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Abstract

Whole Genome Sequencing is increasingly used to identify Mendelian variants in clini-

cal pipelines. These pipelines focus on single nucleotide variants (SNVs) and also structural

variants, while ignoring more complex repeat sequence variants. We consider the problem

of genotyping Variable Number Tandem Repeats (VNTRs), composed of inexact tandem du-

plications of short (6-100bp) repeating units. VNTRs span 3% of the human genome, are

frequently present in coding regions, and have been implicated in multiple Mendelian disor-

ders. While existing tools recognize VNTR carrying sequence, genotyping VNTRs (determining

repeat unit count and sequence variation) from whole genome sequenced reads remains chal-

lenging. We describe a method, adVNTR, that uses Hidden Markov Models to model each

VNTR, count repeat units, and detect sequence variation. adVNTR models can be devel-

oped for short-read (Illumina) and single molecule (PacBio) whole genome and exome sequenc-

ing, and show good results on multiple simulated and real data sets. adVNTR is available at

https://github.com/mehrdadbakhtiari/adVNTR

Keywords. VNTR, Tandem Repeats, VNTR frameshift, Second-generation sequencing, Third-
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1 Introduction

Next Generation Sequencing (NGS) is increasingly used to identify disease causing variants in clin-

ical and diagnostic settings, but variant detection pipelines focus primarily on single nucleotide

variants (SNVs) and small indels and to a lesser extent on structural variants. The human genome

contains repeated sequences such as segmental duplications, short tandem repeats, and minisatel-

lites which pose challenges for alignment and variant calling tools. Hence, these regions are typically

ignored during analysis of NGS data. In particular, tandem repeats correspond to locations where

a short DNA sequence or Repeat Unit (RU) is repeated in tandem multiple times. RUs of 1-6bp

are classified as Short Tandem Repeats (STRs), while longer RUs spanning potentially hundreds

of nucleotides are denoted as Variable Number Tandem Repeats (VNTRs).46,54

VNTRs span 3% of the human genome and are often found in coding regions where the repeat

unit length is a multiple of 3 resulting in tandem repeats in the amino acid sequence. More

than 1,200 VNTRs with a RU length of 10 or greater exist in the coding regions of the human

genome48. Compared to STRs, which have been extensively studied21,49,36,52,13, VNTRs have not

received as much attention. Nevertheless, multiple studies have linked variation in VNTRs with

Mendelian diseases (e.g., Medullary cystic kidney disease26, Myoclonus epilepsy29, and FSHD33)

and complex disorders such as bipolar disorder (Table 1). In some cases, the disease associated

variants correspond to point mutations in the VNTR sequence26,42 while in other cases, changes

in the number of tandem repeats (RU count) show a statistical association (or causal relationship)

with disease risk. For example, the insulin gene (INS) VNTR has an RU length of 14 bp with RU

count varying from 26 to 20041. Variation in this VNTR has been associated with expression of the

INS gene and risk for type 1 diabetes (OR = 2.2)14. Notwithstanding these examples, the advent

of genome-wide SNP genotyping arrays led to VNTRs being largely ignored. They have been called

‘the forgotten polymorphisms’6.

Gene Chr Unit Number of units Annotation Inheritance Disease
len Normal Pathogenic

