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Abstract:  

Background: The relationship between aging and epigenetic profiles has been 

highlighted in many recent studies and models using somatic cell methylomes to predict 

age have been successfully constructed. However, gamete aging is quite distinct and as 

such age prediction using sperm is ineffective with current techniques.  

Results: We have produced a model that utilizes human sperm DNA methylation 

signatures to predict chronological age by utilizing methylation array data from a total of 

329 samples. The dataset used for model construction includes infertile patients, sperm 

donors, and individuals from the general population. Our model is capable of accurately 

predicting age with an r2 of 0.928 in our test data set. We additionally investigated the 

repeatability of prediction by processing the same sample on 6 different arrays and found 

very robust age prediction with an average standard deviation of only 0.877 years. 

Additionally, we found that smokers have approximately 5% increased age profiles 

compared to ‘never smokers.’  

Conclusions: The aging calculator we have built offers the ability to assess “germ line 

age” by accessing genomic regions affected by age. Our data suggest that this model can 

predict an individual’s chronological age with a high degree of accuracy regardless of 

fertility status and with a high degree of repeatability. Additionally, our data appear to 

show age acceleration patterns as a result of smoking suggesting that the aging process in 

sperm may be impacted by environmental factors though this effect appears to be quite 

subtle. 

Key words: Sperm Epigenetics, aging, DNA methylation, aging calculator. 
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INTRODUCTION 

In the very recent past a great deal of work has been performed in an effort to understand 

the nature of aging, the mechanisms that drive the process, and the biomarkers that may 

be predictive of, or affected by age. In this effort, a seminal manuscript was published in 

2013 which described the ability to use DNA methylation signatures in somatic tissues to 

predict an individual’s chronological age [1]. In this work, Dr. Horvath demonstrated that 

the epigenetic mechanisms that reflect the aging process are tightly conserved between 

individual tissues and across multiple species. This finding was, for many reasons, quite 

remarkable, not the least of which is the significant contrast in epigenetic profiles 

between various tissues. Clearly, the aging process is one that affects all tissues in the 

body and so the similarities in signatures that are predictive of this aging pattern perhaps 

should have not been too surprising.  

 

Despite the general applicability of this model among various tissues, one tissue in 

particular did not display similar predictive power as was seen with most. In fact 

testicular tissue and sperm specifically did not appear to be predictive of age at all with 

the previously described calculator. In our own unreported trials, human sperm DNA 

methylation profiles do not offer predictive power to determine one’s age using this 

model. In many ways such a finding may have been expected, as this is not the first 

finding where the male germ line did not follow typical trends in the aging process. Our 

lab has previously reported that the nature of alterations to sperm DNA methylation 

signatures associated with age are opposite of what is typically seen in somatic cells [1-

4]. Specifically, we demonstrated that while aging results in a global decrease in 
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methylation and increased regional methylation in most cells, in sperm the opposite was 

seen. In addition to this case where the male gamete defies conventional age-associated 

cellular alterations is telomere length. In fact, while most somatic cells experience 

marked telomere shortening as a hallmark of aging, sperm do not follow the same trend 

[5]. Clearly, sperm cells are extraordinarily unique and thus require a unique approach to 

understand both the nature of the aging process and the potential for some of the 

biomarkers for aging in the sperm to be predictive of an individual’s age as it appears that 

the aging clock in sperm may be entirely unique.  

 

In our previous publications we have described the general trends of aging on the sperm 

methylome. In these studies, we have shown that sperm have a very distinct pattern of 

age-associated alteration [2, 3]. We identified over 140 genomic regions (~1kb in size) 

that displayed differential methylation with age. Of these, only 8 displayed an increase in 

methylation, and the remainder showed a marked loss of methylation. Intriguingly, these 

regions of differential methylation appeared to be enriched at genes known to be 

associated with bipolar disorder and schizophrenia, both diseases known to have 

increased incidence in the offspring of older fathers. Indeed the epigenetic patterns of 

aging in sperm, while distinct from the epigenetic patterns of aging in somatic tissues, are 

striking and extremely consistent and thus provide an excellent opportunity to utilize in a 

model designed to identify an individual’s age.  

