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Abstract 

The discovery and development of the CRISPR-Cas9 system in the past few years has made 

eukaryotic genome editing, and specifically gene knockout for reverse genetics, a simpler, efficient, 

and effective task. The system is directed to the genomic target site by a programmed single-guide 

RNA (sgRNA) that base-pairs with the DNA target, subsequently leading to site-specific double-

strand breaks. However, many gene families in eukaryotic genomes exhibit partially overlapping 

functions and, thus, the knockout of one gene might be concealed by the function of the other. In such 

cases, the reduced specificity of the CRISPR-Cas9 system, which may lead to the cleavage of 

genomic sites that are not identical to the sgRNA, can be harnessed for the simultaneous knockout of 

multiple homologous genes. Here, we introduce CRISPys, an algorithm for the optimal design of 

sgRNAs that would potentially target multiple members of a given gene family. CRISPys first 

clusters all the potential targets in the input sequences into a hierarchical tree structure that specifies 

the similarity among them. Then, sgRNAs are proposed in the internal nodes of the tree by embedding 

mismatches where needed, such that the cleavage efficiencies of the induced targets are maximized. 

We suggest several approaches for designing the optimal individual sgRNA, and an approach that 

provides a set of sgRNAs that also accounts for the homologous relationships among gene-family 

members. We further show by in-silico examination over all gene families in the Solanum 

lycopersicum genome that our suggested approach outperforms simpler alignment-based techniques. 
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Graphical abstract 

 

 

Highlights 

 Many genes in eukaryotic genomes exhibit partially overlapping functions. This imposes 

difficulties on reverse-genetics, as the knockout of one gene might be concealed by the function 

of the other.  

 We present CRISPys, a graph-based algorithm for the optimal design of CRISPR systems given a 

set of redundant genes.  

 CRISPys harnesses the lack of specificity of the CRISPR-Cas9 genome editing technique, 

providing researchers the ability to simultaneously mutate multiple genes. 

 We show that CRISPys outperforms existing approaches that are based on simple alignment of 

the input gene family. 
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Introduction 

Due to extensive history of local and large-scale genomic duplications, many 

eukaryotic genomes harbor homologous gene families of partially overlapping functions [1–

4]. For example, 72% of the protein coding genes in the Plaza 3.0 Monocots database [5], 

that presently covers 16 fully sequenced plant genomes, belong to paralogous gene families 

with at least two members. This redundancy often leads to mutational robustness such that 

the inactivation of one gene often results in no or minimal phenotypic consequence [2,4,6–8]. 

As there are no observable phenotypes for many single-gene loss-of-function mutants, it is 

often necessary to mutate multiple members of a gene family to uncover phenotypic 

consequences and to enable in-depth molecular characterization of their function. Here, we 

present a computational methodology that will facilitate such endeavors via genome editing 

techniques. 

The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the 

associated protein 9 nuclease (Cas9) system have been recently adopted as a genome editing 

technique of eukaryotic genomes. The target genomic DNA sequence consists of 20 

nucleotides followed by the Protospacer Adjacent Motif (PAM), which is usually in the form 

of NGG (where N stands for any nucleotide and G for guanine). The system is directed to the 

genomic site using a programmed single-guide RNA (sgRNA) that base-pairs with the DNA 

target, subsequently leading to a site-specific double strand break four to five nucleotides 

upstream of the PAM sequence. This break can be repaired through the Non-Homologous 

End Joining (NHEJ) repair pathway, frequently resulting in a frameshift in the encoded 

protein, thus leading to its inactivation. Using the CRISPR-Cas9 system, DNA sequences 

within the endogenous genome are now regularly edited in diverse organisms as human [9], 
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mouse [10], zebra fish [11], yeast [12], and plants [13,14], and the system is rapidly 

becoming the technology of choice for generating single gene knockouts for reverse genetics 

studies [13,15–18]. Importantly, the binding affinity of the CRISPR-Cas9 system does not 

require perfect matching between the sgRNA and the DNA target. Thus, in addition to 

cleaving the desired on-target, cleavage may occur at multiple unintended genomic sites 

(termed off-targets) that are similar, up to a certain degree, to the sgRNA. Several studies 

have demonstrated that four or more mismatches can be tolerated between the sgRNA and 

the cleavage site, depending on the location of the mismatches and their spatial distribution 

[19–21]. Indeed, it is well acknowledged that mismatches at PAM-distal positions are better 

tolerated than those occurring at PAM-proximal sites [20,22,23]. Thus, when designing an 

sgRNA for editing a single gene, two topics should be considered: the sgRNA sensitivity 

(maximizing the cleavage probability of the on-target) and its specificity (minimizing the 

cleavage probabilities of off-target sites). Several computational tools have been constructed 

to deal with these challenges [24–30]. 

