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Abstract  10 

Even short courses of antibiotics are known to reduce gut microbiome diversity. However, there has been 11 
limited mathematical modelling of the associated dynamical time-response. Here, we take inspiration from a 12 
‘stability landscape’ schematic and develop an impulse-response model of antibiotic perturbation. We fit this 13 
model to previously published data where individuals took a ten-day course of antibiotics (clindamycin or 14 
ciprofloxacin) and were sampled up to a year afterwards. By fitting an extended model allowing for a 15 
transition to an alternative stable state, we find support for a long-term transition to an alternative community 16 
state one year after taking antibiotics. This implies that a single treatment of antibiotics not only reduces the 17 
diversity of the gut flora for up to a year but also alters its composition, possibly indefinitely. Our results 18 
provide quantitative support for a conceptual picture of the gut microbiome and demonstrate that simple 19 
models can provide biological insight.   20 
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Introduction  21 

The human gut microbiome is a complex ecosystem and, as such, can be thought of in ecological terms. The 22 
relative stability of the gut microbiome in the absence of large perturbations has been suggested to indicate 23 
the presence of restoring forces within a dynamical system (Relman 2012). While stability appears to be the 24 
norm, disturbances to this ecosystem are also important when considering the impact of the gut microbiome 25 
on human health. One example of a major perturbation is a course of antibiotics, which typically leads to a 26 
marked reduction in species diversity before subsequent recovery (Modi et al. 2014). Even a brief course of 27 
antibiotics can result in long-term effects on microbial community composition, with species diversity 28 
remaining lower than its baseline value up to a year afterwards (Zaura et al. 2015). However, the nature of 29 
the reconstitution of the gut microbiome remains an active area of research.  30 

Artificial perturbation experiments are widely used to explore the underlying dynamics of macro-ecological 31 
systems (Wootton 2010). In the context of the gut microbiome, the response after antibiotics has been 32 
extensively investigated (Sullivan et al. 2001; Dethlefsen et al. 2008; Dethlefsen & Relman 2011). However, 33 
despite interest in the application of ecological theory to the gut microbiome (Pepper & Rosenfeld 2012) 34 
there has been limited quantitative or mechanistic modelling of this response. While this may be because 35 
responses can appear individualized (Dethlefsen & Relman 2011), this does not preclude the possibility of 36 
generalized models that are applicable at the population level. Additionally, recent work suggests that 37 
alterations due to specific antibiotics are predictable and reproducible (Raymond et al. 2015).  38 

Applying mathematical models to other ecological systems subject to perturbation has a long tradition of 39 
giving useful insight into their behaviour (Skellam 1951; May 1973; Scheffer et al. 2001). Crucially, it 40 
allows the comparison of different models based on different hypotheses about the subsequent behaviour of 41 
the system. Additionally, developing a consistent mathematical framework for quantifying the long-term 42 
effects of antibiotic use would facilitate comparisons between different antibiotics and different regimens, 43 
with the potential to inform approaches to antibiotic stewardship (Doron & Davidson 2011). Some previous 44 
work has attempted to model species interactions in the context of antibiotics using Lotka-Volterra models 45 
(Stein et al. 2013), but such models require dense temporal sampling and restriction to a small number of 46 
species to make meaningful inference, limiting their applicability to broader ecological questions. 47 
Furthermore, it has recently been shown that pairwise microbial interactions in different scenarios cannot be 48 
captured by a single equation, suggesting that pairwise modelling will often fail to predict microbial 49 
dynamics (Momeni et al. 2017). 50 

In one popular schematic picture taken from classical ecology, the state of the gut microbiome is represented 51 
by a ball sitting in a stability landscape (Holling 1973; Lemon et al. 2012; Relman 2012; Lloyd-Price et al. 52 
2016). Perturbations can be thought of either as forces acting on the ball to displace it from its equilibrium 53 
position (Lloyd-Price et al. 2016), or alterations of the stability landscape (Costello et al. 2012). While this 54 
image is usually provided only as a conceptual model to aid thinking about the complexity of the ecosystem, 55 
we used it to derive a mathematical model to investigate whether it could provide mechanistic insight. 56 

