhancers 

First, signals (either DNase I hypersensitivity or ChIP-seq) over the identified COREs (or             

individual CREs) and 1kb flanking regions of them were extracted from the BAM files. Then               

each CORE (or individual CREs) is binned to 100 binned regions with equal size. Each left and                 

right flanking region is also divided to 100 bins with equal size. Hence, in total 300 bins are                  

obtained for each CORE plus its flanking regions. We then scale the signal in these regions to                 

the library size for the mapped reads. Finally, a Savitzky-Golay filter is applied to remove high                

frequency noise  from the  data  while  preserving  the  original  shape  of the  data  [36,37]. 

 

Association with genes 

A gene is considered associated with a CRE or a CORE if found within a ∓100kb window                 

from each  other. 

 

Gene expression 

RNA sequencing profile of GM12878 and K562 cells lines, available in ENCODE            

database [31], are used to identify expression of genes in proximity of individual CREs and               

COREs. 

 

Transcription factor  binding  enrichment 

Bedgraph files of ChIP-Seq profiles of transcription factors are overlapped with the            

identified COREs and individual CREs in GM12878 and K562 using bedtools (version 2.23.0).             
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The resulting signal were summed over all the individual CREs or COREs and then normalized               

to the total genomic coverage of individual CREs or COREs, respectively. These normalized             

transcription factor binding intensities are used for comparing TF binding intensity in individual             

CREs and  COREs (Fig. 3).  

 

Sample  similarity 

Similarity between two samples in ENCODE is identified based on Jaccard index for the              

commonality of their identified COREs throughout the genome. Then this Jaccard index is used              

as the similarity statistics in a 1-nearest-neighbor classification approach. We assess           

performance of the classification using leave-one-out cross validation. In this classification           

scheme, we considered phenotype of the closest sample to an out of pool sample as its                

phenotype. 

 

Association with essential  genes 

Number of genes which are in ∓100kb proximity of COREs and are essential in K562 are                

identified [33]. This number is then compared with number of essential genes in 10,000              

randomly selected (permuted) genes, among the genes included in the essentiality screen. This             

comparison is used to identify FDR and z-score regarding the significance of enrichment of              

essential  genes among  genes in  ∓100kb  proximity of COREs identified  for K562  cell  line. 

 

Pathway  enrichment  analysis 

ConsensusPathDB is used to implement pathway enrichment analysis [38]. Protein          

complex-based  gene  sets is used  as query gene  sets. 
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Research  Reproducibility 

CREAM is now available as an open source R package          

(https://CRAN.R-project.org/package=CREAM).  

 

List of abbreviations 

Abbreviation Stand for 

CRE Cis-Regulatory Element 

CORE Cluster Of cis-Regulatory Element 

CREAM Clustering  of genomic REgions Analysis Method 

TF Transcription  factor 

MWS Maximum Window Size 

O Order 

FC Fold  Change 

FDR False  Discovery Rate 

MCC Matthew Correlation  Coefficient 

TF Transcription  Factor 
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