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Abstract

Functional genomics data has the potential to increase GWAS power by identifying SNPs that have a
higher prior probability of association. Here, we introduce a method that leverages polygenic functional
enrichment to incorporate coding, conserved, regulatory and LD-related genomic annotations into asso-
ciation analyses. We show via simulations with real genotypes that the method, Functionally Informed
Novel Discovery Of Risk loci (FINDOR), correctly controls the false-positive rate at null loci and attains
a 9-38% increase in the number of independent associations detected at causal loci, depending on trait
polygenicity and sample size. We applied FINDOR to 27 independent complex traits and diseases from
the interim UK Biobank release (average N=130K). Averaged across traits, we attained a 13% increase
in genome-wide significant loci detected (including a 20% increase for disease traits) compared to un-
weighted raw p-values that do not use functional data. We replicated the novel loci in independent UK
Biobank and non-UK Biobank data, yielding a highly statistically significant replication slope (0.66-0.69)
in each case. Finally, we applied FINDOR to the full UK Biobank release (average N=416K), attaining
smaller relative improvements (consistent with simulations) but larger absolute improvements, detecting
an additional 583 GWAS loci. In conclusion, leveraging functional enrichment using our method robustly
increases GWAS power.

Introduction

Genome-wide Association Studies (GWAS) are the prevailing approach for identifying disease risk loci1,2,
but the large number of statistical tests performed necessitates stringent p-value thresholds that can limit
power. Emerging functional genomics data has revealed that certain categories of variants are enriched
for disease heritability3–12. Thus, incorporating functional information into association analyses has the
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potential to increase GWAS power13–21. However, previous integrative methods for GWAS hypothesis testing
either assume sparse genetic architectures when estimating functional enrichment17,20, require knowledge
or approximation of the true effect size distribution13–15, or do not produce p-values for each SNP as
output17–19,21. In addition, general-purpose methodologies for association testing that can integrate prior
information22–24 have not been thoroughly evaluated in the context of GWAS leveraging functional genomics
data.

In this work, we propose an approach that uses polygenic modeling to weight SNPs according to how
well they tag functional categories that are enriched for heritability. Our procedure takes as input sum-
mary association statistics along with pre-specified functional annotations (which can be overlapping and/or
continuous-valued), and outputs well-calibrated p-values. We utilize a broad set of 75 coding, conserved,
regulatory and LD-related annotations that have previously been shown to be enriched for disease heri-
tability8,12. We incorporate the weights computed by our method using the weighted-Bonferroni procedure
described by ref.13, a theoretically sound approach that ensures proper null calibration and can improve
power when employed with informative weights. Through extensive simulations and analysis of UK Biobank
phenotypes25–27, we demonstrate that our approach reproducibly identifies novel GWAS loci while control-
ling false positives.

Results

Overview of Methods

We propose an integrative GWAS framework for Functionally-Informed Novel Discovery of Risk loci (FINDOR).
Our approach involves two steps. First, we use stratified LD score regression8 to compute the expected χ2

statistic of each SNP based on the functional annotations that it tags; we make use of a broad set of coding,
conserved and regulatory annotations8 as well LD-dependent annotations12 (conditional on MAF, variants
with lower LD have larger causal effect sizes). Second, we stratify SNPs into bins of expected χ2 and estimate
the proportion of null (π̂0) and alternative (π̂1) SNPs within each bin using the Storey π0 estimator28 to
obtain bin-specific weights. We limit the number of bins to 100 and normalize the weights to have mean 1,
ensuring proper null calibration13. We then divide the observed p-values within each bin by these weights
to produce re-weighted p-values for each SNP. Bins with larger values of π̂1 will have larger weights, leading
to more significant p-values. Details of the method are described in the Online Methods section; we have
released open-source software implementing the method (see URLs).

Simulations assessing calibration and power

We assessed calibration and power via simulations using real genotypes from the UK Biobank interim re-
lease25 (N = 100K subsampled British-ancestry samples, M = 9.6M well-imputed SNPs; see Online Meth-
ods). We simulated polygenic traits with 10,000 or 20,000 causal variants and SNP-heritability (h2

g) equal
to 0.1 or 0.2. All causal variants were placed on odd chromosomes, with functional enrichment based on
a meta-analysis of 31 traits using the baselineLD model described in ref.12 (Supplementary Table 1; see
URLs), and even chromosomes served as null data. Weights were computed by running stratified LD score
regression8 on association statistics computed from simulated phenotypes, without knowledge of the true
functional enrichment parameters used to generate the phenotypes. We compared FINDOR to three other
methods that can incorporate auxiliary information for each SNP: Stratified False Discovery Rate (S-FDR)22,
Grouped Benjamini Hochberg (GBH)23, and Independent Hypothesis Weighting (IHW)24. For each of the
four methods, we considered four different criteria for stratifying SNPs into bins: predicted χ2 statistics
under the baselineLD model (baseLD); predicted χ2 statistic under the baselineLD model trained using off-
chromosome data via a Leave-One-Chromosome-Out approach (baseLD-LOCO); total LD score of a SNP
(LDscore), motivated by a previous study reporting that simple LD information can be used to improve
GWAS power14; and randomly chosen bins (Random). We also considered unweighted raw p-values (Un-
weighted), a natural benchmark. For both null (even) and causal (odd) chromosomes, the primary metric
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was the number of independent genome-wide significant associations identified. Throughout this work, we
define an independent association as a SNP that exceeds a significance threshold (e.g., 5 × 10−8), together
with all linked SNPs that have an r2 > 0.01 within 5Mb. We performed 1,000 simulations and averaged
results across simulations. Further details of the simulation framework are provided in the Online Methods
section.

