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ABSTRACT  

Many tools are available for RNA-seq alignment and expression quantification, with comparative 

value being hard to establish. Benchmarking assessments often show high performance, with 

occasional outliers, but are often focused on either model data or fail to explain variation in 

performance in detail. This leaves us to ask, what is the most meaningful way to assess different 

alignment choices? And importantly, where is there room for progress? In this work, we explore the 

answers to these two questions by performing an exhaustive assessment of the STAR aligner. We 

assess STAR’s performance across a range of alignment parameters using common metrics, and 

then on biologically focused tasks. We find technical metrics such as fraction mapping or expression 

profile correlation are uninformative, capturing properties unlikely to have any role in biological 

discovery. Surprisingly, we find that changes in alignment parameters within a wide range have little 

impact on both technical and biological performance. Yet, when performance finally does break, it 

happens in difficult regions, such as X Y paralogs and MHC genes. We believe improved reporting by 

developers will help establish where results are likely to be robust or fragile, providing a better 

baseline to establish where methodological progress can still occur.  

 INTRODUCTION 

A major computational challenge in RNA-sequencing is the quantification of the gene expression. At 

present, the most commonly used approach consists of mapping RNA-seq reads to a reference, 

followed by calculation of the transcript or gene expression  (see comprehensive list here (1)). Some 

newer methods skip a definitive mapping step to generate counts that pass through the probabilistic 

nature of assigning a given read to any single genomic location (i.e., quasi-mapping (2), pseudo-

alignment (3)), Splicing of the short read sequences, as well as abundance of paralogous sequences 

in the genome make definitive alignment challenging. Furthermore, the pervasiveness of overlapping 

isoforms (owing to alternative splicing as well as alternative transcription start/termination) make the 

quantification non-trivial with most tools relying on sophisticated statistical models to estimate the 

likelihoods of reads originating from various transcripts.  Notwithstanding similarity in output - or 

because of it – debate as to best practices remains vigorous.  Ideally, this would mean that the field 

as a whole has converged on a reasonable, robust, and biologically informative set of practices to at 

least characterize gene expression, the most frequent use of RNA-seq data).  Unfortunately, what is 

biologically informative is very hard to assess in a general way.  Understandably, this has led to a 
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focus in assessment on comparatively straightforward metrics or simple biological tasks, accentuating 

positive results but potentially reflecting overfitting in assessment if intended to generalize to novel 

data or new experimental systems.   

As novel tools are developed, secondary evaluations compare them to currently available methods, 

typically done as a benchmarking exercise. Generally, a benchmark will be designed to critically 

evaluate tools based on a number of criteria such as accuracy, reproducibility, and efficiency. Ideally, 

it will pinpoint the strengths and weaknesses of the tool which are likely to be relevant to its user 

base, allowing them to make informed decisions dependent on their specific data or experimental 

design (4). Yet, purely technical metrics like mapping efficiency and rates do not trivially relate to any 

specific biology under investigation. Alternatively, biologically relevant metrics, such as known 

differential expression under some change in condition, will tend to involve simple experimental 

systems (in order to have a clear answer) and may not generalize to more complex systems (5,6).  To 

some extent these issues are visible in most outcomes of benchmarking endeavours and are 

therefore appreciated by the field. Some call for exhaustive validation of all novel tools in the hope 

that this will give an equal ground for the comparison (7), while others argue for more representative 

(e.g., across multiple types of tests) and objective (e.g., blinded or double-blinded) comparisons to 

work as guides for choice (8).  