The model we outline here, based on simple ecological concepts, allows quantitative hypotheses about the 57 
effect of antibiotics on the gut microbiome to be tested. We model the effect of a brief course of antibiotics 58 
on the microbial community’s phylogenetic diversity as the impulse response of an overdamped harmonic 59 
oscillator (Figure 1; see Materials and Methods), and compare parameters for two widely-used antibiotics by 60 
fitting to empirical data previously published by Zaura et al. (2015). We find that a variant of the model with 61 
an extra parameter accounting for the possibility of an altered equilibrium value of diversity is better 62 
supported, providing evidence from a sparse dataset that antibiotics can produce transitions to alternative 63 
stable states.  64 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 20, 2017. ; https://doi.org/10.1101/222398doi: bioRxiv preprint 

https://doi.org/10.1101/222398
http://creativecommons.org/licenses/by/4.0/


A perturbation model of the gut microbiome, Shaw et al.  3 

 65 

Results  66 

An impulse response model for the effect of antibiotics 67 

Our mechanistic model (Figure 1) assumes that a short course of antibiotics can be modelled as an impulse 68 
on the gut microbiome. With some additional simplifying assumptions about the form of the stability 69 
landscape (see Materials and Methods), we derive an analytical form for this overdamped impulse response 70 
in terms of the phylogenetic diversity of the gut microbiome (eq. 6).  71 

We fit the model to published data from Zaura et al. (2015) where 30 individuals received a ten-day course 72 
of either a placebo, ciprofloxacin, or clindamycin (Table 1). Clindamycin is a lincosamide with a broad 73 
spectrum of activity against Gram-positive aerobes and anaerobes Gram-negative anaerobes (Guay 2007). 74 
Ciprofloxacin is a quinolone which targets bacterial DNA topoisomerase and DNA gyrase, making it active 75 
against a range of Gram-positive and Gram-negative bacteria (Mustaev et al. 2014). Faecal samples were 76 
taken at baseline (i.e. before treatment), then subsequently at ten days, one month, two months, four months, 77 
and one year after treatment.  78 
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Group n % males % Caucasian Average age, 
years (SD) 

Average weight,  
kg (SD) 

Average height, 
cm (SD) 

Placebo 10 50 100 26 (4) 74 (9) 179 (10) 
Ciprofloxacin 10* 50 80 26 (3) 69 (13) 176 (10) 
Clindamycin 9** 56 100 24 (5) 67 (11) 175 (9) 

Table 1. Demographic data of study participants by treatment group. Adapted from Zaura et al. (2015).  79 
* On reanalysis after downloading data from SRA Run Selector, we found that participant KI17 was missing 2/6 faecal 80 
samples, so they were excluded from analysis i.e. leaving ! = 9 for in our reanalysis of ciprofloxacin as well as 81 
clindamycin. However, these summary statistics apply before the exclusion of KI17. ** One female participant who 82 
was initially recruited dropped out of the study after enrolment. 83 

The model appeared to adequately describe the initial response to antibiotics (Figure 2), where diversity 84 
decreases (i.e. displacement from equilibrium increases) before returning gradually towards equilibrium. 85 
Despite large variability between samples from the same treatment group, reassuringly the placebo group 86 
clearly did not warrant an impulse response model whereas data from individuals receiving ciprofloxacin and 87 
clindamycin was qualitatively in agreement with the model.  88 

However, the residuals suggested that diversity after a year was not well-captured by the model. In their 89 
analysis, Zaura et al. (2015) noted significantly (! < 0.05) reduced Shannon diversity when comparing 90 
samples a year after receiving 10 days’ ciprofloxacin to baseline, but this could have in principle merely 91 
been due to slow reconstitution and return to original equilibrium under the dynamics we have described.  92 

 93 

Fitting the impulse model to the data and taking into account the whole temporal response suggests that the 94 
lack of return to the initial equilibrium state is not due to slow reconstitution of the initial microbiome 95 
species community. Instead, the distribution of residuals indicates that, while the initial response fits a 96 
standard impulse response model well, the longer-term dynamics of the system did not – as might be 97 
expected under a scenario involving a long-term transition to an alternative community state (Figure 1). We 98 
therefore developed a variant of the model (eq. 7) to take into account potential shifts to alternative stable 99 
states. 100 