We first assessed calibration on null chromosomes. We determined that FINDOR was well-calibrated,
producing a similar number of false-positive (independent, genome-wide significant) associations at null loci
as the Unweighted approach (see Figure 1 and Supplementary Table 2). This remains true whether we
infer functional enrichment and compute expected χ2 statistics using all GWAS data (baseLD) or using
off-chromosome data (baseLD-LOCO), motivating the use of the baseLD stratification criteria in the re-
mainder of this work. Similarly, FINDOR was well-calibrated at less stringent significance thresholds (see
Supplementary Table 3). Although FINDOR makes multiple passes over the data, which in principle could
overfit the data and produce false positives, this does not occur in practice, likely due to the small number of
global parameters estimated (hundred) relative to the large number of hypothesis tests performed (millions).

On the other hand, S-FDR, GBH and IHW each exhibited moderate to severe increases in false-positive
associations, particularly at higher polygenicity and lower SNP-heritability. For example, at a polygenicity
of 20,000 causal variants and h2

g = 0.1, we observe an average (SE) of 0.10 (0.02) false positives per simulated
GWAS using raw unweighted p-values and 0.06 (0.01) using FINDOR with baseLD criteria, while S-FDR,
GBH, and IHW with baseLD yield 1.6 (0.2), 1.6 (0.2), and 1.3 (0.2) false positives, respectively (see Figure 1
and Supplementary Table 2). This inflation is exacerbated at smaller sample sizes (see Supplementary
Figure 1). We hypothesize that this may be due to the fact that the theoretical guarantees provided by these
procedures are unlikely to be valid when the auxiliary information incorporates the dependence structure
between hypothesis tests; this limitation was previously noted by Ignatiadis et al.24 and clearly affects both
baseLD and LDscore stratifying criteria. Furthermore, while GBH and IHW were consistently well-calibrated
under random stratification (see Figure 1, purple bars), S-FDR was not, perhaps because S-FDR requires
additional adjustments for the number of strata used29.

We next evaluated power to detect true associations on causal chromosomes. We restricted our assessment
of power to Unweighted and FINDOR, as they were the only methods that were well-calibrated under the
null for all stratification criteria. FINDOR attained an 8.6-38% increase in the number of true (independent,
genome-wide significant) associations, depending on polygenicity (10,000 or 20,000 causal variants) and SNP-
heritability (0.1 or 0.2) (see Figure 2 and Supplementary Table 4). The relative improvement was smaller
at lower polygenicity and larger SNP-heritability, each of which correspond to higher absolute power. Our
method has a fixed budget of weights that it can allocate, and we hypothesize that when absolute power
is high it is more likely to allocate weights to SNPs that are already genome-wide significant, explaining
the smaller relative improvement. In addition, the enrichment estimates provided by stratified LD score
regression are expected to be less precise at lower polygenicity. However, the smaller relative improvement
still translated into a larger absolute improvement in settings with higher absolute power.

Application to 27 UK Biobank traits

We applied FINDOR to the interim UKBiobank release25, which includes N=145K European-ancestry
samples and M = 9.6M well-imputed SNPs. We analyzed 27 independent, highly heritable traits (average
N=130K; see Table 1 and Online Methods). We computed summary association statistics using BOLT-
LMM v2.130 (Unweighted approach). We applied FINDOR to these summary statistics and compared the
number of independent, genome-wide significant associations identified by FINDOR vs. the Unweighted
approach. In total, FINDOR identified 207 more associations (see Table 1 and Supplementary Tables 5 and
6), a statistically significant improvement (block-jacknife SE = 20.4, p < 1× 10−20). This corresponds to an
average per-trait improvement of 13% (SE=2.5%) and an aggregate improvement of 6.8%; FINDOR identified
more associations than the Unweighted approach for 24 out of 27 traits, and the same number of associations
for the remaining three traits. The aggregate improvement was lower than the average per-trait improvement
because the relative improvement was smaller for traits with higher power (i.e. more associations) (see Figure
3), consistent with simulations. In particular, disease traits exhibited a larger improvement (20% average
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per-trait, 22% aggregate, see Supplementary Table 7), consistent with smaller effective sample size (i.e.
smaller value of sample size * observed-scale SNP-heritability) due to the relatively small number of disease
cases. Qualitatively similar results were obtained at a more stringent p-value threshold of 5 × 10−9 (see
Supplementary Table 8). We note that, compared to the 13% average per-trait improvement of FINDOR
with the baselineLD model12, FINDOR with the baseline model8 (which excludes LD-related annotations)
attained only a 7.1% average per-trait improvement and 4.3% aggregate improvement (72 fewer GWAS hits;
jackknife SE on difference = 13.3, p = 6.3× 10−8, see Supplementary Table 5). This indicates that the LD-
related annotations of the baselineLD model contain valuable information for increasing association power; in
particular, these annotations avoid the phenomenon of strong LD between in-annotation and out-annotation
SNPs that may limit the potential of coding, conserved and regulatory annotations to increase association
power despite their strong enrichments for trait heritability.