To date, much effort has been devoted to refine the specificity of the CRISPR system 

as a means to decrease the off-target effect [31–33]. Yet, the low specificity of the system 

could, in fact, be harnessed to enable a rational design of an sgRNA that would 

simultaneously target multiple genes. An example of such a possibility was recently shown in 

rice, where a single sgRNA led to the modification of three homologous genes from the 

cyclin dependent kinase protein family [34]. The sgRNA used in that study was designed to 

perfectly match one of the family members, while the other two homologues possessed one 

and two mismatches and were silenced as a byproduct. A fourth homologue, with three 

mismatches, was not affected by this transfection. Yet, it is possible that considering all 
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family members in the design process would enable the cleavage of a larger fraction of the 

homologous gene family and would enhance the balance between their cleavage frequencies. 

One approach for accomplishing this task is to align the sequences of the given genes 

and then locate highly similar CRISPR-Cas9 target sites in the consensus sequence, while 

allowing for few mismatches between the consensus and each of the aligned sequences. This 

strategy is implemented in the MultiTargeter tool [35], which also accounts for CRISPR-

specific considerations such as allowing mismatches only within PAM-distal nucleotides. In 

case that multiple potential sgRNAs are found, these are ranked according to their efficacy, 

as predicted by the CFD score [25]. While the MultiTargeter algorithm is very efficient in 

terms of computational running time, it may miss a large number of valid candidates. For 

example, similar 20-nt long subsequences that appear in two homologous genes but do not 

overlap in the resulting alignment, or that are in opposite strands, will be ignored.  

Here, we present a novel method, termed CRISPys, aimed for the design of an 

optimal set of sgRNAs for silencing multiple members of a gene family using the CRISPR-

Cas9 system. CRISPys detects highly similar sequences among the set of all potential 

CRISPR-Cas9 targets (i.e., sequences that are followed by a PAM site) located within the 

genes of interest and then designs sgRNAs that would cleave the gene set with highest 

efficacy. CRISPys can further incorporates any scoring function specifying the cleavage 

propensity of a genomic site by a given sgRNA, thus allowing flexible use of the method 

with the accumulation of knowledge regarding this emerging genome engineering technique. 

We present the utility of CRISPys by applying it in a genome-wide manner to numerous gene 

families in the Solanum (S.) lycopersicum genome and compare its performance to the 

existing alignment-based approach. 
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Figure 1. An illustrative example of a target tree used for sgRNA design. 

A group of five genomic targets (t1-t5) is hierarchically clustered according to pairwise 

distances. Each gene is represented by a single target and only the first 10 positions upstream 

of the PAM site are shown for each target (top-left panel). Nucleotides at polymorphic 

positions are indicated in red. The target set induced by internal node a, T
a
, includes t1 and t2 

while T
d
 includes all five targets. The numbers of polymorphic sites within T

a
, T

b
, and T

c
 are 

1, 1, and 3 and are below the k cutoff (set here to be 4), while the number of polymorphic 

sites within T
d
 is above k. Possible sgRNA candidates are considered based on all possible 

combinations for the polymorphic sites in T
c
, as listed at the panel to the left of the tree.   
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Results 

1. Algorithm description 

Given a set of genes, G={gi}, potentially belonging to a homologous gene family, and 

a scoring function 𝜑, we would like to identify suitable sgRNA candidates that are likely to 

cleave the largest number of genes in G. The input scoring function  𝜑(𝑠𝑔𝑅𝑁𝐴, 𝑡𝑎𝑟𝑔𝑒𝑡) →

[0,1] specifies the estimated cleavage propensity of a genomic target by a given sgRNA, such 

as the CFD score [25], CROP-IT [36], Optimized CRISPR Design [27], or CRISTA [37].  

1.1 Targets tree construction 

Ideally, we would like to examine all possible sgRNA candidates and identify the one 

that would cleave the given gene set with highest propensity. This, however, entails the 

examination of an exceedingly large number of sgRNA possibilities (4
l
, where l is the length 

of the sgRNA, typically l=20) leading to computationally intractable running time. The 

examined set is thus narrowed to the sgRNAs that are potentially relevant to the input gene 

set. To this end, all potential targets within the genes in G are clustered into a hierarchical 

tree structure that specifies the similarity among the targets as follows. First, for each gene 

𝑔_𝑖 ∈ 𝐺, all potential targets are extracted. By default, these are defined as 20-nt long 

sequences upstream to an NGG motif; additional PAM motifs (e.g., NAG) or other sequence 

lengths (17-23) can be specified. Second, the entire set of potential targets, T, are clustered 

using the UPGMA hierarchical clustering algorithm [38] and placed in a tree structure, such 

that more similar targets (represented by the tips of the tree) are placed closer to each other 

on the tree. The input pairwise distance matrix for the UPGMA clustering is computed using 

the scoring function 𝜑(𝑠𝑔𝑅𝑁𝐴, 𝑡𝑎𝑟𝑔𝑒𝑡) that is transformed into a distance metric (see 

Methods). An internal node, a, in this tree induces a set, T
a
, of potential targets that are the 
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descendants of this node. As a gets closer to the root, the size of T
a
 increases such that the 

contained targets become less similar and are less likely to be cleaved by a single sgRNA. 