Support for an antibiotic-induced state transition 101 

To test the hypothesis that the course of antibiotics could have moved individuals’ gut microbiomes into 102 
alternative states, we fit an extended version of our model that allowed a potential non-zero asymptotic value 103 
(model 2; eq. 7), representing a new long-term value of diversity. We assumed a normally distributed prior 104 
for the asymptote parameter ! centred at zero (i.e. return to original equilibrium) with a variance given by 105 
the variance of the displacement of placebo samples from baseline after a year. 106 

Placebo Ciprofloxacin Clindamycin
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Figure 2. An impulse response model captures the dynamics of the effect of antibiotics on the gut microbiome. Bayesian fits with Stan  
for participants taking either a placebo (n=10), ciprofloxacin (n=9), or clindamycin (n=9). The mean phylogenetic diversity from 100 
bootstraps for each sample (black points) and median and 95% credible interval from the posterior distribution (bold and dashed coloured 
lines, respectively). The grey line indicates the equilibrium diversity value, defined on a per-individual basis relative to the mean baseline 
diversity. The biased positive skew of residuals after a year suggests the possibility of a transition to an alternative stable state with 
persistently reduced diversity.   
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Qualitatively, this slightly more complex model gave a similar fit (Figure 3) but with a positive displacement 107 
from equilibrium, corresponding to an alternative equilibrium state with lower diversity. We compared 108 
models with the Bayes factor !", where !" > 1 indicates support for one model over another. There was no 109 
support for model 2 over model 1 for the placebo (!" = 0.96) but support for ciprofloxacin (!" = 3.36) 110 
and clindamycin (!" = 3.99). The posterior estimates for the asymptote parameter for ciprofloxacin and 111 
clindamycin were substantially positively skewed  (Figure 4), providing evidence of a transition to a state 112 
with lower phylogenetic diversity than the baseline. 113 

 114 

Comparison of parameters between antibiotics 115 

Comparing the posterior distribution of parameters for model 2 fits between treatment groups (Figure 4), the 116 
strength of the perturbation parameter D was not substantially different between antibiotics. The asymptotic 117 
equilibrium parameter A was positively skewed for both antibiotics (median (95% CI): !!"#$%& = 0.66 (-118 
0.13-1.41); !!"#$% = 0.58 (-0.14-1.27),  strongly suggesting persistent detrimental effects on microbiome 119 
diversity and a transition to an alternative stable state.  120 

The parameters b and k were both greater in clindamycin compared to ciprofloxacin. The damping ratio 121 
! = !/ 2 !  summarises how perturbations decay over time, and is an inherent property of the system 122 
independent of the perturbation itself. Therefore, if our modelling framework and ecological assumptions 123 
were valid we would expect to find a consistent damping ratio across both the clindamycin and ciprofloxacin 124 
groups. This is indeed what we observed, with median (95% CI) damping ratios of !!"#$%&=1.07 (1.00-1.65) 125 
and !!"#$%=1.07 (1.00-1.66), substantially different from both the prior and the posterior distribution in the 126 
placebo group of !!"#$%&' = 1.21(1.00-3.00), supporting the view of the gut microbiome as a damped 127 
harmonic oscillator.  128 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

0 2 4 6 8 10 12

−4
−2

0
2

4
6

8

Months

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0 2 4 6 8 10 12

−4
−2

0
2

4
6

8

Months

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●
●

●

●

●
●

●

0 2 4 6 8 10 12

−4
−2

0
2

4
6

8

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●
●

●

●

●
●

●

Placebo Ciprofloxacin Clindamycin

Figure 3: A model with a possible state transition improves the fit to empirical data. Bayesian fits with Stan  for participants taking either a 
placebo (n=10), ciprofloxacin (n=9), or clindamycin (n=9). The mean phylogenetic diversity from 100 bootstraps for each sample (black 
points) and median and 95% credible interval from the posterior distribution (bold and dashed coloured lines, respectively). The grey line 
indicates the equilibrium diversity value, defined on a per-individual basis relative to the mean baseline diversity. The biased positive skew of 
residuals after a year suggests the possibility of a transition to an alternative stable state with persistently reduced diversity.  The non-zero-
centred asymptote indicates support for a state transition.  
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 129 
A complex, individualized antibiotic response does not prevent modelling 130 