Next, we carried out a UK Biobank-based replication analysis for the 27 traits using non-overlapping
samples in the full UK Biobank release. Starting with the 459K European-ancestry samples, we excluded
the 145K samples that were present in the interim release and computed summary statistics using BOLT-
LMM v2.3, a highly computationally efficient implementation for very large data sets27. This produced a
well-powered replication data set (average N=283K). We evaluated strength of replication by computing
the replication slope, defined as the slope of a regression of estimated standardized effect sizes in replication
data vs. discovery data, restricting to lead SNPs at genome-wide significant loci from the discovery data
(we excluded lead SNPs that were not present in the replication data). We computed replication slopes for
three classes of loci: (1) those that were genome-wide significant only using the Unweighted approach, (2)
only using FINDOR p-values, or (3) using both methods. The 49 loci that were significant only using the
Unweighted approach produced a replication slope of 0.57 (SE=0.043). The 230 loci that were significant
only using FINDOR (i.e. novel discoveries) produced a slightly stronger replication slope of 0.66 (SE=0.018);
the difference was not statistically significant based on the small number of data points, particularly for Un-
weighted only. As expected, the 2766 loci that were significant using both methods produced the strongest
replication slope of 0.91 (SE= 0.003), as this class of loci included the most significant associations (see
Figure 4 and Supplementary Table 9). We also performed a separate replication analysis for nine traits for
which summary statistics from independent, non-UK Biobank GWAS were available (see Online Methods,
Supplementary Table 10). In this analysis, the 36 loci that were significant only using FINDOR (i.e. novel
discoveries) produced a replication slope of 0.69 (SE=0.11) in non-UK Biobank data, which did not dif-
fer significantly from the replication slope for the 410 loci that were significant using both methods (0.66,
SE=0.012, see Figure 4 and Supplementary Table 11). Only a single locus was significant only using Un-
weighted p-values in this analysis, therefore we do not report a replication slope for this class. Overall, these
results confirm that the novel loci identified by FINDOR robustly replicate in independent samples.

Finally, we applied FINDOR to the 27 traits using the full set of 459K European-ancestry samples
(average N=416K), analyzing summary statistics computed using BOLT-LMM v2.327. The Unweighted ap-
proach identified 13,283 independent genome-wide significant associations in this data. FINDOR identified
583 more associations (see Supplementary Table 12, Jackknife SE = 40.6, p < 1× 10−20), corresponding to
an average per-trait improvement of 6.9% (SE = 0.66%) and an aggregate improvement of 4.1% (see Table
1); FINDOR identified more associations than the Unweighted approach for all 27 traits. Once again, the
relative improvements decreased as a function of sample size times observed-scale SNP-heritability (see Fig-
ure 3, Table 1), with larger relative improvements for disease traits (10% average per-trait, 10% aggregate)
and smaller relative improvements in the 459K release vs. the 145K release, consistent with simulations.
We further characterized Unweighted-only and FINDOR-only loci by contrasting their overlap with molec-
ular QTL 95% causal sets31 (which are weakly correlated with the baselineLD model annotations used by
FINDOR: |r| ≈ 0.05 for most annotations, see ref.31). The lead SNPs at FINDOR-only loci had substan-
tial overlap with molecular QTL 95% causal sets (and substantially larger molecular QTL causal posterior
probabilities on average), compared to Unweighted-only loci (see Supplementary Table 13); this implies that
loci identified by FINDOR are not only more numerous, but also more amenable to biological interpretation
and mechanistic insights. Overall, these results indicate that FINDOR can provide a substantial increase in
power – particularly for studies with smaller effective sample sizes, such as studies of disease traits.
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Discussion

We have introduced a p-value weighting approach that leverages polygenic functional enrichment to improve
association power. We demonstrated in simulations that our FINDOR framework is properly calibrated under
the null and improves power to detect causal loci. We reproducibly identified hundreds of new loci across
a broad set of UK Biobank traits, with increased prospects for biological interpretation (see Supplementary
Table 13). We achieved this by using a multi-faceted functional enrichment model that includes coding,
conserved, regulatory and LD-related annotations8,12.

Previous studies that assumed sparse genetic architectures achieved 3-5% increases in association power17,20.
In detail, ref.17 reported a 5.0% increase in power (average N=57K for 18 traits) and ref.20 reported a 2.7%
increase in power (P < 1 × 10−8; median Neff = 4/(1/Ncase + 1/Ncontrol) = 6K for 123 binary traits, me-
dian N=23K for 96 quantitative traits). (Ref.20 also reported a 13.7% increase in the number of ”unsettled”
associations (1 × 10−10 < P < 1 × 10−8), a metric that yields much larger increases.) In contrast, our
polygenic approach achieved a 7% increase in association power (or 13% increase in power averaged across
traits) in the interim UK Biobank analysis despite the larger sample size analyzed (average N=130K), which
corresponds to smaller increases in power (see Figure 3). Ideally, we would have assessed those previous
methods in the current study; however, we were unable to do so, either because no software implementation
was available20, or because the available output (Bayes factors and posterior probabilities of association) was
not directly comparable to the p-value thresholds used to assess significance in our study (and most GWAS
studies)17–19,21. We instead elected to assess previous methods that could incorporate information from
our polygenic functional enrichment model and produce p-value thresholds for hypothesis testing: Stratified
FDR (S-FDR)22, Grouped Benjamini Hochberg (GBH)23, and Independent Hypothesis Weighting (IHW)24.

