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Abstract 

The effects of inter-individual variability on disease treatment and prevention are important to 

the goals of “precision medicine”1. In biomedical research, consideration of racial or ethnic 

differences allows generation and exploration of hypotheses about interactions among genetic 

and environmental factors responsible for differential medical outcomes. The US National 

Institutes of Health, therefore recommends adequate participation of subjects from ethnic 

minority groups in research studies. Nevertheless, considerable debate has focused on validity of 

race or ethnicity as biological construct2. Inconsistent definition of race/ethnicity and 

insignificant genetic variations between ethnic groups have invited disregard to this construct3. 

On the contrary, differences in prevalence, expression and outcomes of various diseases among 

ethnic groups argue for continued and focused attention to ethnicity as important predicting 

variable. In context of Alzheimer’s disease (AD), we have previously reported that ethnicity does 

moderates the proteomic markers of dementia4. Here, we attempted to classify and predict self-

reported ethnicity (Hispanic or non-Hispanic white, [NHW]) using a limited serum profile of 107 

proteins. Random Forest (RF) classification method was able to discriminate those two 

ethnicities with 95% accuracy and could successfully predict ethnicity in an independent test-set 

(Area under ROC curve: 0.97). Variable selection method led to a condensed set of six proteins 

which yielded comparable classification and prediction accuracy. Our results provide 

preliminary evidence for proteomic variability between ethnic groups, and biological validity of 

ethnicity construct. Moreover, they also offer an opportunity to exploit these differences towards 

the objectives of precision medicine.  
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Main 

A secondary objective of the Texas Alzheimer’s Research & Care Consortium (TARCC) project, 

an ongoing longitudinal cohort study aimed at examining the role of clinical and biological 

markers of AD, is to investigate ethnic variability with regard to clinical features and biomarkers. 

Majority of participants in TARCC belong to Hispanics (Mexican-Americans; MA) or non-

Hispanic whites (NHW), two major ethnic groups of Texas. Like most research studies, ethnicity 

in TARCC was self-reported. Five hundred and thirty cognitively healthy elderly individuals 

(312 Hispanics and 218 NHWs) who were recruited as control subjects in TARCC study were 

used for this analysis. Two ethnic groups differed significantly in terms of age, education, 

prevalence of diabetes and obesity, and an “omnibus” dementia severity metric (i.e., “δ”)4 (Table 

1). Although nominally non-demented, these control subjects were recruited for a convenient 

sample study and two groups differed with regard to “δ”. After removing the variance related to 

available confounding variables, 107 serum proteins from baseline visit and RF algorithm 

classified two ethnicity classes in a training set (comprising 75% of total the sample) with 95% 

accuracy. In the test-set (the remaining 25% of total sample), this classification model provided 

good predictive accuracy with specificity and sensitivity of 93.10% and 97.33% respectively 

with area under Receiver Operating Characteristic (AUC-ROC) curve of 0.97. Twenty most 

discriminatory variables, identified by variable importance (VI) measure could predict ethnicity 

with AUC-ROC of 0.99, sensitivity of 97.33% and specificity of 93.10%. . Finally, in order to 

limit the number of classifying variables to facilitate future replicability, a variable selection 

method provided a set of six protein variables, which provided a comparable predictive accuracy 

with ROC AUC of 0.99, sensitivity of 94.87% and specificity of 94.55%. Results from all three 

models are summarized in Table 2.  
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These results support the potential validity and utility of ethnicity as a biological construct5. 