While it is not our intention to repeat a comprehensive description of the precise nature of the response for 131 
the different antibiotics, we note some interesting qualitative observations from our reanalysis that highlight 132 
the complexity of the antibiotic response in order to make the point that, while modelling these interactions 133 
is far beyond the scope of our model, our approach is unaffected by this underlying complexity.  We discuss 134 
here observations at the level of taxonomic family (Supplementary Figure 1).  135 

Despite their different mechanisms of action, both clindamycin and ciprofloxacin caused a dramatic decrease 136 
in the Gram-negative anaerobes Rikenellaceae, which was most marked a month after the end of the course. 137 
However, for ciprofloxacin this decrease had already started immediately after treatment, whereas for 138 
clindamycin the abundance after treatment was unchanged in most participants. The different temporal 139 
nature of this response perhaps reflects the bacteriocidal nature of ciprofloxacin (Mustaev et al. 2014) 140 
compared to the bacteriostatic effect of clindamycin, although concentrations in vivo can produce 141 
bacteriocidal effects (Spížek & Řezanka 2004). 142 

There were clear differences in response between antibiotics. For example, clindamycin caused a decrease in 143 
the anaerobic Gram-positives Ruminococcaceae after a month, whereas ciprofloxacin had no effect. 144 
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Figure 4: Posterior parameter estimates for model with a possible transition to an alternative 
stable state. The posterior distributions from Bayesian fits of model 2 (eq. 7) to empirical data for 
ciprofloxacin (green) and clindamycin (red). Each posterior distribution represents 400,000 iterations 
in total.    
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Conversely ciprofloxacin caused lower levels of Barnesiellaceae which was largely unaffected by 145 
clindamycin.  146 

Some families appeared unaffected by antibiotics: the Bacteroidaceae were largely unaffected in most 147 
individuals. Furthermore, while overall diversity decreased, this can still be consistent with increases in the 148 
relative abundance of certain taxa. For example, ciprofloxacin led to increases in Erysipelotrichaceae, which 149 
were dramatic in some individuals. Interestingly, for these individuals these increases coincided with marked 150 
decreases in Bacteroidaceae, suggesting the relevance of inter-family microbial interactions (Supplementary 151 
Figure 1). The individualized nature of the ciprofloxacin response was also noticeable in Lachnospiraceae – 152 
which was largely unaffected by clindamycin – as its abundance dropped below detectable levels in some 153 
individuals after a month but remained unchanged in other individuals. 154 

Comparing relative abundances at the family level, there were few differences between community states of 155 
different treatment groups after a year. Equal phylogenetic diversity can be produced by different community 156 
composition, and this suggests against consistent trends in the long-term dysbiosis associated with each 157 
antibiotic. However, we did find that Peptostreptococcaceae, a member of the order Clostridiales, was 158 
significantly more abundant in the clindamycin group when compared to both the ciprofloxacin group and 159 
the placebo group separately (p < 0.05, Wilcoxon rank sum test). In a clinical setting, clindamycin is well-160 
established to lead to an increased risk of a life-threatening infection caused by another member of 161 
Clostridiales: Clostridium difficile (Thomas et al. 2003). The long-term reduction in diversity may well 162 
similarly increase the risk of colonization and overgrowth of pathogenic species.  163 

Discussion  164 

Starting from a common qualitative conceptual picture of the gut microbiome as resting within a stability 165 
landscape, we have developed a simple mathematical model of its response to perturbation. With a few 166 
simplifying ecological assumptions, most notably that the phylogenetic diversity of the gut microbiome 167 
relative to its baseline value in some way parameterises this stability landscape, we have demonstrated that 168 
the response of the gut microbiome to a short course of antibiotics can be modelled as an impulse acting on a 169 
damped harmonic oscillator. Crucially, the simplifications involved appear to be justified at some 170 
fundamental level, as this model proves to successfully capture dynamics of empirical data. From this, we 171 
suggest that the restoring forces that contribute to the gut microbiome’s resilience to perturbation are 172 
proportional to displacement from equilibrium and that the system is overdamped.  173 