Stratifying SNPs based on predicted (tagged) variance was previously proposed by ref.16 (incorporating
10 functional annotations), which made a key contribution to the literature by highlighting the potential of
this approach. The study demonstrated that this criteria improved replication rates, and also reported that
it increased power when applying S-FDR22. However, S-FDR did not achieve proper null calibration in our
simulations, even under random stratification, perhaps because S-FDR requires additional adjustments for
the number of strata used29. Furthermore, S-FDR, GBH, and IHW were all unable to correctly control false
positives when LD-dependent stratification criteria (LDscore or BaseLD) were employed; as noted above,
theoretical guarantees about false positives are unlikely to be valid when the stratification criteria incorporate
the dependence structure between hypothesis tests24. Our approach bears some similarity to the multi-
threshold association tests proposed by ref.14,15, which use knowledge of the true effect size distribution to
solve a convex optimization problem to determine appropriate thresholds. Given knowledge of the true effect
size distribution, this approach is theoretically optimal13,14; however, this information is rarely available in
practice and must be fixed a priori or approximated from the data13–15. Finally, although we employ a
fundamentally different weighting strategy, our method draws on insights from ref.13, which established the
theoretical basis for data-driven p-value weighting.

We conclude with several limitations of our work. First, previous studies have demonstrated that complex
traits often exhibit cell-type specific functional enrichments4–11,17,32,33, which we did not incorporate in this
study. Incorporating cell-type-specific functional enrichments may further increase power, although care will
be required to avoid overfitting since identifying critical cell types requires extensive model selection. Second,
our modeling of MAF-dependent architectures is limited; while our baselineLD functional model includes
MAF-bin annotations for common SNPs (MAF > 5%), it does not model MAF-dependent architectures
for rare and low-frequency variants. A possible future direction would be to incorporate MAF-dependent
annotations, e.g., via the widely used α model34–36. Third, we anticipate that GWAS will grow larger and
more powerful in the years ahead, but the relative improvement of our method decreases as a function of
absolute power. However, we anticipate that our method will continue to produce large relative improvements
for disease phenotypes (as in Table 1), for which the ongoing challenge of recruiting disease cases will continue
to limit effective sample size. Fourth, our UK Biobank replication of novel loci from the interim UK Biobank
release could in principle be inflated by relatedness within the UK Biobank; however, our non-UK Biobank
replication produced a concordant replication slope, suggesting that this effect is limited. Fifth, we evaluated
our method only using European-ancestry samples. Although our previous work has provided evidence that
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functional enrichment is consistent across populations10,37, generalizing our results to non-European samples
is currently an open question, as it is unclear whether functional enrichments inferred in large European
samples should be incorporated. Despite these limitations, we anticipate that FINDOR will be a valuable
and practical tool for leveraging polygenic functional enrichment to improve GWAS power.

URLs

Open-source FINDOR software will be made publicly available prior to publication at https://github.com/gkichaev.
LDscore regression software: https://github.com/bulik/ldsc
LDscores for baselineLD model: https://data.broadinstitute.org/alkesgroup/LDSCORE/
UK Biobank Resource: http://www.ukbiobank.ac.uk/
BOLT-LMM v2.3 software http://data.broadinstitute.org/alkesgroup/BOLT-LMM/

BOLT-LMM association statistics (459K) http://data.broadinstitute.org/alkesgroup/UKBB/
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Online Methods

FINDOR method

The aim of our method is to re-weight SNPs according to how well they tag heritability enriched categories.
This is accomplished in two steps. First, we estimate a function that predicts the χ2 statistic (i.e. tagged
variance) at each SNP using a comprehensive assortment of functional annotations which include coding,
conserved and regulatory annoations8, as well as LD-dependent annotations12. The stratified LD score
regression8,12 framework is a natural choice for this task. In stratified LD score regression, the association
statistic at SNP j measured (or imputed) in Nj individuals is expressed in terms of its tagging of studied
annotations. Specifically,

E(χ2
j ) = Nj

∑
C

τC`(j, C) +Njα+ 1 (1)

where α represents confounding biases38, τC is the effect size on per-SNP heritability of annotation C, and
`(j, C) is the LD score which indicates the degree to which SNP j tags annotation C:

`(j, C) =
∑
k

C(k)r2
k,j (2)

Here, C(k) is the value of annotation C at SNP k and r2
k,j signifies the squared Pearson correlation coefficient

between SNPs k and j 8,12 (computed from 503 European individuals of the 1000 Genomes (V3) reference
panel39). In a typical analysis, the quantity of interest is an estimate of τC (τ̂C) which can be interpreted
as the strength of enrichment (or depletion) of heritability within annotation C. These values are obtained
through a multivariate (weighted) regression of the observed χ2 statistics at HapMap3 SNPs against the
corresponding values of `(j, C). In this work, we use τ̂C to predict the expected χ2 statistic at all GWAS
SNPs. For a given SNP j, we have:
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χ̂2
j = Nj

∑
C

τ̂C`(j, C) +Njα̂+ 1

The τ̂C parameters can either be global estimates that are learned from the entire GWAS data set (restricted
to HapMap3 SNPs), or chromosome-specific estimates that are learned from the remaining off-chromsome
data. Empirically, we find that using the entire genome does not introduce false positives (see Figure 1).