We also denote by G
a
 the group of genes to which the targets in T

a
 belong. Figure 1 presents 

an example of a target tree for a family of five genes, each represented by a single potential 

target. 

1.2 Target-tree traversal and identification of sgRNA candidates 

Once the targets tree is constructed, the algorithm proceeds by traversing the tree in a 

post-order manner, identifying sets of targets for which sgRNA candidates will be designed. 

Specifically, upon reaching an internal tree node a, the number of polymorphic sites in the 

induced target set, T
a
, is calculated. If this number is above a cutoff k, the search does not 

proceed up the tree and potential sgRNAs are designed based on each of the descendent 

subtrees. Otherwise, tree traversal is continued. In all our analysis, k was set to 12 since k ≥ 

13 led to exceedingly long running time without producing any improvement in the assessed 

efficacies of the additional sgRNA candidates. 

For each target set identified, sgRNA candidates are designed by enumerating over all 

possible combinations of the polymorphic sites found within it (Figure 1). The efficacy of 

each candidate sgRNA s to target the genes in G is then assessed. Specifically, 𝜑_𝑠 (𝑔_𝑖 ), the 

cleavage propensity of gene 𝑔_𝑖 ∈ 𝐺 by sgRNA s is computed by considering all possible 

targets that belong to 𝑔_𝑖 as follows:  

𝜑_𝑠 (𝑔_𝑖 ) =  1 − ∏_𝑗▒[1 − 𝜑(𝑠, 𝑡_𝑖𝑗 )]     

where 𝜑(𝑠, 𝑡_𝑖𝑗 )  is the cleavage propensity of the j'th target site of gene 𝑔_𝑖 by sgRNA s (as 

calculated by the input scoring function). This way, as the number of similar targets in 𝑔_𝑖 
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increases so does the propensity that the gene is cleaved by the specified sgRNA; in case a 

gene has only one target, 𝜑_𝑠 (𝑔_𝑖 ) reduces to 𝜑(𝑠, 𝑡_𝑖1 ).  

Next, we compute Φ_s (𝐺); the efficacy of each sgRNA, s, to cleave the set of genes; 

and choose the best candidate. Intuitively, we would have liked to compute the joint 

propensity of the given sgRNA to cleave the entire set of genes, which translates into the 

following function: 

〖Φ_s (𝐺) =〗 ∏_(𝑔_𝑖 ∈ 𝐺)▒〖𝜑_𝑠 (𝑔_𝑖 )〗^   

Yet, the propensity to cleave all genes dramatically decreases when no sgRNA is decently 

suitable for all of the members. In such cases, it becomes irrelevant to use this function as an 

optimality criterion among the sgRNAs candidates. Thus, we implemented two alternative 

criteria for computing Φ_s (𝐺): 

Criterion 1: for each sgRNA s, compute the cleavage expectation across all genes in G: 

〖𝐸_𝑠 (𝐺) =〗 ∑_(𝑔_𝑖 ∈ 𝐺)▒〖𝜑_𝑠 (𝑔_𝑖 ) 〗. The optimal sgRNA candidate is defined as  

𝑠^𝑒𝑥𝑝 =    argmax┬𝑠 〖𝐸_𝑠 (𝐺)〗. 

Criterion 2: instead of optimizing the cleavage of all genes, concentrate on those with high 

cleavage propensity. This criterion thus ignores genes whose propensity of cleavage by a 

given sgRNA is below a certain threshold. Specifically, we define 𝐺_𝑠^𝛺 as the group of 

those genes that are expected to be cleaved by sgRNA s above a given threshold Ω:  

𝐺_𝑠^𝛺 = {𝑔_𝑖 ∈ 𝐺┤| 𝜑_𝑠 (𝑔_𝑖 ) ≥ Ω}. 

Let 𝑐_𝑠^𝛺 be the size of this group: 𝑐_𝑠^𝛺 = |𝐺_𝑠^𝛺 | and let 𝑐_𝑚𝑎𝑥^𝛺 be the highest 

𝑐_𝑠^𝛺 value computed for the group of input genes G. Because there may be multiple 
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sgRNAs with this 𝑐_𝑚𝑎𝑥^𝛺 value, the optimal sgRNA is chosen as the one with the highest 

propensity to cleave all  𝑐_𝑚𝑎𝑥^𝛺 genes:  

𝑠^𝛺 =    argmax┬𝑠 ∏_(𝑔_𝑖 ∈ 𝐺_𝑠^𝛺)▒〖𝜑_𝑠 (𝑔_𝑖 )  〗^   

𝑠. 𝑡.〖 𝑐〗_𝑠^𝛺 = 𝑐_𝑚𝑎𝑥^𝛺 

Notably, the use of this criterion necessitates the use of an arbitrary threshold (Ω). 