Here, we perform an assessment of assessments, focusing on the characterization of gene 

expression.  We observe that most alignment tools work fairly well, but can fail (comparatively) under 

certain parameters and on different datasets. In order to explore these limits, we focus on a single 

tool, STAR (9), and one well-characterized dataset (GEUVADIS (10)), and exhaustively assess its 

performance across its parameter space, providing an in-depth view of one algorithm’s response to 

challenges. We first use commonly reported metrics in assessments and then more biologically 

oriented tests to score the performance of the alignment on both per sample and per experiment 

basis. We find that changes in alignment parameters within a wide range have very little impact even 

technically, which in turn has very little impact on biology.  However, dramatic failures eventually 

occur and we conclude that it is likely that the real performance of algorithms is their utility across 

these hard-to-generalize cases.  We find that long-standing limitations in functional annotation among 

genes impose a major limit on assessing the utility of methods.  
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MATERIAL AND METHODS 

Benchmarking meta-analysis  

Data was parsed from the omicstool (1) website [https://omictools.com/ , accessed November 2016], 

a curated collection of bioinformatics tools. To pick benchmarking papers, we used those listed as 

benchmarking papers on the omicstools site [date November 2016] and papers from RNA-seq blog 

[http://www.rna-seqblog.com/, accessed November 2016]. Mapping rates and correlations were 

extracted from the papers supplementary tables, if available. A total of 11 papers had aligner mapping 

rates, and a total of 5 papers had quantifier correlation results. These were manually curated and can 

be found in the supplement (Table S1).  

Datasets  

We perform all our assessments on publically available RNA-seq data. We used the GEUVADIS (10) 

dataset, which consists of 462 lymphoblastoid cell line samples (LCLs), split between 246 female, and 

216 male. The GEUVADIS data set is available at the European Nucleotide Archive (accession no. 

ERP001942).  

Alignment parameters  

STAR version 2.4.2a was run on the FASTQ files of the GEUVADIS datasets. We used genome 

version GRCh38.p2 and GENCODE version 22 (11). The parameters changed were the minimum 

alignment score (minAS, parameter: --outFilterScoreMinOverLread) and number of mismatches 

(numMM, --outFilterMismatchNmax). The minimum alignment score was varied to range between 

0.55 and 0.99. The number of mismatches allowed was varied to range between 0 and 9. We 

downsampled reads with a local script by sampling across the mapped reads at random. Scripts can 

be found in the supplement.  

Alignment metrics and comparisons 

To compare outputs of the alignments, we used the same metrics as reported most commonly by the 

benchmarks: read mapping rate, and sample-sample correlations using Spearman’s rank correlation 

coefficient.  We report uniquely mapped reads to features as our mapping metric, which was taken 

from the STAR “ReadsPerGene.out.tab” file. Counts (Ci) for each gene i were collected from the 

fourth column of the “ReadsPerGene.out.tab” file from STAR. Total mapped counts to features were 

calculated as the sum of all gene counts. Total input reads were taken from the “Log.final.out” file 

from STAR. We calculate sample-sample correlations with Spearman’s rank coefficient using the 

counts per million (CPM) for each sample. CPM is calculated by dividing the counts by the sum of 

counts over all genes and multiplying by 106. This normalizes the data within a sample, and allows 

comparison across samples with different sequencing depths.  	

	
10

∑
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Differential expression analysis  

We test for the effect of the alignment on the ability of the sex-specific samples to determine which 

sex-specific genes are differentially expressed. To do this, we take the male and female samples, and 

calculate fold changes, the ratio between the average CPMs of the male and female samples. We 

calculate a p-value using the Wilcoxon rank-sum test (wilcox.test in R) and adjust for multiple 

hypothesis tests using Benjamini-Hochberg (p.adjust in R). We rank the genes using both the 

absolute value of the fold change and the FDR (adjusted p-value).  

	 log
∑
∑

 

	rank rank rank log10  

 

We calculate an AUROC to measure the position of our test gene sets of the ranked genes. The test 

genes sets we use are the Y chromosome genes (our positive test set, 594 genes), sex-specific DE 

genes (12) (126 genes), and X chromosome genes (negative test set, 2476 genes). We consider 

genes on the X chromosome as a negative test set since there are regions on both the X and Y that 

overlap and genes that are paralogous/homologous. As a control experiment, we shuffle the samples 

(mixing males and females), and repeat.  