PER3 1 54 4 5 coding A Bipolar disorder3

MUC1 1 60 11-12 single insertion coding M MCKD126

IL1RN 2 86 3-6 2 intron A Stroke, CAD53

DUX4 4 3.3kb 11-100 1-10 M FSHD33

DAT1 5 44 7-11 10 (ADHD) UTR A ADHD, Parkinson’s, Bipolar17,27

MUC21 6 45 26-27 4 bp deletion coding A Diffuse panbronchiolitis (DPB)24

CEL 9 33 11-21 single deletion coding M Monogenic diabetes42

INS 11 14-15 26-200 26-44 (T1D) promoter A T1D;T2D;Obesity6,41,14

DRD4 11 48 2-11 7 coding A OCD, ADHD28,50

ACAN 15 57 27-33 13-25 coding A Osteochondritis dissecans16

ZFHX3 16 12 4-5 coding A Kawasaki

GP1BA 17 39 1-4 2/3 genotype coding A ATF in Stroke8

SERT 17 16-17 9/10/12 intron A BPSD, Alzheimer’s23,40

SERT 17 22 14 16 (OCD) promoter A OCD,Anxiety, Schizophrenia23

HIC1 17 70 1-4 5+/5+ promoter A Metastatic Colorectal Cancer39

MMP9 20 12 5-6 coding A Kawasaki

CSTB 21 12 2-3 12+ 5’UTR M Progressive myoclonic epilepsy 1A29

MAOA X 30 2-5 4 promoter A Bipolar disorder7

Table 1: Disease-linked VNTRs are generally distinguished from STRs by a longer length (≥ 6) of the repeating

unit. ‘M’ denotes Mendelian inheritance, while ‘A’ represents possibly complex inheritance captured via Association.

As it is difficult to genotype VNTRs, most cases have been determined via association, but the inheritance mode

could be high penetrance.
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VNTRs were originally used as markers for linkage mapping since they are highly polymorphic

with respect to the number of tandem repeats at a given VNTR locus20. Traditionally, VNTR geno-

typing required labor intensive gel-based screens which limited the size of large population based

studies of VNTRs. Whole genome sequencing has the potential to detect and genotype all types of

genetic variation, including VNTRs. However, computational identification of variation in VNTRs

from sequence remains challenging. Existing variant calling methods have been developed primar-

ily to identify short sequence variants in unique DNA sequences that fall into a reference versus

alternate allele framework, which is not well suited for detecting variation in VNTR sequences.

Genotyping VNTRs in a donor genome sequenced using short (Illumina) or longer single

molecule reads, requires the following: (a) recruitment of reads containing the VNTR sequence; (b)

counting RUs for each of the two haplotypes; and (c) identification of mutations, specifically indels

in coding regions. Mapping tools such as BWA35 and Bowtie231 can work for read recruitment

for STRs, but are challenged by insertion/deletion of larger repeat units. Mapping issues also con-

found existing variant callers, including realignment tools such as GATK IndelRealigner12, as reads

contained within the VNTR sequence have multiple equally likely mappings and therefore will be

mapped randomly to different locations with low mapping quality. Detection of point mutations

in long VNTRs requires integrating information across the entire VNTR sequence. For VNTRs

whose total sequence length (RU count times the RU length) is much longer than the read length,

detection of SNVs and indels is not feasible using existing variant callers.

Other tools have addressed the problem of RU count estimation, focusing on the related problem

of STR genotyping. Some of these tools do not work with large repeating patterns52,36. Others

require all repeat units to be near-identical13,49. In particular, ExpansionHunter13 looks for exact

matches of short repeating sequence within flanking unique sequences, and works for STRs, but not

as well with the larger VNTRs with variations in RUs (Results). VNTRseek20 detects a VNTR-like

pattern in reads and aligns it to tandem repeats, but uses a complex alignment process making it

difficult to run the tool. Alignment based tools need to align reads at both unique ends, which may

not be possible for short (Illumina) reads. Single molecule reads (e.g., PacBio15, Nanopore10) can

span entire VNTR regions, but it is difficult to estimate the RU count directly since the distance

between the flanking regions varies dramatically from read to read due to an excess of indel errors.

For example, the length-based RU count estimate from a VNTR in the SERT gene included five

different values (13, 14, 15, 16, and 18) for a diploid genome.