Setting Ω to 0.0 results in all input genes affecting the design, while setting Ω = 1 practically 

seeks the sgRNA that perfectly matches the largest number of genes. To set Ω to realistic 

values, the thresholds used for performance evaluation (see section below) were determined 

according to an experimental dataset that was profiled by the genome-wide detection 

technique, GUIDE-Seq [19]. Specifically, the data in that study are composed of a collection 

of 10 sgRNAs that overall cleaved 413 targets throughout the human genome. For each of 

these validated targets and its corresponding sgRNA, we calculated the predicted cleavage 

propensity using the CFD scoring function [25]. The upper 10
th

 (Ω = 0.66) and 50
th

 (Ω = 

0.43) percentiles were then chosen as the stringent and permissive thresholds, respectively. 

 

2. Number of genes predicted to be cleaved by the best sgRNA 

To demonstrate the utility of CRISPys and to evaluate its different design strategies 

𝑠^𝑒𝑥𝑝 and 𝑠^𝛺, we applied it to all 3,697 gene families of size 2-10 within the tomato 

(Solanum lycopersicum) genome. The classification of genes to families was taken from the 

Plaza plant comparative genomics database [5]. Using the 𝑠^𝑒𝑥𝑝 design—that considers the 

entire gene set—the expected number of genes predicted to be cleaved increases with the 
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number of genes that are included in the family (Figure 2). The average cleavage expectation 

approaches a plateau, such that the expected number of cleaved genes by the optimal sgRNA 

remains around 4 for families of size eight or higher. A similar trend is obtained using the 

𝑠^𝛺 design (Figure 3), which considers only genes whose propensity of cleavage is high. As 

expected, as the family size increases, the optimal sgRNA is predicted to cleave more genes, 

although the tendency to cleave all genes in the family decreases. For example, in 87% of the 

families of size two, the best sgRNA could cleave all family members. This percentage 

decreases to 10% for families of size six, while for all 50 gene families of size ten no such 

sgRNA could be obtained. Finally, an asymmetric tradeoff between the two design strategies 

is demonstrated in Table 1. When all genes in the family are considered, the cleavage 

expectation of the 𝑠^𝑒𝑥𝑝  candidate is higher compared to that of 𝑠^𝛺 (2
nd

 and 4
th

 columns). 

Yet, when only genes that are predicted to be cleaved with high propensity are considered, 

the 𝑠^𝑒𝑥𝑝  candidate would cleave fewer genes than the 𝑠^𝛺 (3
rd

 and 5
th

 columns).  
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Table 1. Comparison between the decision criteria of CRISPys 

For each family size of 2-10 genes in the genome of S. lycopersicum, CRISPys was applied 

with either the 𝑠^𝑒𝑥𝑝 or 𝑠^𝛺 criterion. Cleavage expectation is the average expected number 

of genes predicted to be cleave across all families of that size and 𝑐^𝛺 is the average number 

of genes that are predicted to be cleaved above a threshold of Ω = 0.43 by each design 

strategy. The standard deviation of each statistic is given in parentheses. See Supplementary 

Table S1 for results obtained using other Ω values.  

 

 Criterion 1: 𝒔^𝒆𝒙𝒑 Criterion 2: 𝒔^𝜴 

Family 

Size  

Cleavage 

Expectation 

𝒄^𝜴 

Cleavage 

Expectation
 

𝒄^𝜴 

2  1.70 (0.3) 1.77 (0.4) 1.69 (0.3) 1.87 (0.3) 

3  2.16 (0.5) 2.29 (0.6) 2.12 (0.5) 2.49 (0.5) 

4  2.59 (0.7) 2.81 (0.8) 2.15 (0.7) 3.07 (0.7) 

5  2.87 (0.7) 3.08 (0.93) 2.72 (0.7) 3.51 (0.9) 

6  3.23 (0.9) 3.51 (1.05) 3.06 (0.9) 4.04 (1.0) 

7-8 3.76 (1.2) 4.12 (1.5) 3.51 (1.3) 4.67 (1.4) 

9-10 4.03 (1.2) 4.38 (1.5) 3.76 (1.2) 5.18 (1.5) 
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Figure 2. CRISPys results across the genome of S. lycopersicum using the 𝒔^𝒆𝒙𝒑 

design strategy.  