	
	 	 	 1

2  

 

We calculate the fraction of chromosome Y genes detected as measure of sample male or 

femaleness (Sj). For this, we took the subset of Y genes expressed across all the samples as the total 

number of genes (Ny), and any gene detected (C,ij>0) as expressed. Fractions closer to 0 are more 

female, and those closer to 1 are more male. 

,
1, , 0
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∑ ,

 

Biological replicability analysis through co-expression  

To measure the biological replicability of an experiment, we ran AuPairWise (13) using default 

parameters (25% noise, 100 repeats per sample) to calculate co-expression scores. From the two 

AUROCs that are given as output, one for the stoichiometric pairs and one for the random pairs, we 

calculate a co-expression score for each sample. This score is the ratio of the two:  
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This score measures the degree to which previously observed co-expression relationships are 

present in the dataset relative to random co-expression.  Each AUROC measures how easily a 

sample which has been perturbed in each gene’s expression value can be identified based on its 

disrupted co-expression (i.e. which samples are outliers when two genes which are generally 

correlated are plotted against one another). 

RESULTS 

Alignment benchmarks on average show similar performances  

Transcriptome analysis through RNA-seq requires expression levels to be quantified and summarized 

on a per gene (or isoform) basis, with many pipelines available to accomplish this task (summarized 

in Figure 1A). First, a sample is processed and sequenced, returning millions of reads/fragments. 

This is then followed by the mapping stage - reads are aligned to a reference genome or 

transcriptome - and then quantified to measure expression levels in genes or transcripts. Each step 

has its own source of errors, which affect the difficulty of measuring the transcriptome accurately. 

Once mapped and quantified, the transcriptome is used for a multitude of purposes: detecting 

whether a gene is expressed, differential expression between conditions or co-expression across 

conditions (Figure 1B). We conducted a survey of all tools published between the advent of RNA-seq 

in 2008 until 2016, and find a steady increase over time (Figure 1C), with multiple new tools 

published yearly. Each new method developed motivates a benchmark assessment between the 

newly developed tool and, typically, the most popular methods (between 5 and 10 tools), yielding 

recurrent assessment of a subset of tools. In these assessments, the choices of performance metric 

to evaluate the outcome vary, and we found the two most common metrics to be sample specific, and 

were the number of unique reads mapped and correlations of expression profile with either a 

reference standard (ideally a gold standard) or among the competing tools. We will refer to these 

metrics as the “fraction mapped” and the “correlation”.  

We compared the outcomes based on those two metrics from published assessments within the last 

few years, with the aim of determining their consistency. To provide a broad overview of comparative 

performances, we calculated the reported fraction mapped performance for each tool, ordered by the 

number of tests (Figure 2A). The performances of a tool appeared to be variable across studies, as 

shown by the wide range of values for each tool. Summarizing this effect by calculating variance 

across studies for each method shows approximately two modes in which the most tested methods 

do, indeed, exhibit a high degree of variability in performance (higher mode in purple violin plot, 

SDs~0.35 Figure 2B). Methods with lower variances (SDs~ 0.04) were tested fewer times; both the 

mean performance and its variance were correlated with the number of tests (rs=-0.5 and rs=0.55, 

respectively). If we instead assess the variability in performance within each assessment (across 

tools), we find another very heavy tail, reflecting an apparent bimodal split (SDs ~ 0.05, and ~0.43), 
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suggesting there are once again two pervasive classes of result in the assessments. Firstly, there are 

a set of tests where all methods assessed have fairly similar performances on the same dataset and 

this is indicated by the low SDs in the violin plots (53% with mean SD~0.15, by dataset). The second 

type of result is where the methods perform quite variably on a dataset, implying that some of the 

methods may be optimized (relative to other methods) for a particular dataset.  