Next, we stratify SNPs based on their expected χ2 into B distinct, evenly-sized bins. In practice, to
ensure a sufficiently coarse partitioning of the data we set B = 100. For densely imputed data such as the
UK Biobank this results in each bin b containing ≈ 100K SNPs. We then estimate the proportion of null
(π̂0,b) and alternate SNPs (π̂1,b) by fitting a cubic spline to the histogram of p-values as proposed by ref.28

and implemented in the q-value package40. Following ref.23 we weight each p-value by dividing the nominal
p-value by the ratio of π̂1,b to π̂0,b. Intuitively, bins with higher proportion of true alternates will have their
p-value weighted downward (i.e. made more significant). However, unlike ref.23, we normalize these weights
to have mean one:

ŵb =

π̂1,b

π̂0,b

1
B

∑B
b=1

π̂1,b

π̂0,b

(3)

Theory developed in ref.13 suggests that despite the fact that ŵb is learned in a data-dependent manner, a
weighting scheme with this property preserves control of type I error since the number of weights we learn
(i.e. 100) is significantly less than number of hypothesis test we perform.

S-FDR, GBH and IHW methods

We adapted three previously proposed methodologies that leverage prior information to serve as comparators
to our approach: Stratified False Discovery Rate (S-FDR)22, Grouped Benjamani Hochberg (GBH)23, and
Independent Hypothesis Weighting (IHW)24. Because these are FDR-controlling procedures, we calibrate the
expected level of FDR control required to match the more traditional criteria for genome-wide significance
(p ≤ 5 × 10−8). We refer to this level of genome-wide FDR control as qGW , which we estimate as the
maximum q-value28 amongst SNPs with p-values ≤ 5 × 10−8. We implemented S-FDR by binning SNPs
according to various criteria used in this study. We then computed q-values for each bin and rejected all
SNP within the bin whose q-value was less than qGW . This stratified FDR strategy is similar to Schork
et al.16. GBH and IHW were implemented in the IHW (v1.1.3) and IHWpaper (v1.0.2) packages24 which
we ran using the default setting and specified the level of FDR control to be qGW . GBH takes as input
group labels which were identical to the groupings used with FINDOR and S-FDR, while IHW handled raw
measurements of the auxiliary information (e.g., each SNP had its own unique value of predicted tagged
variance under BaseLD).

Functional Annotations

We employed the 75 functional annotations of the baselineLD model, which were previously demonstrated
to be enriched for heritability across a wide variety of complex traits12 (see Supplementary Table 1). For
clarity, we provide a brief description of the model’s contents below. This model is an extension of the
53 annotation baseline model developed in ref.8. Briefly, the initial baseline model consisted of 24 main
annotations to which 500bp flanking windows were added to create secondary annotations. These include
histone modifications H3K4me1, H3K4me3, H3K4ac, H3K9ac, and H3K27ac that span multiple cell types;
genic elements describing coding, 3’ UTR, 5’ UTR, promoter, and intronic regions; combined chromeHMM
and Segway segmentations (7 states); Digital genomic footprint and transcription factor binding sites; DNase
Hypersensitivity I sites; Super enhancers and FANTOM5 enhancers; and sites conserved across mammals
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(see ref.8 and references therein). The baseline model was augmented in ref.12 by adding four more binary
annotations based on super-enhancers and typical enhancers, as well as two conserved annotations based on
GERP++ scores. The baselineLD model was then created by adding ten common MAF bin annotations
and six LD-related annotations (predicted allele age, LLD-AFR, recombination rate, nucleotide diversity,
background selection statistic, and CpG content).

Simulations

Simulations were based on real imputed genotypes of British ancestry individuals from the UK Biobank
interim release (N=113K). We removed poorly imputed SNPs whose INFO score was less than 0.6, filtered
out rare variants whose minor allele count was less than five in European individuals of the 1000 genomes,
and additionally excluded the MHC region on chromosome six. This resulted in 9.6M SNPs for analysis. We
randomly subsampled N individuals from this data set (in our main simulations, N=100K) and simulated
continuous phenotypes under a polygenic model with normally distributed causal effect sizes and a specified
number of causal variants. Genotypes were standardized so that each causal variant explained an equal
proportion of the phenotypic variance. To induce functional enrichment, we altered the prior probability
that a SNP was selected to be causal, setting this to be proportional to Var(βj) =

∑
C C(j)τC . Empirically

estimated enrichment parameters (τ ’s) were obtained from a meta-analysis of the 31 traits reported in ref.12

(see Supplementary Table 1). This allowed our simulations to more closely reflect the complex, multi-faceted
genetic architectures observed in real data. We note that functional enrichment was estimated without
knowledge of the true functional enrichment used to simulate phenotypes. To obtain the baseLD-LOCO
criteria, we estimated chromosome specific τ ′s using off-chromosome data. Finally, we used PLINK v1.941

to compute association statistics for each SNP. The primary metric of interest in both real and simulated
data was the number of independent GWAS hits (at a level of p < 5× 10−8) that the various methodologies
identified. We conservatively define independent hits using PLINK’s clumping algorithm with 5MB window
and an r2 threshold of 0.01. Reference LD for this procedure was based on the same 113K British ancestry
individuals for both simulations and real data analysis. To avoid over-counting loci where allelic heterogeneity
was likely present in real data, we collapsed independent signals that were within 100KB of one another into
a single locus.