In contrast to methods like VNTRseek which seek to discover/identify VNTRs, we describe

a method, adVNTR, for genotyping VNTRs at targeted loci in a donor genome. For any target

VNTR in a donor, adVNTR reports an estimate of RU counts and point mutations within the

RUs. It trains Hidden Markov Models (HMMs) for each target VNTR locus, which provide the

following advantages: (i) it is sufficient to match any portions of the unique flanking regions for read

alignment; (ii) it is easier to separate homopolymer runs from other indels helping with frameshift

detection, and to estimate RU counts even in the presence of indels; (iii) each VNTR can be modeled

individually, and complex models can be constructed for VNTRs with complex structure, along with
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VNTR specific confidence scores. For longer VNTRs not spanned by short reads, adVNTR can

still be used to detect indels, while providing lower bounds on RU counts, or exact estimates for

short VNTRs. adVNTR models can estimate RU counts for thousands of VNTRs on PacBio data.

Using simulated data as well as whole-genome sequence data for a number of human individuals,

we demonstrate the power of adVNTR to genotype VNTR loci in the human genome.

2 Method

A VNTR sequence can be represented as SR1R2 . . . RuP , where S and P are the unique flanking

regions, and Ri(1 ≤ i ≤ u) correspond to the tandem repeats. For each i, j, Ri is similar in sequence

to Rj , and the number of occurrences, u, is denoted as the RU count. We do not impose a length

restriction on S and P , but assume that they are long enough to be unique in the genome. For

genotyping a VNTR in a donor genome, we focus primarily on estimating the diploid RU counts

(u1, u2). However, many (∼ 103) VNTRs occur in coding regions, and mutations, particularly

frameshift causing indels, are also relevant. Our method, adVNTR, models the problems of RU

counting and mutation detection using HMMs trained for each target VNTR. It has three compo-

nents: (i) HMM training module for model parameter estimation; (ii) read recruitment; and, (iii)

estimating RU counts and variant detection. We describe each of these below.

HMM Training. The goal of training is to estimate model parameters for each VNTR and each

sequencing technology. We use an HMM architecture with three parts (Fig. 1). The first part

Figure 1: The VNTR HMM. The HMM is composed of 3 profile HMMs, one each for the left and right flanking
unique regions, and one in the middle to match multiple and partial numbers of RUs. The special states Us (‘Unit-
Start’), and Ue (‘Unit-End’) are used for RU counting. Dotted lines refer to special transitions for partial reads that
do not span the entire region.

matches the 5’ (left) flanking region of the VNTR. The second part is an HMM which matches

an arbitrary number of (approximately identical) repeating units. The last part matches the 3’

(right) flanking region. The RU pattern is matched with a profile HMM (RU HMM ), with states

for matches, deletions, and insertions, and its model parameters are trained first. To train RU

HMM for each VNTR, we collected RU sequences from the reference assembly30 and performed
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a multiple sequence alignment. Let h(i, j) denote the number of observed transitions from state i

to state j in hidden path of each sequence in multiple alignment, and hi(α) denote the number of

emissions of α in match state i. We define permissible transition (arrows in Fig. 1) and match-state

emission probabilities as follows:

T (i, j) =
h(i, j) + b0∑
i→l(h(i, l) + b0)

, Ei(α) =
hi(α) + b1∑

α′ hi(α
′) +Nb1

for α, α′ ∈ {A,C,G, T}.

Non-permissible transitions have probability 0, and hi(α) = 1/4 for insert state i and 0 for deletions.

The pseudocounts b0 and b1 were estimated by initially setting them to the error rate of the

sequencing technology, but they (along with other model parameters) were updated after aligning

Illumina or PacBio reads to the model. The RU HMM architecture was augmented by adding (a)

transitions from Ue to Us to allow matching of variable number of RU; (b) adding the HMMs for

the matching of any portions of left and right flanking sequences; and (c) by adding transitions

to match reads that match either the left flanking or the right flanking region. In addition, reads

anchored to one of the unique regions can jump past the other HMM using dotted arrows.

While error correction tools for PacBio have been developed, most do not work for repetitive

regions,22,44,2,38,32 and others assume a single haplotype for error correction45,5. In contrast, the

HMM allows us to model many of the common (homopolymer) errors directly. Insertion deletion

errors are common in single molecule sequencing particularly in homopolymer runs of length ≥ 6,

and occur mostly as insertions in the homopolymer run9. Consider a match state i with highest

emission probability for nucleotide α. The transition probability T (i, i) from a match state i to

itself was set based on the match probabilities of α in previous k = 6 states. The PacBio model

parameters were updated using both simulated and real PacBio data.