Even though Hispanic group is a heterogeneous mixture of various ancestries6 and not as 

mutually exclusive from NHWs as for example NHWs and east-Asians, serum protein’s ability 

to distinguish it from NHWs highlight importance of ethnicity in not only biomarker research but 

also disease pathophysiology. Previously, ethnicity related differences in expression of several 

blood-based biomarkers, including cytokines7-9 have been reported from TARCC 10-13, Multi-

Ethnic Study of Atherosclerosis (MESA) 14-21 and National Health and Nutrition Examination 

Survey (NHANES) 22-29. Combined with our results, these findings lay a common theme that 

supports our hypothesis that ethnicity does impact the circulating levels of proteins. The 

mechanism(s) that mediate those differences remain unclear. In the simplest application, the 

biomarkers of ethnicity can be viewed as biological parameters that are themselves significantly 

correlated with an ethnicity and not necessarily responsible for ethnic groupings. Therefore, the 

resulting protein profile may not be the biological determinants of ethnicity per se but a 

reflection instead of cross-ethnic differences in lifestyle or disease processes. These differences 

among ethnic groups may be responsible for disparate disease-susceptibility, treatment response 

and/or outcomes. Our results strongly emphasize the importance of self-reported ethnicity 

information in research and underlines the need for validation of research results across 

ethnicities.  

Multiple prior attempts to measure the correspondence between self-reported ethnicity class and 

genetic clusters have provided mixed results2,3,30,31
. Human genome sequencing project and 

related studies concluded that ethnicity is a weak surrogate of various genetic and non-genetic 

factors in correlations with health status 32. In fact, individuals from different ethnicity were 

found to be genetically similar than individuals from their own ethnicity 3,33. Surprisingly, a 
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limited proteomic assay which was not pre-selected to predict ethnicity or to develop ethnicity 

specific traits, could precisely differentiate & predict ethnicity. Complete human proteome may 

provide greater precision and possibly provide ethnicity specific proteomic compositions. Our 

results therefore emphasize importance of proteomic research and endorse the hypothesis that 

proteomics is not just the new genomics34 and include phenotypic information from protein 

posttranslational modifications, protein interactions, metabolite abundance, and, protein 

stoichiometry35. 

Classification models using a reduced set of the six most important differentiating proteins 

resulted in comparable predictive accuracy. These six proteins were- Connective tissue growth 

factor (CTGF), interferon (IFN) gamma, interleukin (IL)-12p40, IL-13, transforming growth 

factor (TGF) alpha, and thrombospondin 1 (THBS1). Relative expression of each of these six 

proteins is shown in fig 3. IL13 levels were relatively higher in Hispanic group, although not 

statistically significant (p=0.12). All other proteins were over-expressed in NHW group, levels 

were statistically significant with exception of IL12p40 (p=0.83). These reflect mean differences, 

however, Figure 3 also suggests clear cross-group differences in these proteins’ distributions. 

Protein-protein interactions (PPI) network of identified proteins indicated that these selected 

proteins were enriched for various processes including regulation of protein phosphorylation, cell 

activation and intracellular signal transduction (Table 3). CTGF and TGF-alpha are epidermal 

growth factor receptor (EGFR; a member of tyrosine kinase family) ligands which controls 

cellular functions during development and homeostasis through protein phosphorylation36. 

EGFRs have been found to be dysregulated in several epithelial cancers like lung, colon etc and 

known to vary among ethnic groups37,38. Among these epithelial cancers, ethnicity influence 

response to treatment and mortality. For example, response to EGFR tyrosine kinase inhibitors 
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(e.g. geftinib) treatments in lung cancer can be predicted by ECFR ligands levels in blood and 

ethnicity39. Among ethnicities, Hispanic and Asian groups respond better to these treatments 

compared to NHWs39. Lower levels of EGFR ligands like CTGF & TGF-alpha may play a role 

in comparatively better response to EGFR inhibitors in Hispanics. Our results do not provide any 

direct evidence to this hypothesis but support the arguments for further investigations into this 

direction. If serum levels of ligands like TGF alpha can predict response to treatments, we can 

anticipate rapid development in precision medicine based on serum proteomic assays. Also, if 

EGFR activity is proven to be significantly different among ethnic groups, ethnicity can provide 

individual variability to patients which is key to precision medicine. 