A box plot describing the expected number of cleaved genes by the 𝑠^𝑒𝑥𝑝 candidate, over 

different family sizes. The lines within the boxplot represent the 1
st
, 2

nd
, and 3

rd
 quartiles and 

diamonds above the upper line represent outliers. 
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Figure 3. CRISPys results across the genome of S. lycopersicum using the 𝒔^𝜴 

design strategy.  

The number of genes predicted to be cleaved for all gene families of size 2-10. Each bar 

represents the results obtained for a given family size. The color bar at the right of the panel 

specifies the number of genes predicted to be cleaved by the 𝑠^𝛺 candidate. These results 

were computed with threshold Ω = 0.43.  

 

 

3. Comparison between CRISPys and a consensus-based approach 
To compare the results obtained using CRISPys to a consensus-based approach, we 

applied the MultiTargeter tool [35] to the same set of families within the S. lycopersicum 

genome. Notably, MultiTargeter identifies a promising sgRNA only when all family 
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members are predicted to be cleaved by a single sgRNA while no results are obtained 

otherwise. Thus, in this comparison we defined the prediction of CRISPys as successful if the 

predicted cleavage propensity of each of the genes by the designed sgRNA is above a 

threshold of Ω = 0.43 (as was determined based on experimental evidence; see section 1.2). 

This definition was applied to both the 𝑠^𝑒𝑥𝑝 and 𝑠^𝛺 design criteria of CRISPys. In 

comparison, MultiTargeter allows one mismatch in the eight positions furthest of the PAM, 

which translates to a more lenient lower bound of Ω = 0.35 using the CFD scoring function 

[25]. This analysis revealed several important observations (Table 2). First, CRISPys 

produced a successful prediction for all gene families for which MultiTargeter returned a 

result. Second, for all gene families considered, CRISPys obtained a larger fraction of 

successful predictions. Third, the percentage of successful predictions by all alternatives 

decreases as the family size increases. Yet, this decline is much shallower for the two design 

criteria of CRISPys, particularly 𝑠^𝛺, as compared with that obtained using MultiTargeter. 

For example, for families with two genes, the ratio between the number of successful 

predictions between CRISPys 𝑠^𝛺 design and MultiTargeter is 2.49, while this ratio arises to 

7.75 and 10.0 for families of size four and six, respectively.  

 

Discussion 

In this work, we presented CRISPys, a novel computational method that utilizes the 

nonspecificity of the CRISPR-Cas9 system for the design of an optimal sgRNA that would 

most efficiently mutate multiple members of a gene family. The efficiency is computed by 

one of several scoring functions regarding the cleavage propensity of genomic sites by a 
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given sgRNA. This allows the user to prioritize the considerations of choice. For example, 

the function provided by the ‘Optimized CRISPR Design’ [27] is practically dichotomous, as 

it assigns a score of 1.0 to all on-targets and to some targets with a single mismatch, while the 

score of nearly all other targets approaches zero. Using this function will thus consider for 

each candidate sgRNA only the most definite targets. The CFD score [25], on the other hand, 

is more delicate and is sensitive to the type and position of each mismatch, and its use will 

thus consider a broader collection of potential targets. Aside from functions that consider the 

pairwise similarity between the sgRNA and the DNA target, CRISPys can also integrate 

functions that account for additional genomic features (e.g., the GC content or the DNA 

rigidity surrounding the target site [39]. Notably, using one scoring function yields different 

results than using another, and as the research of the CRISPR-Cas9 system evolves, any new 

function can be easily incorporated within CRISPys. This flexibility in the underlying scoring 

function further enables CRISPys to readily design sequences for guiding any of the 

emerging CRISPR nucleases variants, including the recently studied class-2 Cas proteins 

[40–42]. 

The sgRNA design by CRISPys is not only dependent on the scoring function, but 

also on the criterion by which one chooses to select the optimal sgRNA. Two alternative 

strategies were presented. A user that is interested to maximize the number of family 

members to be cleaved should, in principle, select the sgRNA with the highest cleavage 

expectation over the entire set of input genes, as computed using the 𝑠^𝑒𝑥𝑝 strategy. Yet, at 

least at present, the large gaps of knowledge surrounding the CRISPR-Cas9 mode of action 

and the noisy experimental procedures that are used for its evaluation translate to scoring 

functions with large degrees of uncertainty. Given the costly (and timely) experimental 
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resources that are needed to validate a successful cleavage, researchers are most often 

interested in focusing their efforts in validating those targets whose probability of cleavage is 

high. This is implemented using the 𝑠^𝛺 design, but necessitates the use of a pre-specified 

cleavage-propensity threshold above which targets are considered.   