 

The pursuit of generating a model to predict an individual’s age using the sperm 

methylome is not only an interesting question from the perspective of the basic sciences, 
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but the patterns of sperm aging, and the unique nature of the sperm make the utilization 

of this cell type ideal for such a predictive model. Using pure cell populations is ideal for 

any epigenetic analysis, and while the previously constructed models are effective at 

predicting age even with tissues that are difficult to purify (which is a testament to quality 

of model and to the strength of the aging signal), the ideal scenario would be to use a 

more pure cell population. Human sperm offer just such an opportunity. Many protocols 

are applied to somatic cell removal in sperm epigenetic studies and they have proven 

quite effective at isolating only the germ cells, thanks in large part to the highly unique 

and compact nature of the sperm nucleus/head. Further, the magnitude of the aging signal 

is quite strong in the sperm (thought to be in part due to the highly proliferative nature of 

the sperm cells themselves) and as a result, the patterns of aging offer an excellent 

opportunity for predictive power. In this study, we set out to capitalize on these 

advantages to build a model that can predict an individual’s age using methylation 

signatures in their germ line. We have also designed experiments to inform us of the 

actual impact of this prediction and if alterations in an individual’s predicted age may be 

the result of environmental exposures or lifestyles (smoking, obesity, etc.).  

 

RESULTS 

Model construction and training: In the current study we assessed sperm DNA 

methylation array data (Illumina 450K array) from 3 distinct previously performed 

studies [2, 6, 7]. From these data sets, we were able to acquire a total of 329 samples that 

were used to generate the predictive model outlined herein. Individuals with many 

different fertility phenotypes provided the samples used in this study. Specifically, our 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220764doi: bioRxiv preprint 

https://doi.org/10.1101/220764
http://creativecommons.org/licenses/by-nc-nd/4.0/


training data set includes samples from sperm donors, known fertile individuals, 

infertility patients (including those seeking intrauterine insemination or even in vitro 

fertilization treatment at our facility), and individuals from the general population.  

Further, our data set includes those that have very different lifestyles and environmental 

exposures (as an example, both heavy smokers and never smokers are represented in our 

data set).  

 

We utilized the glmnet package in R to facilitate training and development of our linear 

regression age prediction model [8]. For training of our model, we limited the training 

dataset to only 147 regions that we have previously been identified to be strongly 

associated with the aging process to ensure a more clear interpretability to the results of 

the model [2]. We trained multiple models to identify the best possible outcomes. First, 

we trained on all of the beta-values for each CpG located in our regions of interest (“CpG 

level” training). Second, we generated a mean of beta-values for each region, which 

included the CpGs within each region respectively. Ultimately, this approach yielded a 

list of mean beta-values for each region (“regional level” training), and the model was 

trained only on these averages.  

 

In each of the above-described scenarios, we employed a 10-fold cross validation 

strategy. This was performed 10 times on unique subgroups of the entire data set (Figure 

1A-F). The results from these ten validations were compared between the CpG level 

training and the regional level training. To compare the accuracy and predictive power of 

these models we performed linear regression for each (actual age vs. predicted age) and 
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generated r2 values. These r2 values were compared via simple two-tailed t-test to 

determine if any significant differences exist between the two approaches to model 

construction (CpG level construction vs. regional level construction). These tests revealed 

that there was a moderately significant decrease in predictive power in the regional model 

when considering only the training data sets ( p=0.0428). However, there was no 

significant difference seen between the test sets (p=0.3439). In fact, while significant, the 

CpG level model appeared to be more prone to extremes in significantly lower 

predicative power in individual test sets when compared to the regional level models 

(Figure 1G). In an effort to make the model as simple as possible and in light of these 

findings, we committed to use the regional level model moving forward.  