Read Recruitment. The first step in adVNTR is to recruit all reads that match a portion of the

VNTR sequence. Alignment-based methods do not work well due to changes in RU counts (See

Results), but the adVNTR HMM allows for variable RU count. To speed up recruitment, we used

an Aho-Corasick keyword matching algorithm1 to identify all reads that match a keyword from

the VNTR patterns or the flanking regions. Note that the dictionary construction is a one-time

process, and all reads must be scanned once for filtering. The keyword size and number of keywords

were empirically chosen for each VNTR. Filtered reads had high sensitivity and were filtered by

aligning to the HMM using the Viterbi algorithm. We aligned 107 non-target genomic sequences to

the HMM to form an empirical null distribution, and used 10−5 as the p-value cut-off, correcting

for multiple (∼ 103) target VNTRs.

Estimating VNTR RU Counts. Recall the Viterbi algorithm: Let Vk,j denote the highest (log)

probability of emitting the first k letters of the sequence s1, s2, . . . sn and ending in state j of an
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HMM. Let, Prevk,j denote the state j′ immediately prior to j in this optimum parse. Then,

Vk,j = max
j′
{Vk′,j + log T (j′, j) + logEj(sk)}, (1)

Prevk,j = arg max
j′
{Vk′,j + log T (j′, j) + logEj(sk)}, (2)

where, k′ = k − 1 for match or insert states; k′ = k otherwise.

For each read, the Viterbi algorithm allows for the enumeration of the maximum likelihood

(ML) path by going backwards from Prev(End, n). Ignoring all but the Us and Ue states in the

Viterbi path, we get a pattern of the form Uk1
e (UsUe)

k2Uk3
s with k1, k3 ∈ {0, 1}, and k2 ≥ 0. We

estimate the RU count of the read as k1 + k2 + k3, and mark it as a lower bound if k1 + k3 > 0 (see

Fig. 2 for an example).

Figure 2: Estimates of RU counts using re-

cruited reads. (A) (k1, k2, k3) = (1, 3, 1); RU count

≥ 5. (B) (k1, k2, k3) = (0, 3, 1); RU count ≥ 4 (C)

(k1, k2, k3) = (0, 3, 0); RU count = 3.

To model errors in read counts, we define param-

eter rε s.t. r∆
ε is the probability of RU counting error

by ±∆ in the estimation of the true count. Thus the

probability of getting the correct count is 1−r, where

r = 2(rε + r2
ε + r3

ε + . . .) =
2rε

1− rε

The analysis of reads at a VNTR gives us a multi-set

of RU counts (or lower bounds) c1, c2, . . . , cn. Additionally, we allow the possibility that all reads

are sampled from one haplotype with the RU count of the missing haplotype being X. We define

C = {c1, c2, . . . , cn} ∪ {X} and use C to get a list of possible genotypes (ci, cj) with ci ≤ cj . Then,

the conditional likelihood of a read with RU count c is given by:

Pr(RU = c|(ci, cj)) =



1− r c = ci = cj
1
2((1− r) + r

|c−cj |
ε ) c = ci

1
2((1− r) + r

|c−ci|
ε ) c = cj

1
2(r
|c−cj |
ε + (r

|c−cj |
ε ) c 6= ci, c 6= cj

(1
2)(1− r) c = ci, cj = X

Similarly, the likelihood of a read with a lower bound c on the RU count is given by:

Pr(RU ≥ c|(ci, cj)) =


(1− r) c ≤ ci
1
2(1− r) ci < c ≤ cj

r c > cj

The likelihood of the data C is given by
∏
ck∈C Pr(ck|(ci, cj)). The posterior genotype probabilities

can be computed using Bayes’ theorem:

Pr((ci, cj)|C) =
Pr(C|(ci, cj)) Pr((ci, cj))∑

i′,j′ Pr(C|(ci′ , cj′)) Pr((ci′ , cj′))
(3)
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We generally set equal priors. However, in the event that we only see reads with a single count c′,

we choose Pr((c′, c′)) = Pr((c′, X)) = 1
2 . If we see multiple counts, we set Pr((c′, X)) = 0 for all

c′ ∈ C, and give equal priors to all other genotypes.