An alternative approach for targeting multiple genomic sites using a single sgRNA 

has been previously implemented in the MultiTargeter webserver [35]. This approach detects 

potential targets in the consensus sequence of a multiple sequence alignment of the input 

sequences. This procedure entails several difficulties. First, it relies on the ability to correctly 

align the input gene sequences, a procedure that is known to be error-prone [43–46]. Second, 

this approach entails that only sites that are aligned in the same positions are considered, and 

that a single distant sequence suffices to prevent the design of a proper sgRNA, even if the 

rest are highly conserved. Third, the consensus would assign the most abundant character at 

each position, while a more balanced design would disperse mismatches over the input genes, 

accounting for the specific penalty of each assignment. In contrast, since CRISPys first 

clusters all potential targets according to sequence similarity, it is not dependent on their 

locations or their orientation. Moreover, by incorporating any specified scoring function, 

CRISPys allows for a more sensitive consideration of each site. Indeed, as shown by our 

analysis of the tomato genome, CRISPys succeeded in providing promising sgRNA 

candidates for a larger number of gene families compared to the MultiTargeter consensus-

based approach.   

Evidently, CRISPys aims at optimizing the cleavage of the given genes by increasing 

the cleavage scores. However, a designed sgRNA may also cleave additional "off-target" 

sites, leading to the knockout of undesired genes. Therefore, sgRNA design should also 
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minimize any off-target effects. Ideally, off-target considerations could be integrated within 

the computations performed by CRISPys. One option would be to balance between efficiency 

(maximizing cleave propensity of the input genes) and specificity (minimal cleavage of off-

target sites) using a tunable parameter. This, however, requires the detection of potential off-

targets for each and every sgRNA considered throughout the course of the algorithm, 

rendering it computationally infeasible. Alternatively, and as implemented in the online 

webserver, CRISPys generates a list of sgRNAs ranked according to their computed cleavage 

propensity. For each of these, off-target detection could be performed through a number of 

existing applications [26,27,30,47], thereby allowing researchers to choose the sgRNA that is 

most suitable for their need.  

Recently, multiplex genome editing has been introduced, thereby allowing the 

application of multiple sgRNAs within a single construct [9,22,23,48–51]. These systems 

have been shown to be useful for the simultaneous knockout of multiple protein coding genes 

and for the deletion of noncoding RNA regions and other genetic elements [34,52]. Multiplex 

genome editing could be combined with the CRISPys algorithm to design a set of sgRNAs 

that would collectively mutate a large fraction of the input gene set. The 𝑠^𝛺 design option 

of CRISPys is particularly appealing in this regard since the Ω threshold could be tuned in 

such a way to allow a more strict (or lenient) design of sgRNAs such that each sgRNA would 

target a narrower (or broader) fraction of the genes. A refined tuning of the Ω threshold can 

be derived with specific considerations of the gene family at hand and the experimental 

conditions (e.g., the number of homologous genes, the sequence homology among the family 

members, and the number of sgRNAs that are collectively applied). Notwithstanding, the 

application of multiple sgRNAs simultaneously within a multiplex system also comes at the 
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cost of potential efficacy reduction [53] as well as a higher number of off-targets. Moreover, 

increasing the frequency of potential cleavage sites enhances the chances to chromosomal 

translocations and may not be desired. 

The CRISPys algorithm presented in this study was focused on the design of an 

optimal sgRNA that could best target the entire gene set. Yet, frequently a single sgRNA 

applicable to the entire gene family could not be found (e.g., Table 2). In such cases, a 

possible approach would be to partition the input gene family to subgroups according to 

sequence or functional similarity and to apply CRISPys on each subgroup. Nevertheless, this 

approach could lead to suboptimal design since gene partitioning according to homology (or 

functionality) does not guarantee the availability of similar targets within each partition that 

would provide the minimal and most efficient set of sgRNAs. Thus, in any event that a 

simultaneous application of multiple sgRNAs is desired, an alternative strategy would aim to 

design the minimal set of sgRNAs that target the entire gene set with highest efficiency. Such 

an approach could be translated to the set cover [54] problem, which is well studied in 

computer science and complexity theory. Accordingly, given a set of elements, each belongs 

to one or more sub-collections, the task is to identify the smallest number of sub-collections 

whose union covers the set. In our case, each element represents a gene. Several genes belong 

to a sub-collection if and only if they can be cleaved by the same sgRNA above a specified 

threshold. Therefore, solving the set cover problem would provide the optimal and minimal 

set of sgRNAs that can cleave all of the genes above a desired threshold of efficiency. Since 

the set cover problem cannot be solved in a polynomial time (i.e., it is NP-hard), a solution 

can be obtained using an approximation algorithm [55–57] or by combinatorial optimization 
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[58]. This alternative should be useful for future genome editing applications, and its 

implementation is left for future research. 

Table 2. Comparison between CRISPys and MultiTargeter. 