 

We additionally assessed the weighting of the features (regions) used in the models 

constructed during cross validation. We found a great deal of variation in the features 

selected across the regions screened, though a certain percentage of the regions were 

heavily weighted and used in 80% or more of the models built during cross validation (a 

total of 51 features/regions met this criterion). In an effort to avoid over-fitting we 

compared cross validation (10-fold strategy) only in these 51 regions (“optimized 

regions”) to all of the regions previously screened. We found that both the training and 

test groups were not statistically different between the optimized regional list and the full 

regional list (Figure 1H). We therefore selected the best performing model that was 

trained only on 51 regions of the genome (Table 1). With this model we are able to 

generate a prediction of all 329 samples in our data set with an r2 of approximately 0.89 
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and an average accuracy in prediction of 93.7% (calculated as the average of | 

(prediction/actual age)-1|).  

 

Technical validation / replicate performance: Because array-to-array variability can be 

a concern, we tested our model in a completely independent cohort of samples (different 

samples from different batches of arrays). We were able identify 10 sperm samples each 

with 6 technical replicates that were each run on the 450K array (not those used in our 

cross validation / model training) to determine the precision and consistency the model 

has in predicting an individuals age. The model performed well with the average standard 

deviation in age prediction being only 0.877 years and a regression analysis (predicted vs. 

actual age) revealing an r2 of 0.7319 and a p=0.0016 (Figure 2).  

 

Association with regional inter-individual epigenetic instability: To determine the 

drivers of the age-associated change in these regions, we examined the level of 

variability/instability of methylation signals between the individual’s screened in our 

test/training set. We assessed the methylation variability between individuals at each of 

these sites by methods we have previously described [7]. Using these techniques we 

binned individuals by year of age and then generated measures of variation within each 

bin (to avoid the increased levels of variation that would be present simply due to the 

change with age we have identified). We then tested the difference between variability at 

the age-associated regions within each bin against the background of the entire array. We 

found a significantly increased variability on average at age-associated regions compared 

to background at nearly every age (Figure 3). We also found that highly variable 
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methylation signals at single CpGs is relatively common throughout the array and that the 

higher average levels of variability within age-associated regions were not defined by 

CpGs with variability levels elevated above what is seen elsewhere. Instead, the driver of 

increased averages seen in our analysis of age-associated regions was due to an increase 

in the frequency of these high variable CpGs, not in the magnitude of their variation 

(Figure 3A). 

 

The impact of smoking on age prediction: To test the potential diagnostic/clinical 

utility of our model we have more closely assessed the data in our original cross 

validation dataset. Specifically we have analyzed our smoking dataset, which includes 

sperm methylation data from 78 never smokers and 78 smokers. Similar aged men are 

represented in each group. We additionally isolated a portion of the smoking group who 

were considered ‘long term smokers’ for analysis (>10 years consuming cigarettes). We 

found an approximately 1.5% increased in predicted age compared to chronological age 

in all smokers and 2.5% increase in long term smokers. However this difference failed to 

reach statistical significance. Interestingly, this same pattern was observed (though 

significantly higher in magnitude) when screening only individuals who were less than 35 

years old at the time of collection (Figure 4). In these samples we saw a 3% increase in 

predicted age compared to chronological age in the smoker group and a nearly 6% 

increase in predicted age in the long-term smokers (p=0.0196).    

 

DISCUSSION 
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We have developed a sperm age calculator that has the capacity to identify an 

individual’s chronological age based only on their sperm DNA methylation signatures. 

While previous studies have very successfully generated an aging calculator for somatic 

cells, these calculators fail to work effectively with germ line epigenetic signatures. 

Herein we have described the development of a linear model that has the ability to 

accurately predict ages with these signatures. Specifically our model is based on average 

methylation signatures at 51 genomic loci known to be altered as men age [2].  

 

In the process of model construction, we evaluated multiple potential methods by which 

we could train our model. One important consideration was the nature of the population 

with which the model was trained. While there is a balance in selecting your population 

(broad applicability vs targeted population) we decided to utilize a population with 

diverse fertility phenotypes and exposers to ensure that it could perform well with many 

different phenotypes. As such, we included, smokers and non-smokers, Individuals of 

known fertility, those currently being treated for infertility, and men from our general 

population. By doing so we sought to ensure that our model was as broadly applicable as 

possible.  