All six selected proteins have been previously reported to associate with dementia phenotype  

“δ” in ethnicity-adjusted models from TARCC cohort41,42. Details about concept and utility of δ 

is can be obtained from past publications43-45 46.  There are cross-ethnic differences in the δ-

scores of non-demented TARCC participants, and in δ’s serum protein biomarkers12. Although 

the reported results were adjusted for δ, the appearance of δ-specific biomarkers among the most 

discriminating set of ethnicity related biomarkers may suggest cross-ethnic differences in general 

intelligence.  

Results of this study are also significant in context of “Hispanic paradox”, an epidemiological 

paradox observed in southwestern states of US including Texas40. Socioeconomically, Hispanics 

were disadvantaged and resembled African-Americans but their health status was comparable to 

NHWs. Precise biological basis to this phenomenon is unclear and several theories have been 

proposed to explain this paradox i.e. Salmon bias effect, selective migration, better social support 

etc. Differential response to EGFR inhibitors in lung cancer and expression of EGFR ligands in 

Hispanics is probably an example of biological factors which offset the impact of socio-
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economic adversities. Our study provides merely a direction for further research focused on 

ethnicity specific biological differences.  

Our analysis has notable limitations. Even though we included a relatively large sample size and 

more than 100 serum proteins, quality control measures to remove batch effects, and adjustment 

for demographic and clinical factors, these results require validation in another independent 

sample. A complete assay of serum proteomics could be more valuable in such analysis. Also, all 

proteins were measured cross-sectionally and it was not possible to verify if ethnicity specific 

profile were stable over time. Finally, patient population used in this study included elderly 

individuals and these results need validation in younger adults47. 

In summary, we provide proof of concept for the accurate prediction of self-reported ethnicity 

from a set of serum proteins. There exists significant support in literature for differential protein 

expression by ethnic group. These may inform disparities in disease prevalence, severity or 

treatment response and may be of value to the development of “precision medicine”.  
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Fig 1. Overview of methodology 
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Table 1. Demographic and clinical characteristics of participants 

 Hispanic NHW P value 

N 312 218  

Age (mean, SD) 64.99, 7.94 70.43, 
8.56 

<0.0001 

Gender(% female) 62.5 67 0.3342 

Education (mean, SD) 11.27, 4.66 15.60, 
2.62 

<0.0001 

APOE e4(%) 19.2 26.2 0.0747 

Hypertension(%) 60.9 57.8 0.5316 

Diabetes(%) 33 11.5 <0.0001 

Obesity(%) 49.4 22.9 <0.0001 

Hyperlipidemia (%) 55.4 49.1 0.1628 

Dementia severity 
metric, δ (Mean, SD) 

-0.40, 0.38 -0.72, 0.37 <0.0001 
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Table 2. Classification and prediction results. Out of bag (OOB) error rate estimated prediction 
error of random forest models utilizing bootstrap aggregating to training set. Classification 
performance of a random forest model on test set was assessed by classification matrix and area 
under the receiver-operating characteristic curve (AUC). The performance was explored for three 
different sets of explanatory variables. 
Parameters* 107 variables model 20 variables model 6 variables model 

OOB estimate of  
error rate 

3.78% 4.79% 5.04% 

Accuracy 95% 95% 95% 

Sensitivity 97.33% 97.33% 94.87% 

Specificity 93.10% 93.10% 94.55% 

ROC-AUC .97 .99 .99 

*positive class = Hispanic 
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Fig 2. Variable importance for Random Forest classification model, ranked based on mean 
decrease in accuracy. Only top 20 variables are shown here along with their relative Gini 
coefficients. 
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Fig 3. Differential expression of most significant proteins differentiating Hispanic and NHW 
groups in Random Forest classification model is shown in violin plot. Mean level of IL13 was 
higher in Hispanic group but difference was not significant (p=.97) while all other proteins were 
overexpressed in NHW group. CTGF (p=.04), IFN gamma (p=.03), TGF alpha (p=.00) and 
Thrombospondin 1 (p=.02) were significantly different in two groups. Difference in mean level 
of IL12p40 (p=.76) was insignificant.  
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Fig 4. Protein-protein interaction networks of top six classifiers of two ethnicities (Hispanics and 
NHWs).   