Beyond even the evident variation in performance, the very definition of the “fraction mapped” metric 

may vary significantly between the studies. This metric is affected, for instance, by discordantly 

mapping read pairs, clipping of the reads, maximum number of allowed mismatches, etc. Since the 

benchmarking is usually performed with default aligner parameters, the aligner filtering preferences 

may collide or harmonize with the metric choices, thus creating assessment biases even within one 

study. The “fraction mapped” metric is also easy to game provided we permit a greater number of 

mismatches. However, notwithstanding this potential for metric misrepresentation, we obtain a quite 

similar narrative when looking at benchmark outcomes using correlations as the reported metric. 

While we do see tools tend to perform more similarly within each tested dataset (SDs ~ 0.05, grey 

violin plot in Figure 2C), performance of a given method across datasets remains highly variable with 

a similar bimodal split to previously (purple violin plot Figure 2C).   

The limits of benchmarking metrics  

Our meta-analysis of benchmarks suggests that tools perform too variably to generalize their 

performance ability across datasets: a tool can be optimized to perform well on a particular dataset 

but has breakpoints – parameters or data that cause the software to perform poorly. To characterize 

these breakpoints and quantify the effects of these in a benchmark, we perform a controlled 

assessment using STAR (9) on a single dataset GEUVADIS (14), permitting a more exhaustive 

evaluation of performance dependency than is typically feasible. To estimate the performance space 

over crucial parameters, we focused on the --outFilterScoreMinOverLread parameter in STAR, which 

controls the minimum alignment score normalized to the read length, which we denote as minAS. 

There is no clear a prior expectation about how reducing the minimum permitted quality of mapped 

reads will affect either technical or biological efficacy – more data often compensates for less 

stringent filtering.   

Looking once again to the first of our benchmarking statistics (“fraction mapped”), we observe a range 

of mapping values for each sample for the given alignment score parameter (width of plots in Figure 

3A), and fairly stable average mapping for the experiment (average of violin plot Figure 3A). As 

expected, the less stringent this score, the higher the fraction mapped metric (e.g., minAS=0.55 has a 

fraction mapped of 74% SD+/- 0.04). The lowest boundary was selected to allow only concordantly 

paired alignments. If the minAS is <0.5, the single-end and discordantly paired alignments will be 

returned as output, which significantly increases the percentage of mapped reads, and at the same 

time increases the rate of mis-alignments. We also see that the fraction mapped is similar for most of 

the parameters, but then drops considerably near the very conservative scores (anything greater 

than >0.90), with only 44% (SD+/- 0.07) of the reads mapping at the far end (minAS=0.99), where 
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only alignments almost perfectly matched to the reference are allowed. This decrease in performance 

was unequally distributed across the samples in the data with some samples dramatically affected 

(e.g., ERR188390 75% to 17% SD+/- 0.21) and other much less so (e.g., sample ERR188428 43% to 

25%, SD+/- 0.06). This parallels our observation in the benchmarking meta-analysis of occasional 

breakpoints not being evenly distributed across data (or methods).  Although they are comparatively 

easy to detect in this focused evaluation, they may well drive variability in performance where defaults 

are used on data which happens, idiosyncratically, to render those defaults less useful for particular 

tools. 

For our second benchmarking statistic, we took the default alignment parameter score (minAS=0.66) 

as our reference against which to calculate correlations. For each sample, we calculate the Spearman 

correlation between gene expression calculated with minAS=0.66 and gene expression calculated 

with other minAS values. The correlations are high (0.88<rs<0.99, Figure 3B). However, like with the 

previous metric, the stricter our alignment parameter, i.e., the more conservative we are, the lower the 

correlation. Thus, in this case, better quality does not compensate for smaller quantity.  This is also 

clearly evident in another commonplace characterization of performance, “gene detection”, defined as 

the number of genes overlapped by at least one uniquely mapped read. In our assessment here, 

gene detection also varies between the different parameters, ranging between 12.5K and 16K genes 

(Figure 3C). Similar to the previous two metrics, the detection is similar across the parameters until 

the most stringent parameter choice.    