 

We also spent a great deal of effort to ensure that the model was as simple as possible. 

While training on all data from the entire array may have provided additional power in 

prediction, it also would likely make the model very difficult to interpret. Instead, we 

focused only on the regions that we knew were independently predictive of age (based on 

previous data) and refined the model by only assessing these regions. In fact, we found 
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that even in our simplified model there was some degree of over-fitting that was 

occurring, and we were able to further simplify form our initial 147 regions down to 51 

regions with just as high of predictive power. This effort resulted in a quite robust model 

(~94% accuracy and an r2 of ~0.89). If our final model had a great deal of room for 

improvement, there would be a larger need for revisiting our approach and potentially 

increasing our training feature set to include more, or all, of the array. However, since we 

have such a robust and interpretable model as it stands, pursuing a different course was 

not warranted.  

 

Our data indicate that the model constructed herein is also technically robust. We were 

able to assess previous data from our lab in which 10 individuals had six technical 

replicates on 450k methylation arrays [9]. This replicate data enabled to assess the power 

of the model in two distinct ways. First, we were able to assess the predictive power of 

the model on a completely independent cohort (each of these samples were performed at 

a different time and on different arrays than what the model was trained upon). Second, 

we were able to show that the model is able to generate consistent predictions for 

individuals between technical replicates. Of additional interest is the fact that the samples 

used in these technical replicates originated from a study that tested the impact of 

extreme and prolonged temperature exposures on sperm DNA methylation patterns. Thus 

a portion of the replicates screened were exposed to various magnitudes less than ideal 

conditions, adding further validity to the strength of the aging signal in the sperm 

methylome and ultimately to this model. This stability between various batches and 

samples is important in a model that will have broad applicability.  
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 Our study also indicates that there is significant increases in inter-individual epigenetic 

instability / variability at sites known to be affected by age. To perform this experiment 

we had to be careful to only observe variability measures within a fixed age (as the 

change in methylation over time at age-affected regions would clearly result in increased 

variability if observed across multiple ages as we know these sites will change). 

However, when increased variability is observed at these sites when age is held constant 

(with only a one year window being considered) it suggests that there is a real biological 

instability at these sites between individuals. Multiple potential explanations exist for this 

finding, the simplest of which is that even within a single year’s time, the miniscule 

change that occurs during that period results in elevated variability. This seems unlikely 

based on our data because we commonly found similar and even higher levels of CpG 

methylation variability across the genome in non-age-affected regions. While not 

increased in magnitude at the age-affected sites, there was an increase in the frequency of 

CpGs with elevated variability, which was the driver for the increased average variability 

across the age-affected regions. Another potential explanation for this increase in 

variability is that fathers conceiving offspring at different ages may pass on some of these 

marks to the offspring. At face value, this seems a bit far-fetched due to the massive 

reprograming events, which take place in the early embryo and in the primordial germ 

cells. However, there are data available that suggest that methylation marks in many sub-

telomeric regions escape reprograming events and can be potentially be passed on to the 

offspring [10-14]. Intriguingly, our original sperm aging study showed that the majority 

of age-affected regions were located in these sub-telomeic regions as well [2]. Such a 
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transmission of age-affects would be remarkable, but may offer a real potential 

explanation for at least a portion of the variation seen at these regions. Regardless of the 

mechanism driving the increased variability, these patterns are intriguing and warrant 

further study. 

 

Our data also suggest that there may be some utility for such a model in a clinical setting. 

Specifically, we were able to identify an age-affect of smoking in our cohort of patients. 

We found that individuals who smoke appeared to have acceleration in the pattern of 

aging and thus the individual’s “germ line age” was in some cases significantly higher 

than their chronological age. This represents one example of many different analyses that 

could be performed and we may find that different levels/types of infertility, obesity, or 

other environmental exposures may cause acceleration in the aging pattern seen in sperm. 