VNTR Mutation Detection. It is not difficult to see that alignment based methods do not

work well in VNTRs. Changes in RU counts make it difficult to align reads even for mappers

that allow split-reads, as the gaps in different reads can be placed in different locations. A similar

problem appears with small indels, as there are multiple ways to align reads with an indel in a

Repeat Unit. The adVNTR HMM aligns all repeat units to the same HMM, and this has the effect

of aligning all mutations/indels in the same column. Consider the case where reads contain a total

of v nucleotides matching a VNTR RU of length `, and RU count u. Moreover at a specific position

covered by d Repeats, suppose we observe ι indel transitions.

For a true indel mutation, we expect u`
v fraction of transitions to be an indel, giving a likelihood

of the observed data as Binom(d, ι, u`v ). Alternatively, for a homopolymer run of i > 0 nucleotides,

let εi denote the per-nucleotide indel error rate. We modeled ε1 empirically in non-VNTR, non-

polymorphic regions and confirmed prior results that εi increases with increasing i37. Thus, the

likelihood of seeing ι indel transitions due to sequencing error in a homopolymer run of length i is

Binom(d, ι, εi). We scored an indel in the VNTR using the log-likelihood ratio

−2 ln

(
Binom(d, ι, u`v )

Binom(d, ι, εi)

)
, (4)

which follows a χ2 distribution. We select the indel if the nominal p-value is lower than 0.01.

3 Results

HMM training. Initial HMMs were trained using a multiple alignment of RU sequences from

the reference assembly hg1930, as described in methods. Similarly, HMMs were trained for the left

flanking and right flanking regions for each VNTR. To tailor HMMs for short reads, we used WGS

data of a CEU trio from 1000 Genomes project and the AJ trio from Genome in a Bottle (GIAB)

project. Correspondingly, to train models for PacBio reads, we re-estimated model parameters after

aligning PacBio simulated reads using SimLoRD47. A total of 865 VNTR models were trained for

VNTRs in coding and promoter regions of the genome, for both Illumina and PacBio. Subsequently,

we tested performance for (a) read-recruitment, (b) counting of Repeat Units, and (c) detection of

indels.

Running time. On PacBio WGS sequencing data at 30X coverage (aligned with Blasr), adVNTR

took 10 hours to genotype all 865 VNTRs. For unaligned sequencing data of a CHB individual

(20X) coverage, the time increased to 21:45 hours.

Read Recruitment. To evaluate read recruitment performance in PacBio sequencing, we simu-

lated haplotypes with 30x coverage using SimLoRD47 for three disease-linked VNTRs (INS, CSTB,
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Figure 3: Sensitivity of read recruitment at VNTR loci. Comparison of adVNTR read selection with BWA-

MEM and Bowtie2 mapping for Illumina reads (short VNTRs) and Blasr for PacBio reads (long VNTRs). Each plot

shows the sensitivity of mapped/selected reads as a function of the number of repeats for different VNTRs.

and HIC1) in their known RU count range. To evaluate read recruitment and RU genotyping for

Illumina, we used ART25 to simulate haplotype WGS (shotgun 150bp) reads at 30x coverage for

three disease-linked short VNTRs using known RU counts. Pairs of haplotypes were merged to get

diploid samples. We compared adVNTR with BWA-MEM and Bowtie2 algorithms for assessing

Illumina read recruitment (Fig. 3: A-C) and with Blasr9 for PacBio reads (Fig. 3: D-F). The plots

show that while adVNTR works well for a range of RU counts, other mapping tools work well only

when the simulated RU count matches the reference RU count.