Number of families in the genome of S. lycopersicum for which an sgRNA that can cleave all 

family members could be successfully designed using MultiTargeter and the two decision 

criteria of CRISPys. For MultiTargeter, percentage of families in each size signifies the 

fraction of runs for which a result could be obtained. For CRISPys, a prediction is considered 

successful if the cleavage propensity of all genes is above 𝛺 = 0.43.  

 

Family size  #Families  CRISPys 

𝒔^𝒆𝒙𝒑 

CRISPys 𝒔^𝜴 MultiTargeter 

2  1690 77% 87%  35%  

3  757  36% 51%  10%  

4  432  22% 31%  4%  

5  290 9% 18%  1%  

6  182 4% 10%  0.5%  

7-8 219  4% 7% 0.5%  

9-10 127  1% 1%  0%  
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Materials and Methods 

Converting the scoring function to a distance metric 

In order to construct a hierarchical clustering of the target set T, the distance between 

every two targets must be computed. In the context of the CRISPR-Cas9 system, however, 

available scoring functions assess the cleavage propensity of a nuclear target by a given 

sgRNA rather than the distance between two nuclear targets. A naïve approach would be to 

set one of the targets as the sgRNA and compute its propensity to cleave the other target. But 

such an approach will not result in a valid distance metric (e.g., the scoring function is not 

necessarily symmetric nor does it satisfies the triangle inequality). We thus implemented two 

alternative procedures for converting a scoring function φ to an Euclidean distance function. 

The first alternative corresponds to a scoring function, like the CFD score [25], that treats 

each position independently, such that each mismatch is penalized according to the type and 

position of the mismatch, and the resulting score is a multiplication over all individual 

positions. Specifically, given a 20-nt long target 𝑡_𝑖, a vector of length 80 is constructed in 

which every four entries correspond to a position in 𝑡_𝑖; the first entry specifies the penalty 

according to φ if ‘A’ was placed in this position in the opposing sgRNA, the second stands 

for ‘C’, etc. Given this vector representation, the distance between two targets is calculated as 

the Euclidean distance between the two corresponding vectors. Thus, targets that are similar 

to one another receive similar scores for the different substitution possibilities in every 

position (dictated by φ), which in turn leads to a low Euclidean distance. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2017. ; https://doi.org/10.1101/221341doi: bioRxiv preprint 

https://doi.org/10.1101/221341
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

The second conversion was implemented to deal with any scoring function, without 

relying on its specific characteristics. The scoring function provided by CRISTA [37] is one 

example where the cleavage propensities are computed based on a non-linear combination of 

features. This conversation is based on transforming every target to a multidimensional 

space, where it is represented by a vector of cleavage propensities by a large set of sgRNAs, 

S. Specifically, for every target 𝑡_𝑖 ∈ 𝑇, its cleavage propensity 𝜑(𝑠, 𝑡_𝑖 ) by each sgRNA 

𝑠 ∈ 𝑆 is computed. Here, we defined S to be the set of sgRNAs that perfectly match the 

targets in T but other possibilities, such as a randomly-generated set of sgRNAs can be used. 

This produces a representative vector of length |T| for every target in the new space. The 

distance between targets 𝑡_𝑖 and 𝑡_𝑗 is calculated as the Euclidean distance between their 

corresponding vectors. Thus, a couple of targets that are expected to be cleaved with similar 

efficiencies by a set of sgRNAs will be converted to vectors with similar values, leading to a 

low Euclidian distance compared to targets that are expected to be cleaved dissimilarly by the 

same set of sgRNAs. We note that while this conversion procedure is more computationally 

demanding than the former technique detailed above, the two approaches yield similar results 

(Supplementary Text S1).  

 

sgRNA design for large gene families  

Mutating a large number of genes from a specific family has the potential to 

overcome functional redundancy and to reveal the function of the encoded proteins. 

However, mutating a large number of genes simultaneously may lead to a lethal or sterile 

phenotype, limiting our ability to elucidate their function. In such cases, mutating a smaller 

portion of the group is desired. Dividing the input family into smaller groups according to 
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sequence similarity would increase the flexibility of the screen and allow a more focused 

experimental design. To this end, we implemented a strategy that recursively splits the group 

of genes into homologous subgroups and generates potential sgRNAs for each of them. 

Specifically, a hierarchical clustering of the input gene set is constructed using the UPGMA 

algorithm as implemented in Biopython [59] (we note that this tree represents the similarities 

among the input genes, while the hierarchical clustering detailed in section "Algorithm 

description" represents the similarities among the targets). The input distance matrix is 

computed using Protdist [60] given a multiple sequence alignment generated by MAFFT 

[61], with its default options, on the translated genes. CRISPys is then applied to each node 

of the constructed UPGMA tree, producing an optimal sgRNA for each homologous 

subgroup.  