One of the biggest questions that remain if such a finding is real is the potential impact of 

this age acceleration. Such a pattern could potentially result in increased risk to offspring 

health as epidemiological data clearly shows increased incidence of neuropsychiatric 

disease in the offspring of older fathers [15-20]. Such an increase in risk may not mean 

that the altered methylation pattern itself causes these offspring abnormalities, but instead 

the methylation signatures of age are simply a good indicator of the overall state or age of 

the sperm. Likely of more immediate interest to clinicians is the fact that advanced 

paternal age is associated with a loss of fecundity and fertility. Specifically, it has been 

shown that men older than 45 years take ~5 times as long to achieve a pregnancy as men 

less than 25 years (when controlling of female age) [21]. A similar decrease in fecundity 

was identified in a large population study in 2000 which showed that (after adjusting for 
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maternal age) men > 35 years had a 50% lower chance of achieving a pregnancy within 

12 months of attempting conception [22]. Other studies have also shown decreased 

fertilizing potential in both IUI and IVF [23, 24]. While the magnitude of this effect 

remains controversial [25, 26], it is clear that advanced paternal age does play an 

important role in a couple’s fertility status and can clearly result in, at a minimum, a 

significantly increased time to pregnancy. For many couples, such potential barriers to 

achieving a pregnancy are essential to understand and discuss with their care providers. 

While none of these associations have been proven in this specific work, the potential 

clinical utility of the calculator is intriguing and warrants further investigation both in the 

individual’s health/fertility as well as in the prediction of sired offspring phenotype. 

 

The data described herein are quite promising, though some limitations are clear. 

Foremost among them are our knowledge of downstream impacts as described above. 

This will require a great degree of effort to determine what the nature of these effects 

truly are and if risks can be modified in any way by various treatments. Further, while the 

current model is very effective at predicting an individuals age and is quite robust 

technically, the alterations we are observing to predict age are subtle and thus small 

inefficiencies can result in an inability to detect meaningful changes. Despite this, 

because of the approach we have taken in designing a model based only on limited 

numbers of regions there is a potential to modify this model for use with a different 

platform, namely targeted sequencing. With a targeted sequencing approach, we may be 

able to improve an already robust predictive model by multiplex sequencing with extreme 

depth at only the 51 sites of interest. This could provide an even more economical and 
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reliable predictive model. Taken together, the data that we have shown here are intriguing 

and warrant a great deal of further investigation and we also have the potential to 

improve predictive power with future iterations.  

 

METHODS 

Samples, study design, data availability: In the current study we assessed sperm DNA 

methylation array data from 3 distinct previously performed studies [2, 6, 7]. All of the 

studies have been previously performed in our laboratory. We included only the samples 

for which ages for the individuals tested were available. From these data sets, we were 

able to acquire a total of 329 samples that were used to generate the predictive model 

outlined herein. Each sample was run on the Illumina 450K methylation array. In each 

case we used SWAN normalization to generate beta-values (values between 0 and 1 that 

represent the fraction of a given CpG that is methylated) that were used During the early 

processing of the sperm samples, great care was taken to ensure that there no somatic cell 

contamination was present that could potentially influence the results of our studies. To 

prove that this has effectively taken place we assessed the methylation signatures at a 

number of sites throughout the genome, each of which are highly differentially 

methylated between sperm and somatic tissues. In Figure 5, we show the differential 

methylation at one representative genomic locus, DLK1, to illustrate the absence of 

contaminating signals in the samples used in our study. While a great degree of 

variability exists between the methylation in these samples there exists very little, if any 

somatic methylation signals. This pure population is key to ensuring a robust model most 

targeted at detecting the actual variable of interest, age.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220764doi: bioRxiv preprint 

https://doi.org/10.1101/220764
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Samples used:  We selected the groups to be used for training the predictive model for a 

few distinct reasons. Individuals with many different fertility phenotypes provided the 

samples used in this study. Specifically, our training data set includes samples from 

sperm donors, known fertile individuals, infertility patients (including those seeking 

intrauterine insemination or even in vitro fertilization treatment at our facility), and 

individuals from the general population.  Further, our data set includes those that have 

very different lifestyles and environmental exposures (as an example, both heavy 

smokers and never smokers are represented in our data set).  