VNTR RU count estimation with PacBio reads. Recall that sequencing (particularly ho-

mopolymer) errors can cause lengths to change, particularly for short RU lengths and larger RU

counts. To test the performance of adVNTR for RU counting on haplotype data, we compared

against a naive method that estimates RU counts based on read length between the flanking re-

gions. A total of 210 VNTRs with lengths ranging from 10bp to 90bp were selected and for each

VNTR, PacBio sequence was simulated for 20 different RU counts with coverage varying from 1-

40X. Fig. 4A shows RU count performance on VNTRs in INS, CSTB, and HIC1 genes for varying

RU counts and sequence coverage, while Fig. 4B shows RU counting performance on all 210 VNTRs

as a function of RU lengths. adVNTR estimates are uniformly good except at low sequence cover-

age. We tested RU counting on diploid samples by simulating different RU counts on individuals

at 3 VNTRS (Table S2). adVNTR RU counts showed 100% accuracy in each of the 52 different

samples tested.

To test performance on real data where the true VNTR genotype is not known, we checked

for Mendelian inheritance consistency at four disease-linked VNTRs in the AJ trio from Genome
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Figure 4: VNTR genotyping using PacBio data. (A) RU count estimation on simulated PacBio reads and

effect of sequencing coverage on estimation. (B) Effect of repeating unit length on naive method. For shorter

repeating units, insertion and deletion errors have more impact on RU count estimation. (C) Mendelian consistency

of genotypes at 4 VNTR loci in the Chinese Han and Ashkenazi trios. (D) LR-PCR based validation of genotypes at

disease-linked VNTRs in NA12878. (E) RU count calls and consistent calls ratio in AJ trio. (F) RU count calls and

consistent calls ratio in Chinese trio.
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in a Bottle (GIAB)55 and a Chinese Han trio from NCBI SRA (accession PRJEB12236). Our

predictions were consistent in each case (Fig. 4C). We extended this analysis to 865 VNTRs in

the coding region of human genome with RU count ≥10. At a posterior probability threshold of

0.95, 99.1% of the calls in the AJ trio, and 98.5% of the calls in the Chinese trio are consistent

with Mendelian inheritance. The few discrepancies can be attributed mainly to low coverage and

missing data (Fig. 4E,F). Increasing sequence coverage to have ≥ 10 reads spanning the VNTR

will increase the high confidence RU counts (Suppl. Fig. S1).

We also performed a long range (LR)PCR experiment on the individual NA12878 to assess the

accuracy of the adVNTR genotypes. In Fig. 4D, black bands correspond to the observed PCR

product lengths, and they match up with the computational product lengths based on estimated

RU count (red arrows), while being different from the hg19 reference RU count. For each VNTR,

there are two arrows for the predicted heterozygous RU counts, and a single arrow for the SLC6A4

VNTR that was predicted to be homozygous.

While we could not get the VNTR discovery tool VNTRseek20 to run on our machine (personal

communication), we observed that the authors had predicted 125 VNTRs in the Watson sequenced

genome51, and 75 VNTRs in two trios as being polymorphic. In contrast, analysis of the PacBio

sequencing data identified >500 examples of polymorphic VNTRs with RU counts ≥ 10 that overlap

with coding regions. The results suggest that variation in RU counts of VNTRs and their role in

influencing phenotypes might be greater than previously estimated.

RU counting with Illumina. We tested adVNTR RU counting performance on Illumina reads

simulated using ART on three VNTRs and compared it to ExpansionHunter13 which is designed

mainly for STRs (Supp. Table S2). Of the 52 samples tested, adVNTR predicted the correct

genotype in all but 6 cases, with erroneous calls in the case of high RU counts where the read length

does not span the VNTR perfectly. In contrast, ExpansionHunter could not predict a majority of

cases as it makes the assumption that the different RUs are mostly identical in sequence (valid for

STRs but not for many VNTRs).