Sex-specific gene expression as a metric of alignment quality 

In the preceding analyses, the effect of alignment quality can be trivially measured and understood, 

however, these analyses speak to the technical rather than biological aspects of the experiment. One 

of the simplest versions of assessing the latter involves using sex as a differential condition (6).  In 

this case it is easy to assess at least a gold standard set of false positives and false negatives, since 

the genes differentially expressed between males and females are predominantly genes on the Y 

chromosome (all or nothing), and known sex specific transcripts such as XIST.  To evaluate the 

impact of parameter changes on differential expression, for each value of minAS, we selected the top 

differentially expressed genes (DEGs) based on |log2 FC| > 2 and FDR <0.05 and calculated the 

concordance with the default minAS results. In the case of the minAS=0.99 parameter (Figure 4A), 

we observe 45 genes in common out of 58 detected under the default parameters (hypergeometric 

test p~0). As we increase the mapping stringency (starting from our minimum value 0.55), fewer 

genes are detected as DE, and the overlap decreases too, falling from a maximum of 97% down to 

77% (Figure 4B). To be more specific to the task of selecting the correct sex-specific genes, we can 

calculate an AUROC for a variety of test sets out of the entire gene list (ranked by degree of DE). Our 

expected DEG sets include (i) positive DEG set of the Y-chromosome genes; (ii) positive DEG set of 

known sex DE genes (12); (iii) and a negative DEG set, which we chose as all X-chromosome genes, 

because of the regions homologous with the Y, and hence the potential for technical error driving 

signal between sexes while still having a strong expectation for largely equivalent dosage (15,16). For 

the Y-chromosome genes, the AUROC is ~1 (purple line Figure 4C); ranking genes by DE yields 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220681doi: bioRxiv preprint 

https://doi.org/10.1101/220681
http://creativecommons.org/licenses/by-nc-nd/4.0/


perfect detection of this set as all Y-chromosome genes are ranked close to first. The discriminatory 

power of the broader sex DE gene set is weaker, but still fairly high for the positive test 

(AUROC=0.86, teal line Figure 4C). The X-chromosome genes are close to random (AUROC=0.56, 

green line Figure 4C), as expected. If we shuffle the samples, mixing males and females as a 

negative control task, we find the expected AUROCs now closer to 0.5 for all test gene sets (dashed 

lines in Figure 4C). Repeating this analysis across the other alignment parameters (Figure 4D) we 

find almost indistinguishable AUROC values for all gene sets for both positive and negative controls 

tasks. Even though the mapping statistics and correlations strongly depend on the minAS parameter 

(see previous section) the downstream biological application (sex-DE) is not affected significantly by 

the choice of this parameter.  

Easy-to-validate sex-specific gene expression is too easy to test alignment 

To reconcile the minimal change in signal in the DE task with the substantial change in gene detection 

and expression levels, we characterized the samples on a per gene basis. In this dataset, since half 

the samples are male, there should be no expression in half the samples of the Y chromosome 

genes, but we find genes with expression in more than 200 samples, potentially implying wrong 

mapping/alignment, given proper sample labelling and QC (Figure S1C). There are female samples 

in which some reads map to the Y-chromosome genes (as many as 23 genes, red distributions in 

Figure 5A). Some of these are pseudogenes (e.g., EIF4A1P2 and PSMA6P1), detected in close to all 

samples. Protein-coding genes detected in over 75% samples share known paralogs on the X 

chromosome (Table 1). For instance, ribosomal protein S4, Y-linked 1 (RPS4Y1), is detected in 433 

samples and is the only ribosomal protein encoded by more than one gene (ribosomal protein S4, X-

linked, RPS4X). If we measure the fraction of Y-chromosome genes detected and compare it to the 

average expression, we find low average expression, with much lower CPM in females than in males 

(red dots females, blue dots males Figure 5B). So although there is incorrect alignment, we still are 

able to detect male-ness over female-ness in expression and in differential expression, as 

demonstrated in the previous DE task. There are few male samples with low average expression, but 

there are enough genes detected in these samples to ‘classify’ them as male. This classification only 

improves as we increase stringency across the minAS parameter; we see positive correlations 

between fractions detected and average expression for female samples as we vary minAS, and 

negative correlations for male samples. We demonstrate this in a female sample (top panel Figure 

5C) and male sample (bottom panel Figure 5C), and all samples (Figure 5D). Thus, presence or 

absence call on a per gene basis is rendered more accurate with increasing stringency but there is 

little improvement in differential expression on a per sample basis and across samples there is no 

change in aggregate performance at all. 