Our approach uses a simple conceptual model to give mechanistic insight. Zaura et al. (2015) made the 174 
observation from their dataset that the lowest diversity was observed after a month rather than immediately 175 
after treatment stopped. This cannot be due to a persistence of the antibiotic effect, as clindamycin and 176 
ciprofloxacin only have short half-lives of the order of hours (Leigh 1981; Bergan et al. 1987). Our model 177 
gives us a mechanistic framework for thinking about this temporal delay: the full effects of the transient 178 
impulse take time to be realized due to the overdamped nature of the system, and we found a consistent 179 
damping ratio for both antibiotics analyzed.  180 

We have also demonstrated how this modelling framework could be used to compare different hypotheses 181 
about the long-term effect of antibiotic perturbation on the gut microbiome by fitting different models and 182 
using Bayesian model selection. Our modelling work provides an additional line of evidence that while 183 
short-term restoration obeys a simple impulse response model, the underlying long-term community state 184 
can be fundamentally altered by a brief course of antibiotics, as suggested previously by others (Dethlefsen 185 
& Relman 2011), raising concerns about the long-term impact of antibiotic use on the gut microbiome. 186 
Despite the noisiness of the dataset and reliance on uninformative priors, we still found evidence that a 187 
model with a state transition was better supported, which was not observed in individuals taking a placebo. 188 
The transition to a new state with reduced diversity may increase the risk of colonization and overgrowth of 189 
pathogenic species. Even if only marginal, when considered at a population level this may mean that 190 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 20, 2017. ; https://doi.org/10.1101/222398doi: bioRxiv preprint 

https://doi.org/10.1101/222398
http://creativecommons.org/licenses/by/4.0/


A perturbation model of the gut microbiome, Shaw et al.  8 

antibiotics have substantial negative health consequences that could support reductions in the length of 191 
antibiotic courses, in addition to concerns about antibiotic resistance (Llewelyn et al. 2017). Modelling the 192 
long-term impact on the microbiome of different doses and courses could help to influence the use of 193 
antibiotics in routine clinical care.  194 

While the evidence for a long-term state transition is weak at present, we can at the very least conclude that 195 
the restoration of diversity after a year does not seem to obey the same underlying dynamics that govern the 196 
initial response, even if we remain agnostic about the most appropriate model refinement. This disparity 197 
between the short- and long-term time-evolution of the system is relevant to the distinction between different 198 
definitions of resilience. Implicit in some definitions of ecological resilience is the assumption that the 199 
fundamental shape of the stability landscape remains unaltered (Gunderson 2000), which we also adopt here, 200 
but it is possible that this assumption is invalid and should also be explicitly modelled.  201 

Our sample size is small so the precise posterior estimates for parameters that we obtain should not be over-202 
interpreted, but comparing antibiotics using these estimates represents another practical application of such 203 
simple models. However, these posterior estimates for the model parameters were fairly wide, which is to be 204 
expected with a sparse and small dataset. Hierarchical mixed effects models may offer an improved fit, 205 
particularly if they take into account other covariates; however, here we lacked metadata on the participants 206 
from the original study (Table 1).  207 

A single metric clearly fails to capture all the complexity of the microbial community and its interactions. 208 
Nevertheless, the observation that treating phylogenetic diversity as the ‘height’ in the stability landscape 209 
leads to a reasonable fit of a simple model is interesting, as it supports observations of functional redundancy 210 
in the gut microbiome (Turnbaugh et al. 2007). An interesting extension of this work would be to 211 
systematically fit the model to a variety of diversity metrics and assess the model fit to see which metric, or 212 
combination of metrics, is most appropriately interpreted as the state variable parameterizing the stability 213 
landscape. A possible complementary approach could consider the diversity of the gut resistome (van Schaik 214 
2015).  215 