 
 
 
 
 
 
 
 
Table 3. Functional enrichments in protein-protein interactions network 
Pathway description Count in gene 

set 
False discovery rate 

Biological processes (GO) 
positive regulation of protein phosphorylation 
 

6 9.93e-06 
 

positive regulation of cell activation 
 

5 9.93e-06 
 

positive regulation of intracellular signal 
transduction 
 

6 9.93e-06 
 

positive regulation of peptidyl-tyrosine 
phosphorylation 
 

4 4.61e-05 
 

regulation of apoptotic process 
 

6 4.68e-05 
 

Molecular functions (GO) 
Receptor binding  6 6.93e-05 
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Cytokine receptor binding 3                0.0399 
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Methods 
 
Full design of study is outlined in supplementary fig 1. Data were derived from Texas 

Alzheimer’s Research & Care Consortium (TARCC) project, an ongoing longitudinal cohort 

study aimed at examining the role of clinical and biological markers in the development and 

progression of Alzheimer’s disease (AD). Each participant in this study provided written 

informed consent prior to enrollment, evaluation and biomarker blood draw. Detailed description 

of the TARCC study design can be found elsewhere 48,49. 

The demographic and clinical characteristics of patients are summarized in supplementary Table 

1. For this analysis, 530 cognitively healthy elderly individuals (Hispanics n= 312 , NHWs n= 

218) who participated as control subjects in TARCC study were considered. Each participant 

underwent a standardized evaluation at respective TARCC sites on baseline and then annually. 

At baseline, all subjects underwent clinical interview, neuopsychological assessment and 

biomarker blood draw. A consensus group for the respective site determined their cognitive 

status as cognitively healthy individuals. Study participants with serious medical illness were not 

considered for the study. Inclusion and exclusion criteria have been discussed previously in 

details 48.  

Proteomic profiling 

Non-fasting samples were collected with 10mL serum-separating (tiger-top) vacutainers tubes at 

the baseline visit. Samples were allowed to clot at room temperature for 30 minutes in a vertical 

position before being centrifuged at 1300 × g for 10 minutes. Next, 1mL aliquots were 

transferred into polypropylene cryovial tubes labeled with freezerworks barcodes and placed into 

−80° C freezers for storage until use.  
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Serum samples were shipped to Myriad RBM, a CLIA-certified biomarker testing Laboratory 

based in Austin, TX, USA. The samples were assayed on the luminex-based HumanMAP 1.0 

platform. Over 100 proteins were quantified utilizing fluorescent microspheres with protein-

specific antibodies. Information regarding the least detectable dose (LDD), inter-run coefficient 

of variation, dynamic range, overall spiked standard recovery, and cross-reactivity with other 

HumanMAP analytes can be obtained online (https://rbm.myriad.com/products-

services/humanmap-services/humanmap/).  

 

Statistical analysis 

Data pre-treatment. Analytes with >15% missing data or value below the lower detection limit 

(LDL), were excluded from analysis. Out of 124, 107 analytes were included for further analysis 

and missing values were imputed with k-nearest neighbor (KNN) method with 10 neighbors per 

analyte based on Euclidean distance. KNN is an imputation method that accounts for the local 

similarity of the data by identifying similar analytes with similar peak intensity profiles via a 

distance 50. Next, data were log(10)- transformed and normalized to reduce systemic variance 

among the data and improve the performance of downstream analysis. Correlation and co-

linearity was tested to ensure the variables are independent. Pearson correlation was high for 

some variables like different interleukins which is not completely unexpected, however the 

Variance Inflation Factors (VIF) were less than 10 for all variables which is accepted threshold 

for multi-collinearity.  