UK Biobank data set

We used BOLT-LMM27,30 to compute mixed model association statistics. A key advantage of this approach
that it allowed us to retain related individuals in this dataset, thereby maximizing power and data usage27.
We performed basic QC on each trait following standard GWAS practices (see ref.27 for details). For each
phenotype, we generated three sets of summary statistics based on individuals of self-reported European
ancestry. The first set of summary statistics consisted of 145K individuals from the interim UK Biobank
release25,30. This served as our “discovery” dataset and had mean sample size of ≈ 130K across 27 inde-
pendent traits (see below). We then created two additional sets of summary statistics derived from the full
UKBiobank release26. Our “replication” dataset consisted of 314K individuals in the final release that were
not present in the interim release (mean sample size = 283K). This dataset was used to verify findings in the
discovery sample. Our “full” dataset was the entire compendium of 459K individuals (average N= 416K).
While we computed summary statistics at 20 million SNPs which passed filtering and QC thresholds (see
ref.27), to ensure compatibility with simulations, we ran association analyses restricting to the same set of
well-imputed ≈ 9.6M biallelic SNPs which, upon intersection, resulted in 9.6M SNPs for the interim release
and 8.9M in the full release.

To avoid over-representation of certain phenotypic classes in our real data analysis that may bias our
results, we constructed a set of 27 (roughly) independent and heritable traits, only retaining traits that
exhibited a phenotypic correlation r2 < 0.1. To ensure adequate power to estimate functional enrichment,
we also required that the traits have a heritability Z-score that was greater six in the 145K dataset to be
included in our analysis8. An overview of the phenotypes analyzed in this work can be found in Table 1.
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Independent Non-UK Biobank data

To confirm the robustness of our findings we sought to replicate them in non-UK Biobank GWAS. We were
able to obtain publicly available GWAS summary statistics for nine GWAS traits that were part of the 27
trait analysis (see Supplementary Table 10). As SNP coverage was not uniform, we intersected the data
sets and only examined significant findings that were present both GWAS. When per-SNP sample sizes were
unavailable, we used the max N obtained from the corresponding publication (see Supplementary Table
10). External GWAS alleles were polarized to the UK Biobank and standardized effect sizes were compared
( Z√

N
).

Replication Analysis

We carried out replication analysis in independent UK Biobank (27 traits; 3307 loci) and non-UK Biobank
data (9 traits; 446 loci). To ensure compatibility across all traits and data sets, standardized effect sizes
were computed by dividing Z-scores by the square root of the study sample size. To quantify replication, we
computed the replication slope, defined as the slope resulting from a regression of the standardized effect sizes
in the replication data versus the discovery data. We restricted our analysis to lead SNPs at independent,
genome-wide significant loci in the discovery data that were also present in the replication data. We defined
three class of loci: those that were genome-wide significant only using the Unweighted approach, only using
FINDOR p-values, or using both methods. Because re-weighting could result in different lead SNPs at the
same locus, we designated a locus as genome-wide significant using both methods if the lead SNP discovered
by unweighted p-values had an r2 > 0.01 with the lead SNP discovered by FINDOR.
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Tables

145K 459K
Class Trait N h2

g Unweighted FINDOR %Improve Unweighted FINDOR %Improve

Anthropometric

Balding Type I 68K/208K 0.21 96 100 4.2% 334 346 3.6%
Body Mass Index 145K/458K 0.28 117 132 12.8% 908 950 4.6%

Heel T Score 141K/446K 0.33 300 308 2.7% 1130 1149 1.7%
Height 145K/458K 0.64 674 690 2.4% 2395 2402 0.3%

Waist-hip Ratio 145K/458K 0.17 98 104 6.1% 460 506 10.0%

Blood Cell

Eosinophil Count 140K/440K 0.21 187 200 7.0% 699 731 4.6%
Mean Corpular Hemoglobin 141K/443K 0.22 237 248 4.6% 765 791 3.4%

Red Blood Cell (RBC) Count 141K/445K 0.25 192 206 7.3% 840 885 5.4%
RBC Distribution Width 141K/445K 0.20 198 212 7.1% 652 674 3.4%
White Blood Cell Count 131K/444K 0.21 148 165 11.5% 713 750 5.2%

Disease

Auto Immune Traits 145K/459K 0.04 14 18 28.6% 75 86 14.7%
Cardiovascular Diseases 145K/459K 0.12 38 49 28.9% 285 314 10.2%

Eczema 145K/459K 0.08 35 46 31.4% 181 198 9.4%
Hypothyroidism 145K/459K 0.05 27 30 11.1% 139 153 10.1%

Respiratory Diseases 145K/459K 0.06 24 29 20.8% 104 109 4.8%
Type 2 Diabetes 145K/459K 0.05 14 14 0.0% 76 86 13.2%