 

Program availability 

An online version of the CRISPys algorithm described here is freely available at 

http://multicrispr.tau.ac.il/. The server accepts as input a set of (potentially homologous) 

sequences for which sgRNA candidate should be designed. In order to avoid targeting the 

designed sgRNA at intron-exon junctions, users may provide each gene as a set of exon 

sequences. The webserver allows users to choose between the two optimization criteria of 

CRISPys (𝑠^𝑒𝑥𝑝 and 𝑠^𝛺), to choose among several available functions that determine the 

cleavage propensity of a DNA target by a given sgRNA (with the CFD score [25] being the 

default), and to optionally consider the homologous relationships among the input genes in 

the sgRNA design (see Methods: ‘sgRNA design for large gene families’). Once the sgRNAs 
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design process is completed, the website provides the possibility to search off-targets through 

CRISPOR [47] or CRISTA [37] web-servers.  
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Table S1. The effect of applying different Ω thresholds on the 𝐬𝛀 design 

strategy 

For each family size of 2-10 genes in the genome of S. lycopersicum, CRISPys was applied 

with the 𝑠𝛺 criterion. The results presented in the main text (Tables 1-2) were obtained by 

applying the 𝑠𝛺 design strategy with Ω = 0.43. This threshold corresponds to the 50
th

 

percentile of the CFD scores over a set of experimentally validated targets (see Results, 

section 1.2). The table below provides the results of applying more stringent (Ω = 0.66) or 

lenient (Ω = 0.33) thresholds, corresponding to the 90
th

 and 25
th

 percentiles, respectively. 

Cleavage expectation is the average expected number of genes predicted to be cleaved across 

all families of that size; 𝑐𝛺 is the average number of genes that are predicted to be cleaved 

above the specified threshold (the standard deviation of each statistic is given in parentheses); 

percentage of fully cleaved families is the fraction of families for which an sgRNA that can 

cleave all family members could be successfully designed.  

 

 

 

 𝒔𝜴 designed using 𝜴 = 0.66 𝒔𝜴 designed using 𝜴 = 0.33 

Family 

Size  

Cleavage 

expectation
 

𝒄𝜴  Percentage of 

fully cleaved 

gene families  

Cleavage 

expectation
 

𝒄𝜴  Percentage of 

fully cleaved 

gene families  

2  1.7 (0.3) 1.68 (0.4) 69% 1.9(0.3) 1.7 (0.3) 89% 

3  2.15 (0.5) 2.18 (0.6) 29% 2.55 (0.5) 2.12 (0.5) 56% 

4  2.56 (0.7) 2.63 (0.7) 15% 3.15 (0.7) 2.51 (0.7) 36% 

5  2.83 (0.7) 2.89 (0.8) 5% 3.71 (0.9) 2.72 (0.8) 23% 

6  3.16 (0.9) 3.24 (1.0) 3% 4.25 (1.0) 3.05 (1.0) 14% 

7-8 3.64 (1.2) 3.66 (1.3) 3% 3.56 (1.3) 4.99 (1.4) 9% 

9-10 3.92 (1.2) 3.84 (1.3) 0% 3.7 (1.2) 5.55 (1.7) 1% 
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Text S1. Comparison of the two procedures for transforming the scoring 

function to Euclidean distance 

 To compare the two alternative procedures for converting the scoring function 

𝜑(𝑠𝑔𝑅𝑁𝐴, 𝑡𝑎𝑟𝑔𝑒𝑡) to a distance metric between two targets (see methods, section 

"Converting the scoring function to a distance metric"), a set of 500 gene families of size 2-

10 from the genome of S. lycopersicum was randomly sampled. For each gene family, 

CRISPys was executed with both procedures using the 𝑠𝑒𝑥𝑝 design strategy. This resulted in 

two sgRNAs 𝑠1 and 𝑠2 per gene family, corresponding to the order of the two procedures 

detailed in the main text. We then compared the two designed sgRNAs using their relative 

difference, computed as: 

𝑑 =
𝐸𝑠1(𝐺) − 𝐸𝑠2(𝐺)

𝐸𝑠1(𝐺)
 

where 𝐺 represents the gene family, and 𝐸𝑠(𝐺) represents the cleavage expectation across all 

genes in 𝐺 by sgRNA 𝑠. 

The average of the 𝑑 values across the 500 sampled families was 0.006 with standard 

deviation of 0.221, and a 95% credible interval (CI) of (-0.013, 0.025). Since zero is 

contained within the CI, there is no statistical support for any difference in the results 

obtained by the two conversion procedures.  

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2017. ; https://doi.org/10.1101/221341doi: bioRxiv preprint 

https://doi.org/10.1101/221341
http://creativecommons.org/licenses/by-nc-nd/4.0/