For short VNTRs, adVNTR can be an effective tool for larger population-scale studies of VNTR

genotypes using WGS data replacing labor intensive gel electrophoresis7,8. Fig: 5 shows the RU

count frequencies for two disease-linked VNTRs (in the coding region of GP1BA and promoter

of MAOA), using 150 PCR-free WGS data obtained from 1000 genomes project11. The 2R/3R

genotypes in BP1BA are associated with Aspirin Treatment failure for stroke prevention8. Notably,

our results suggest that the 2R genotype is absent in African populations suggesting that this shorter

allele arose after the out of Africa transition.

VNTR mutation/indel detection. To test indel detection, we simulated Illumina reads from

20 whole genomes after introducing a single insertion or deletion in the middle of the VNTR region

in the CEL gene. As a negative control, we simulated 10 WGS experiments with a range of sequence

coverage values. We ran adVNTR, Samtools mpileup34, and GATK HaplotypeCaller12 which uses

GATK IndelRealigner, to identify frameshifts in each of the simulated datasets, and the 10 control
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Figure 5: Population-scale genotyping of VNTRs. (A) RU count frequencies for MAOA VNTR. In more
diverse populations, the dominant genotype has lower frequency than other populations which leads to having more
diversity in RU count of the VNTR. (B) RU count frequencies for GP1BA VNTR. Lack of 2R genotype in African
population suggests it may have occurred outside of Africa.

datasets. On the control data, none of the tools found any variant. On the simulated indels,

adVNTR made the correct prediction in each case (Suppl. Table S3), while Samtools and GATK

were unable to predict a single insertion or deletion. This result is not surprising as the reads have

poor alignment scores, and the indel can be mapped to multiple locations (Suppl. Fig. S2).43

As frameshifts in the VNTR region of the CEL gene have been linked to a monogenic form of

diabetes42, we tested for frameshifts in CEL using whole Exome sequencing (WES) data from 2,081

cases with Type 2 Diabetes18 and compared the numbers to 2,090 control individuals. WES data

analysis is challenging as high GC-content makes it difficult to PCR-amplify this VNTR. adVNTR

found that while none of the controls had any evidence of a frameshift, 8 of the 2,081 diabetes cases

showed a frameshift in this VNTR region (Suppl. Fig. S3).

4 Discussion

The main contribution of our paper is the separation of VNTR discovery from VNTR genotyping.

The problem of genotyping VNTRs (determining diploid RU counts and mutations) is increasingly

important for clinical pipelines seeking to find the genetic mechanisms of Mendelian disorders. In

this paper, we presented adVNTR to genotype VNTRs using different sequencing methods. Our

methods use a trained model for each target, allowing us to tailor the approach for complex VNTRs,

and resolves the problem of mapping reads for indel detection by collapsing all RU copies. Like

other STR genotyping tools, adVNTR works best when reads can span the VNTR, but (a) indel

detection is possible for long VNTRs; (b) RU counting lower bounds can still separate pathogenic

cases from normal cases; and, (c) the increasing popularity of long read sequencing (esp. PacBio,

and Nanopore) makes it possible to genotype over 800 coding VNTRs. Future research will focus on

increasing the number of target VNTRs, and algorithmic strategies to speed up VNTR discovery.

Acknowledgements. The analyses presented in this paper are based on the use of study data

downloaded from the dbGaP web site, under phs001095.v1.p1, phs001096.v1.p1 and phs001097.v1.p1.
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Figure S1: Association of sequencing coverage in VNTR region and confidence in RU count calling.

The figure shows the confidence of RU count estimation in AJ trio. Most of low confidence calls are resulted from

low coverage in VNTR region. With at least 10 reads that span the VNTR, we will get 0.95 confidence in RU count

calling.
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Figure S2: Alignment stats with frameshift. Alignment of a simulated data after running GATK IndelRe-
aligner, when there is a deletion. With a sequencing mean of 30X, 25 reads contain the deletion but even after
running realigner, deletions are mapped to five different repeating units.