Following potential confounders were considered: age, sex, study site, batch number, APOE 

status, educational achievement and history of hypertension, diabetes, hyperlipidemia and 

obesity. Each analyte variable was regressed onto covariates to adjust for the confounding effects 
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on analytes. The standardized residuals (mean of zero and standard deviation of one) from the 

linear regression were then used in further analysis to classify and predict ethnicity.  

Classification methods. Dataset was divided into a training set (75%) and an independent test 

dataset (25%), and we trained a Random Forest (RF) in the training set of Hispanic and NHW 

subjects using their proteomic profiles. We evaluated its performance using cross-validation on 

test-set and scored predictive power in a receiver operating characteristic (ROC) analysis. 

We selected Random Forest (RF) model 51, an increasingly popular method in machine learning 

that characterizes structure in high dimensional data while making no distributional assumptions 

about the response variable or predictors. RF model (using randomForest, an R package) uses an 

ensemble of classification trees was employed to develop a Hispanic versus NHW classifier from 

the training set. RF builds a forest with user defined number of regression trees (ntree) and 

number of predictors sampled for splitting at each node (mtry); we used 500 classification trees 

and mtry=Vn. Trees are built by recursive binary partitioning of observations into subsets and 

each tree is asymptomatically unbiased. A portion of the observations is excluded from the tree 

building process (i.e. out-of-bag or OOB data) for each individual tree to be used as an 

independent estimate of the prediction accuracy. At each node in a tree, the variables used to 

develop that tree are tested for the split in the data that achieves greatest reduction in error. RF 

used this ensemble of trees to make predictions of class based on majority votes to a given sets of 

parameters. During this process, “variable importance (VI)” is assessed that measures the relative 

predictive influence of individual variables on the classification model. VI based on permutation 

accuracy importance measure is most advanced measure because of its ability to evaluate the 

variable importance by the mean decrease in accuracy using the internal out-of-bag (OOB) 

estimates while the forests are constructed 51-53.  
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Variable selection. Although RF provides a measure of variable importance, it does not 

automatically choose the optimal number of variables that can yield the good classification 

accuracy with low misclassification error rate. To identify a set of limited number of variables, 

we employed two strategies. First, we used the top-20 variables based on VI measure and 

second, we employed a backward elimination of variables using OOB errors 54. This was 

performed using R package varSelRF and variable elimination from RF was carried out by 

successively eliminating the least important variables (with importance as returned from random 

forest) and minimizing OOB error at the same time. At each iteration, a fraction of variables 

(default value = 0.2) were excluded from those in the previous forest that lowered computational 

cost and is coherent with the idea of an “aggressive variable selection” approach. In this process, 

model resolution gets better as the number of variables considered becomes smaller. After fitting 

all forests, the selected set of features is the one whose OOB error rate is within u = 1 standard 

error of the minimum error rate of all forests. This is in agreement with the “1 s.e. rule” 

commonly used in classification trees literature 55. The objective of these strategies was to select 

optimal subset of variables while keeping an error rate close to that from the original model. 

These subsets of variables were then used to classify ethnicity groups in training data and tested 

with independent test set.   

Classification performance. At each step, the performance of the RF was assessed by OOB 

estimate of error rate 52,56 and a separate accuracy assessment on an independent data set. 

Confusion matrix was subsequently constructed to compare true class with the class assigned by 

the classifier and to calculate overall accuracy. Area under the curve (AUC) of the receiver 

operating characteristic (ROC) curve estimated the predictive performance of models 57,58. 
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Functional analysis of protein-set 

Most significant proteins variables derived from variable selection method were assessed for 

their functional correlates with the STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) database (http://string-db.org) 59.  STRING allows exploration of how these 

proteins are inter-related to form protein-protein interaction networks by applying all active 

interaction sources (experiments, databases and text mining). It can also provide biological 

functions and specific cellular pathways involving those proteins. 
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