We would not expect the behavior with longer or repeated courses of antibiotics to be well-described by an 216 
impulse response model, but it would be possible to use the mathematical framework given here to obtain an 217 
analytic form for the possible system response by convolving any given perturbation function with the 218 
impulse response. It remains to be seen whether this simple model would break down in such circumstances.  219 

The detailed nature of the gut microbiome’s response to clindamycin and ciprofloxacin was individualized in 220 
our dataset, as others have also observed with shotgun sequencing of samples from healthy participants given 221 
a second-generation cephalosporin (Raymond et al. 2016). We believe it would be a mistake to react to this 222 
complexity by assuming that no simplified model can capture general details of the ecosystem. At this stage 223 
of our understanding, creating a comprehensive inter-species model of the hundreds of members of the gut 224 
microbiome appears intractable. We recommend that microbiome research instead starts with ecologically-225 
informed simple models and believe there is a place for both ‘bottom-up’ models using pairwise interactions 226 
for systems of reduced complexity like bioreactors, and ‘top-down’ models using general ecological 227 
principles, as we have attempted to demonstrate here.  228 

We have shown that comparing different hypotheses about the response of the gut microbiome to antibiotics 229 
is possible by using a simple model derived from minimal assumptions about the nature of its equilibrium 230 
diversity. Future mathematical models of the gut microbiome, in conjunction with carefully designed 231 
longitudinal studies, will offer many more opportunities to rigorously test ecological hypotheses.   232 
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Materials and methods  233 

Ecological assumptions 234 

We represent the state of the gut microbiome as a unit mass resting in a stability landscape (Figure 1A). 235 
Choosing to mathematically model the state of the gut microbiome in this way also requires choosing a 236 
mathematical representation with reference to an equilibrium value. While earlier studies sought to identify a 237 
core set of ‘healthy’ microbes, the disturbance of which would indicate displacement from equilibrium, it has 238 
become apparent that this is not a practical definition due to high inter-individual variability in taxonomic 239 
composition (Lloyd-Price et al. 2016). More recent concepts of a healthy ‘functional core’ appear more 240 
promising, but characterization is challenging, particularly as many gut microbiome studies use 16S rRNA 241 
marker gene sequencing rather than whole-genome shotgun sequencing.  242 

Therefore, we choose to use a metric that offers a proxy for the general functional potential of the gut 243 
microbiome: phylogenetic diversity (Lloyd-Price et al. 2016). Higher diversity has previously been 244 
associated with health (Turnbaugh et al. 2007) and temporal stability (Flores et al. 2014). For these reasons, 245 
we assume the equilibrium position to have higher diversity than the points immediately surrounding it, 246 
forming a potential well (Figure 1B). However, there may be alternative stable states that represent possible 247 
‘dysbiotic’ states (Figure 1B), which are of interest when considering the effect of perturbations (Figure 1C).  248 

The model 249 

We treat the local stability landscape as a harmonic potential, with a ‘restoring’ force proportional to the 250 
displacement x from the equilibrium position (−!"). We also assume the presence of a ‘frictional’ force 251 
acting against the direction of motion (−!!). This system is equivalent to a damped harmonic oscillator 252 
(Riley et al. 1997) with the following equation of motion: 253 

(1)  !
!!
!!! + !

!"
!" + !" = 0     254 

Additional forces acting on the system now appear on the right-hand side of this equation as perturbations. 255 
Consider a course of antibiotics of duration !. If we are interested in the behaviour of the system at 256 
timescales ! ≫ !, we can assume for simplicity that this perturbation is of infinitesimal duration and model 257 
it as an impulse of magnitude ! acting at time ! = 0: 258 

(2) !!!
!!! + !

!"
!" + !" = !" !     259 

To solve this second order differential equation, we assume that !! > 4! (the ‘overdamped’ case) based on 260 
the lack of any oscillatory behaviour previously observed in the gut microbiome, to the best of our 261 
knowledge. Then, subject to the initial conditions ! 0! = 0  and ! 0! = !  we obtain the following 262 
equation describing the system’s trajectory: 263 

(3) ! ! =  !