Figure S3: Frameshift in CEL gene. Multiple alignment of sequenced reads and reference repeating unit shows
a deletion in diabetes patient genome. Due to low PCR amplification in GC rich VNTR region (84.8%), the coverage
of VNTR region is 14X and 6 reads support the deletion.
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RU Count Discrepancy
PacBio Dataset Illumina Dataset

VNTR Simulated Genotype adVNTR Expansion Hunter adVNTR

MAOA 1/1 0/0 -/- 0/0
MAOA 1/2 0/0 0/-1 0/0
MAOA 1/3 0/0 0/-2 0/0
MAOA 1/4 0/0 0/-3 0/0
MAOA 1/5 0/0 0/-4 0/0
MAOA 2/2 0/0 -1/-1 0/0
MAOA 2/3 0/0 0/-1 0/0
MAOA 2/4 0/0 -1/-3 0/0
MAOA 2/5 0/0 -1/-4 0/0
MAOA 3/3 0/0 -2/-2 0/0
MAOA 3/4 0/0 -2/-3 0/0
MAOA 3/5 0/0 -2/-4 0/0
MAOA 4/4 0/0 -3/-3 0/0
MAOA 4/5 0/0 -3/-4 0/0
MAOA 5/5 0/0 -4/-4 -1/-1
GP1BA 1/1 0/0 0/0 0/0
GP1BA 1/2 0/0 0/0 0/0
GP1BA 1/3 0/0 0/-1 0/0
GP1BA 1/4 0/0 1/-2 0/-1
GP1BA 2/2 0/0 0/0 0/0
GP1BA 2/3 0/0 0/-1 0/0
GP1BA 2/4 0/0 0/-2 0/-1
GP1BA 3/3 0/0 -1/-1 0/0
GP1BA 3/4 0/0 -1/-2 0/0
GP1BA 4/4 0/0 -2/-2 -1/0
CSTB 1/1 0/0 -/- 0/0
CSTB 1/2 0/0 1/0 0/0
CSTB 1/3 0/0 2/0 0/0
CSTB 1/4 0/0 3/0 0/0
CSTB 1/5 0/0 4/0 0/0
CSTB 1/6 0/0 4/-1 0/0
CSTB 1/7 0/0 3/-3 0/0
CSTB 1/8 0/0 4/-3 0/0
CSTB 1/9 0/0 3/-5 0/0
CSTB 1/10 0/0 4/-5 0/0
CSTB 1/11 0/0 4/-6 0/0
CSTB 1/12 0/0 4/-7 0/0
CSTB 1/13 0/0 4/-8 0/0
CSTB 1/14 0/0 3/-10 0/-1
CSTB 2/2 0/0 0/0 0/0
CSTB 2/3 0/0 1/0 0/0
CSTB 2/4 0/0 1/-1 0/0
CSTB 2/6 0/0 3/-1 0/0
CSTB 2/8 0/0 3/-3 0/0
CSTB 2/10 0/0 3/-5 0/0
CSTB 2/12 0/0 3/-7 0/0
CSTB 2/14 0/0 3/-9 0/-1
CSTB 3/3 0/0 -1/-1 0/0
CSTB 3/4 0/0 2/1 0/0
CSTB 3/6 0/0 2/-1 0/0
CSTB 3/8 0/0 2/-3 0/0
CSTB 3/10 0/0 2/-5 0/0

Table S2: RU count genotyping results on simulated data. For two cases, (MAOA 1/1 and CSTB 1/1)
Expansion Hunter doesn’t find any RU count.
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# of Samples
# of samples that frameshift has been identified
Samtools Our Method GATK

10X
Insertions 20 0 20 0
Deletions 20 0 20 0

20X
Insertions 20 0 20 0
Deletions 20 0 20 0

30X
Insertions 20 0 20 0
Deletions 20 0 20 0

40X
Insertions 20 0 20 0
Deletions 20 0 20 0

Table S3: Comparison of indel finding with Samtools
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