Other

Age at Menarche 75K/242K 0.25 52 56 7.7% 318 338 6.3%
Age at Menopause 44K/143K 0.11 18 18 0.0% 85 91 7.1%
FEV1-FVC Ratio 124K/370K 0.27 174 185 6.3% 684 714 4.4%

Forced Vital Capacity (FVC) 124K/372K 0.23 90 99 10.0% 544 565 3.9%
Hair Color 143K/452K 0.14 140 143 2.1% 428 436 1.9%

Morning Person 130K/410K 0.11 14 14 0.0% 156 165 5.8%
Neuroticism 124K/372K 0.11 11 16 45.5% 128 149 16.4%

Smoking Status 145K/458K 0.10 18 24 33.3% 154 178 15.6%
Sunburn Occasion 109K/344K 0.07 23 25 8.7% 78 82 5.1%

Systolic Blood Pressure 134K/422K 0.22 98 106 8.2% 666 703 5.6%
Years of Education 144K/455K 0.14 17 24 41.2% 286 315 10.1%

Overall 145K/459K NA 3054 3261 6.8% 13283 13866 4.4%
Average Per-Trait 130K/409K 0.18 113 120 13% 491 513 6.9%

Table 1: FINDOR increases power across 27 UK Biobank traits. For each trait, we report the
number of independent, genome-wide significant loci identified by the Unweighted approach and by FINDOR
in the 145K and 459K UK Biobank releases. Complete results are reported in Supplementary Table 6.
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Figure 1: FINDOR is well-calibrated in simulations of null loci. We report the average number of
independent, genome-wide significant (p < 5×10−8) associations on null chromosomes. Results are averaged
across 1000 simulations. Error bars represent 95% confidence intervals. Numerical results are reported in
Supplementary Table 2.
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Figure 2: FINDOR increases power in simulations of causal loci. We report the average number
of independent, genome-wide significant (p < 5 × 10−8) associations on causal chromosomes. Results are
averaged across 1000 simulations. Error bars represent 95% confidence intervals. Numerical results are
reported in Supplementary Table 4.
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Figure 3: Relative improvement of FINDOR in real UK Biobank phenotypes decreases as a
function of absolute power. We plot the relative improvement in the number of independent GWAS
loci identified by FINDOR compared to Unweighted p-values vs. sample size times observed-scale SNP-
heritability, using log scales. The three circles at the bottom of plot correspond to traits where the number
of loci was identical for FINDOR compared to Unweighted p-values (0% improvement). Numerical results
are reported in Table 1 and Supplementary Tables 5,6, and 12.

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2017. ; https://doi.org/10.1101/222265doi: bioRxiv preprint 

https://doi.org/10.1101/222265
http://creativecommons.org/licenses/by-nc-nd/4.0/


●

●

●

●

●●

●

●●●

●●●●●

●

●

●

●
●

●

●

●●
●

●

●

●

●●
●

●●●

●

●●

●

●

●

●●●

●
●

●

●

●●

●●

●

●

●●
●

●
●

●●●
●●●

●

●

●

●
●

●●

●

●

●●
●●
●●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●●●●●●

●●

●

●

●●●

●
●

●●●

●

●

●

●●
●

●

●

●

●●●

●●●

●

●

●●●

●

●

●●

●

●●

●

●

●●

●

●●

●●

●

●
●
●

●●

●

●

●●

●●●

●

●

●

●●●●

●
●●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●●●

●
●

●

●
●●●

●●
●
●

●

●

●

●

●

●●●●

●●
●

●
●

●

●

●●

●●
●

●

●

●●
●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●●
●

●

●

●●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●●●

●●

●

●

●

●●

●●

●
●

●

●
●
●

●

●
●

●
●

●

●
●●

●

●

●

●
●

●
●

●●

●
●

●●

●

●

●●

●●●●
●

●

●●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●●●

●

●●

●

●

●●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●
●

●●

●●

●

●

●

●●

●

●
●●

●

●

●●●

●

●●●●

●
●●

●

●

●

●

●

●

●
●●

●●●

●

●

●●
●

●
●●●

●

●●
●

●●

●

●

●
●

●
●
●

●

●

●

●

●●

●●●

●

●●

●●●
●●

●●●

●

●

●●

●

●

●

●●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

● ●●●
●

●●

●●●

●●
●●

●●
●●●

●
●●

●●

●●●●●

●
●

●●

●
●

●

●

●

●●●●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●●

●●●●●

●
●

●

●

●
●

●
●●●

●

●●

●
●

●

●●●

●

●
●●●

●●

●

●

●●

●

●

●●

●●

●
●

●
●

●

●●

●●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●●●●

● ●

●

●

●

●
●

●

●

●
●●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●
●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●●

● ●● ●

●

●
●●

●

●

●

●
●

●●

●
●●

●●

●

●
●●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●●●●

●
●

●

●

●●

●
●●

●

●

●

●

●●●

●

●●

●

●

●

●●

● ●●●

●

●●●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●●

●●

●●

●●●

●●●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●
●●

●

●
●

●
●

●●

●

●

●●

● ●

●
●

●

●●

●

●

●

●

●●

●

●●●

●

●●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●●●

●
●●●

●●●●●

●

●

●●●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●●●
●●●

●

●●

●

●
●

●●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●
●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