 

Model Training: We utilized the glmnet package in R to facilitate training and 

development of our linear regression age prediction model [8]. For training of our model, 

we limited the training dataset to only 147 regions that we have previously identified to 

be strongly associated with the aging process to ensure the broad interpretability to the 

results of the model [2]. We trained multiple models to identify the best possible 

outcomes. First, we trained on all of the beta-values for each CpG located in our regions 

of interest (“CpG level” training). Second, we generated a mean of beta-values for each 

region which included the CpGs within each region respectively. Ultimately, this 

approach yielded a list of mean beta-values for each region (“regional level” training), 

and the model was trained only on these averages.  

 

In each of the above-described scenarios, we employed a 10-fold cross validation strategy 

to repeatedly test trainings on 90% of our samples and hold out 10% for a test set. This 
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was performed 10 times on unique subgroups of the entire data set. The results from these 

ten validations were compared between the CpG level training and the regional level 

training. To compare the accuracy and predictive power of these models we performed 

linear regression for each (actual age vs. predicted age) and generated r2 values. These r2 

values were compared via simple two-tailed t-test to determine if any significant 

difference exists between the two approaches to model construction (CpG level 

construction vs. regional level construction).  

 

Technical validation / replicate performance: We tested our model in a completely 

independent cohort of samples [9]. We were able identify 10 sperm samples each with six 

technical replicates that were that were each run on the 450K array (not those used in our 

cross validation / model training) to determine how precise and consistent the model is at 

predicting an individuals age. These samples were run with the final predictive model to 

and a linear regression analysis of predicted vs. actual age was performed using R.  

 

Association with regional inter-individual epigenetic instability: To determine the 

drivers of the age-associated change in these regions, we examined the level of 

variability/instability of methylation signals between the individual’s screened in our 

test/training set by a method previously described in a recent publication from our lab [7]. 

We assessed the methylation variability between individuals at each of these sites by 

methods we have previously described [7]. In brief, the variability analysis begins with 

logit transformation of beta values to ensure homoscedasticity followed by a center 

scaling (using the ‘scale’ function in R), which generates a distance from the average for 
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each CpGs. The absolute center scaled value is then used to determine the absolute 

distance from the mean and is averaged across the age effected regions and background 

CpGs (all other CpGs on the array). We then compare the center scaled values in these 

two groups (age affected and background) to determine if there is elevation in variability 

or distance from the mean. In this specific ananlysis we binned individuals by year of age 

and then performed center scaling within each bin (to avoid the increased levels of 

variation that would be present simply due to the change with age we have identified). 

We then tested the difference between variability at the age-associated regions within 

each bin against the background of the entire array.  

 

The impact of smoking on age prediction: To test the potential diagnostic/clinical 

utility of our model we have more closely assessed the data in our original cross 

validation dataset. Specifically we have analyzed our smoking dataset, which includes 

sperm methylation data from 78 never smokers and 78 smokers. Similar aged men are 

represented in each group. We additionally isolated a portion of the smoking group who 

were considered ‘long term smokers’ for analysis (>10 years consuming cigarettes). In 

this analysis we compared accuracy of the age prediction of each group to determine if 

there is a significant increase in the age prediction compared to chronological age in 

individuals who smoke. To do this we identified we compared predicted age vs. actual 

age by the equation % difference = (predicted age/actual age)-1. We then compared the 

% difference values for each group via two-tailed t-test to determine if there were 

significant differences in age acceleration between the two groups. 
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Figure Legends: 

Figure 1: (A-F) Scatterplots depicting the relationship between predicted and 

chronological age in 6 represented models from our cross validation testing. (G) Box and 

whisker plots of the R2 values from each cross validation (10) for both training and test 

datasets between the CpGs level data and the regionalized data. (H) Box and whisker 

plots of the R2 values from each cross validation (10) for both the full regional data set 

(147 regions) and the optimized regional data set (51 regions) with both training and test 

data displayed.  