!∙ !
!
!
!!

!
! !

!  ! !
!
!
!! !

− !
! !

!  ! !
!
!
!! !

    264 

Fitting the model therefore requires fitting three parameters: ! (the damping on the system), ! (the strength 265 
of the restoring force), and ! (how strong the perturbation is). For the purposes of fitting the model, we 266 
choose to reparameterise the model using the following definitions: 267 

(4) ! =  !!! + !!!    268 

(5) ! = !!!!!!    269 

Resulting in the following model (Model 1, Figure 1C): 270 
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(6) !! ! =  !!
!!!!!

!!!!!!! ∙ !
!!!!! − !!!!!!   271 

Antibiotics may lead not just to displacement from equilibrium, but also state transitions to new equilibria 272 
(Modi et al. 2014). To investigate this possibility, we also consider a model where the value of equilibrium 273 
diversity asymptotically tends to a new value ! (Model 2, Figure 1C).  274 

(7) !! ! =  !!
!!!!!

!!!!!!! ∙ !
!!!!! − !!!!!! + ! ∙ 1 − !!!!!!    275 

Empirical dataset 276 

To validate our model and test whether antibiotic perturbation caused a state transition we fitted both models 277 
to an empirical dataset and compared the results. Zaura et al. (2015) conducted a study on the long-term 278 
effect of antibiotics on the gut microbiome which provides an ideal test dataset. As part of this study, 30 279 
Swedish individuals (15 males and 15 females, average age 26 years, range 18-45 years) were randomly 280 
assigned to either ciprofloxacin, clindamycin, or a placebo. The antibiotics (150 mg clindamycin four times a 281 
day, 500 mg ciprofloxacin twice a day) and placebo were administered for ! = 10 days and longitudinal 282 
faecal samples collected until ! = 1 year afterwards (i.e. !!~0.027 ≪ 1) at baseline, after treatment, one 283 

month, two months, four months, and one year. Samples underwent 16S rRNA gene amplicon sequencing, 284 
targeting the V5-V7 region (SRA: SRP057504). We reanalysed this data, doing de novo clustering into 285 
operational taxonomic units (OTUs) at 97% similarity with VSEARCH v1.1.1 (Rognes et al. 2016) with 286 
chimeras removed against the 16S gold database (http://drive5.com/uchime/gold.fa). Taxonomy was 287 
assigned with RDP (Wang et al. 2007).   288 

Phylogenetic diversity  289 

There are many possible diversity metrics that could be used to compute the displacement from equilibrium. 290 
Because of our assumption that phylogenetic diversity approximates functional potential, which is itself a 291 
proxy for ecosystem ‘health’ (see ‘Ecological assumptions’), we chose to use Faith’s phylogenetic diversity 292 
(Faith 1992) calculated with the pd() function in the ‘picante’ R package v1.6-2 (Kembel et al. 2010). 293 
Calculating Faith’s phylogenetic diversity requires a phylogeny, which we produced with RaxML v8.1.15 294 
(Stamatakis 2014) after aligning 16S rRNA V5-V7 OTU sequences with Clustal Omega v1.2.1 (Sievers et 295 
al. 2011). To obtain values for fitting the model, we used mean bootstrapped values (! = 100, sampling 296 
depth ! = 2000) of phylogenetic diversity !!  relative to the baseline phylogenetic diversity !! for each 297 
individual, representing the displacement from equilibrium in our model: 298 

(8) !! = !! − !!   299 

Model fitting  300 

We used a Bayesian framework to fit models 1 and 2 (eq. 6 and 7) using Stan (Carpenter et al. 2017) and 301 
RStan (Stan Development Team 2017) to the three separate groups: placebo, ciprofloxacin, and clindamycin. 302 
In brief, our approach used 4 chains with a burn-in period of 10,000 iterations and 100,000 subsequent 303 
iterations, verifying that all chains converged (! = 1) and the effective sample size for each parameter was 304 
sufficiently large (neff > 10,000).  305 