● ●●
●

●

●

●●

●

●

● ●

●

●●
●●●

●
●●

●

●

●

●

●

●

●

●
●●●●

●●
●
●

●

●

●●

●

●●

●

●

●●●

●
●

●●
●●

●●

●
●

●

●●●●●

●

●

●●
●

●

●
●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●●●●●●

●●●

●

● ●●

●

●

●

●
●

●

●●●

●

●●

●
●

●

●

●

●●

●●●

●

●●
●
●

●

●●

●

●

●

●

●●●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●●●

●●
●

●●●●

●

●●●
●

●
●●●

●

●

●●

●

●●

●

●●●●
●

●

●●
●●●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●●

●
●

●●

●

●
●
●

●

●

●●

●

●

●●●

●●
●

●

●

●●●

●

●

●

●●

●●●●

●

●●●

●

●
●

●
●

● ●

●

●●

●

●

●

●●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●●●

●●

●

●

●

●
●●●●●

●● ●

●

●

●
●● ●●●●●

●

●

●●●

●

●
●

●

●

●●

●
●
●●

●

●

●

●

●●●●

●

●

●
●

●

●

● ●●●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●● ●●

●
●

●

●

●●●●●●●

●●
●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●●

●

●

●●

●●

●

●●
●

●●

●

●●●●

●

●

●●

●●

●

●
●

●

●

●●●●●
●●

●

●

●
●●

●
●

●

●●
●

●

●●●

●

●

●

●

●

●

●●●●

●● ●

●

●●

●

●●

●●●

●●

●

●

●

●

●

●

● ●●●●●●●

●

●●
●●●

●
●●●

●●●

●●●
●
●●
●

●

●●

●●●●

●

●

●●

●●

●●

●

●●●

●

●

●

●

●●

●

●
●

●
●●

● ●

●

●
●●

●●

●

●
●●●

●

●

●●●
●
●●

●●

●

●

●
●●●

●

●
●

●

●
●

●
●

●

●●

●

●●●

●●

●●

●●

●●●●

●
●

●●●

●●

●●●●●●●●●●

●●●

●●●

●

●●●
●● ●

●●

●

●

●

●●
●
●

●

●●

●●●●

●

●●

●
●
●

●
●

●●

●

●

●●

●●

●

●●●

●●

●
●

●●●

●●

●
●

●●

●
●

●
●●

●

●●
●

● ●
●

●●

●●

●●●●

●
●●

●●
●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●

●

●

●●

●

●●●

●

●

●●

●●●

●●

●

●
●
●

●
●●●

●

●

●

●
●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●
●●

●

●●

●
●

●●

●
●

●
●
●●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●
●●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●●
●●

●●

●●

●
●

●

●

●

●

●

●●●●

●●●●

●

●●

●
●

●●

●

●

●

●●
●●

●●

●●

●●

●●

●

●
●●● ●
●●●

●

●●

●

●

●●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●●●●

●

●

●

●●
●●●
●

●

●

●

●●
●●●

●

●

●

●

●●

●

●●

●

●●
●●●●

●●●

●●

●

●●

●

●

●●●

●●●
●

●●

●
●●

●

●

●●●

●●●

●

●

●
●

●
●

●

●●

●

●●

●●

●●

●●

●
●

●●

●●●●

●

●●●

●●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●●

●

●

●
●●

●

●

●

●
●
●

●

●

●

● ●
●●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●
●

●

●
●

●
●
●

●●

●
●●
●●

●●●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●●

●●●

● ●●●

●

●●

●

●

●

●

●

●●

●

●●●
●
●

●

●

●
●●

●

●

●

●

● ●

●

●

●●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●●
● ●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●●

●
●●
●

●●

●

●

●●
●

●
●

●
●

●

●

●
●
●●●●

●●●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●●

●

●

●●
●

●

●
●

●●

●

●●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●
●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●●●

●●

●●
●

●

●
●

●

●

●●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●
●●

●

●●

●
●

●

●●
●●

●
●
●
●

●●
●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●

●●

●
●

●

●

●

●●

●●

●
●●●●

●
●●●

●

●

●●

●
●
●
●

●

●

●
●
●

●

●

●

●
●
●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●
●●

●

●

●●●
●

●
●

●●

●

●

●
●
●

●

●●

●

●

●

●

●●●●

●
●

●●

●

●
●
●
●

●

●

●●● ●●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●
●●●
●●●●
●

●●
●
●

●

●●●
●
●●

●

●●●●●
●

●
●

●●
●

●
●

●

UK Biobank  (27 Traits) Non−UK Biobank (9 Traits)

−0.1 0.0 0.1 0.2 −0.1 0.0 0.1 0.2

−0.1

0.0

0.1

0.2

Discovery Effect Size

R
ep

lic
at

io
n 

Ef
fe

ct
 S

ize

Discovery significant using: ●● Both FINDOR only Unweighted Only

Figure 4: Novel loci identified by FINDOR replicate in independent samples. We plot the
standardized effect sizes ( Z√

N
) in the UK Biobank replication sample (average N = 283K, left panel) and

non-UK Biobank replications sample (average N = 158K, right panel) vs. the UK Biobank discovery sample
(average N = 132K). For novel loci identified by FINDOR (blue triangles), the replication slope was positive
and highly significant in both cases (UK Biobank = 0.66, Non-UK Biobank = 0.69). Numerical results are
reported in Supplementary Tables 9 and 11
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