 

Figure 2: (A) scatterplot depicting the age prediction in a completely independent cohort 

of samples. (B) Boxplots demonstrating the variation in age prediction from ten 

individuals with six biological replicates that were run in a completely independent 

cohort.   

 

Figure 3: Figure demonstrating the assessment of epigenetic instability at age-affected 

regions of the genome. (A) Dot plot depicting the level of methylome instability at CpGs 
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based on their distance away from the center of age-affected regions with a heat map 

displaying the fraction of sites that were higher than 1 standard deviation above the 

average instability value (data were binned in 500bp bins based on distance up or 

downstream from the center of age affected regions). (B) Bar plot depicting average 

methylome instability between all CpGs on the array and those within age-affected 

regions. The data was binned and assessed for instability within a single year. (C) Box 

and whisker plot depicting the difference in average methylome instability between the 

entire array and age-affected regions. This difference was statistically significant based 

on two-tailed t-test (p<0.00001). 

 

Figure 4: Density plot shows the accuracy of age prediction in never smokers, smokers, 

and heavy smokers among individuals below 35 years of age. Similar patterns exist in the 

entire cohort but are the most profound in this age group.  

 

Figure 5: Heatmap of the DLK1 locus, which is highly differentially methylated between 

sperm and somatic cells is used to confirm the absence of contaminating signals in our 

data set. 4 blood samples are listed at the far left of the heatmap and the remainder of the 

samples used in our study follow.   
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Table 1: 

Name CHR Start Stop 

ADAMTS8 chr11 130299298 130299948 

ARC chr8 143694010 143694548 

ARGHGEF10 chr8 1877888 1878324 

BCL11A chr2 60680616 60680762 

C1ORF122 chr1 38272200 38273057 

C7ORF50 chr7 1083209 1084163 

CCDC144NL chr17 20798895 20799770 

CLIC1 chr6 31698492 31699299 

DMPK chr19 46282571 46283081 

FAM86C1 chr11 71498202 71499118 

FAM86JP chr3 125634060 125634453 

FOXK1 chr7 4722778 4723928 

FSCN chr7 5635134 5635954 

GAPDH chr12 6641602 6642355 

GET4 chr7 914964 915832 

GNB2 chr7 100274361 100275305 

GPANK1 chr6 31630819 31632542 

GPR45 chr2 105857809 105859084 

KCNQ1 chr11 2554562 2555577 

LDLRAD4 chr18 13611370 13611825 

LMO3 chr12 16760040 16761003 

LOC100133461 chr4 3680721 3681760 

MIR22HG chr17 1617363 1618296 

MTMR8 chrX 63614857 63615496 

N10 chr1 28423399 28424202 

N12 chr5 3593413 3594276 

N22 chr19 4579481 4580471 

N23 chr14 106004434 106004608 

N24 chr6 170449417 170450804 

N27 chr6 30432200 30433944 

N30 chr15 27959473 27960032 

N8 chr11 69260136 69261045 

N9 chr7 35300077 35301070 

NCOR2 chr12 124990897 124991140 

NONE chr10 17347047 17347392 

NSG1 chr4 4386726 4387698 

PAX2 chr10 102509693 102510569 

PITX1 chr5 134365728 134366535 
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PRSS22 chr16 2908157 2908935 

PTPRN2.3 chr7 157523356 157524159 

PTPRN2.4 chr7 158109339 158110153 

PURA chr5 139492535 139493491 

PYY2 chr17 26553567 26554908 

SECTM1 chr17 80278592 80280331 

SEMA6B chr19 4555999 4556983 

SEZ6 chr17 27330794 27332647 

SLC22A18AS chr11 2909690 2909716 

SOHLH1 chr9 138590204 138590996 

THBS3 chr1 155176868 155177784 

TNXB chr6 32064146 32065891 
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