We used uninformative priors for the three parameters in the original model 1 without a state transition (eq. 306 
6). For ciprofloxacin and clindamycin we used the same uniformly distributed prior for D, and uniform 307 
priors for !!,!!. For  model 2 with a state transition (eq. 7) we used the same priors, with a normal prior 308 
centred at zero for the new equilibrium value ! with a standard deviation given by the standard deviation of 309 
the displacement of placebo samples from baseline after a year, with bounds between -2 and 2.  The priors 310 
are as follows: 311 

(9.1) !~uniform(0, 15) 312 
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(9.2) !!~uniform(−1.99,1,99) 313 

(9.3) !!~uniform(−2,2) 314 

(9.4) !~normal(0, 1.263) 315 

For the placebo group, we expected no perturbation response so used a uniform prior for ! centred at zero:  316 

(10) !~uniform −5,5  317 

We compared models 1 and 2 for each treatment group using the Bayes factor (Aitkin 1991; Kass & Raftery 318 
1995) after extracting the model fits using bridge sampling with the bridgesampling R package v0.2-2 319 
(Gronau et al. 2017). A prior sensitivity analysis showed that choice of priors did not affect the conclusion 320 
that model 2 outperformed model 1 for the two antibiotics, although the strength of the Bayes factor varied. 321 

Full code for fitting the models to empirical data is available as a zipped archive (Supplemental Code 1).  322 
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Figure 1. An impulse response model of antibiotic perturbation to the gut microbiome. We represent 
the gut microbiome as a unit mass on a stability landscape, where height corresponds to phylogenetic 
diversity. (A) The healthy human microbiome can be conceptualized as resting in the equilibrium of a 
stability landscape of all possible states of the microbiome. Perturbations can displace it from this 
equilibrium value into alternative states (adapted from Lloyd-Price et al. (2016)). (B) Choosing to 
parameterize this stability landscape using diversity, we assume that there are just two states: the healthy 
baseline state and an alternative stable state. (C) Perturbation to the microbiome (e.g. by antibiotics) is 
then modelled as an impulse, which assumes the duration of the perturbation is short relative to the 
overall timescale of the experiment. We consider the form of the diversity time-response under two 
scenarios: a return to the baseline diversity; and a transition to a different value of a diversity (i.e. an 
alternative stable state).  
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Figure 2. An impulse response model captures the dynamics of the effect of antibiotics on the gut microbiome. Bayesian fits with Stan  
for participants taking either a placebo (n=10), ciprofloxacin (n=9), or clindamycin (n=9). The mean phylogenetic diversity from 100 
bootstraps for each sample (black points) and median and 95% credible interval from the posterior distribution (bold and dashed coloured 
lines, respectively). The grey line indicates the equilibrium diversity value, defined on a per-individual basis relative to the mean baseline 
diversity. The biased positive skew of residuals after a year suggests the possibility of a transition to an alternative stable state with 
persistently reduced diversity.   
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Figure 3: A model with a possible state transition improves the fit to empirical data. Bayesian fits with Stan  for participants taking either a 
placebo (n=10), ciprofloxacin (n=9), or clindamycin (n=9). The mean phylogenetic diversity from 100 bootstraps for each sample (black 
points) and median and 95% credible interval from the posterior distribution (bold and dashed coloured lines, respectively). The grey line 
indicates the equilibrium diversity value, defined on a per-individual basis relative to the mean baseline diversity. The biased positive skew of 
residuals after a year suggests the possibility of a transition to an alternative stable state with persistently reduced diversity.  The non-zero-
centred asymptote indicates support for a state transition.  
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Figure 4: Posterior parameter estimates for model with a possible transition to an alternative 
stable state. The posterior distributions from Bayesian fits of model 2 (eq. 7) to empirical data for 
ciprofloxacin (green) and clindamycin (red). Each posterior distribution represents 400,000 iterations 
in total.    
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Supplementary Figure 1: Differences in individual response over time for the top twelve most abundant taxonomic families for each 
treatment group. Relative abundances (log-scale) of the top twelve most abundant bacterial families plotted at each sampled timepoint. 
Observations are linked by coloured lines for each individual. Despite some consistency in changes between antibiotics across individuals, 
there is inter-individual variability and evidence of possible interactions between bacterial families.  
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