Co-expression as a genome-wide metric for assessing alignment 

Our sex-specific analyses raise the possibility that technical metrics of QC and biological value are, if 

not in conflict, at least less clearly related than might be hoped. However, because the previous sex-

differential task is a comparatively easy one, it is not well suited to detect subtle differences in overall 
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alignment performance, other than the targeted sex-specific genes. One potential solution to this 

specificity problem is to use a metric capturing very broad-based biological properties present in most 

expression data whether it is a target of the experimental design or not. Co-expression has historically 

fit within this category, being both presumed and assessed to be present in essentially any 

biologically real data  (17,18). Co-expression is measured through the correlation (or related) of the 

expression profiles of a gene pair, and can be measured between all gene pairs within an experiment.  

As such, we can use co-expression as a replicability score to assess alignment in a very broad and 

still biologically relevant sense. We calculate a co-expression replicability score using the aggregate 

signal from gene pairs across the genome that we expect to show high co-expression ((13), see 

methods). Negative scores indicate observed and specific co-expression (with scores below -1 being 

excellent), while positive scores indicate the sample exhibits little to no biologically specific co-

expression. With the default parameter (minAS=0.66), we observe an average score of -0.52 (SD +/- 

0.24), and scores ranging between -0.995 and 0.30. We see again a similar scores with all other 

parameters (Figure 6A, average scores between -0.49 and -0.52). The spread of values for each 

minAS is broad across samples, and gets broader for the more stringent mapping (minAS=0.99, 

scores between -1.1 and 0.60). The variability of the samples for each parameter choice is high (grey 

violin plot Figure 6B), while the individual samples have much lower variance across the parameter 

space (purple violin plot Figure 6B), implying that each sample’s biologically relevant features is 

broadly robust across the different alignment parameters. Even when varying between the default and 

the most stringent values (Figure 6C), the co-expression scores that characterize the samples are 

only modestly changes, and this is, in fact, the highest level of variability observed. Generally, any 

pair of alignment choices yield similar co-expression scores across samples (Figure 6D, 0.89<r<0.99) 

with only the two most stringent parameter values showing any substantial deviation from the identity 

line. The lack of an effect on co-expression is a useful result: there is little impact on this general 

downstream biological application and where there is impact, it is apparently in the non-functional 

ranges. For most standard applications, alignment choice does not have a strong effect. It is in the 

functionally unannotated and novel or unknown transcriptionally active regions that researchers may 

need to exercise greater caution.  

Co-expression and technical performance do not “align”  

Consistent with our sex-specific DE results, on a per sample basis, we find no correlation between the 

co-expression replicability score and any of A) the fraction mapped (Figure 7A), B) the sample-

sample correlations (Figure 7B), and C) total genes detected (Figure 7C). The fraction mapped 

metric, as previously discussed, is similar across most of the parameters, while the majority of the 

poorly mapped samples are for the 0.99 minAS parameter. We also find very few of the good co-

expression scoring samples with very poor mapping. These trends are similar for the correlations 

(Figure 7B), since we’ve seen that the fraction mapped and correlation metrics themselves are fairly 

correlated. A very low positive correlation exists between the number of genes detected and the co-

expression score (Figure 7C), whereby good co-expression scores fall within a small range of the 

genes detected values. Both detecting a large number of genes and a low number of genes can 
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impact the co-expression replicability scores, implying there is a balance between expression, co-

expression and number of genes. These results overall are only surprising if the expectation is that 

mapping metrics are equivalent to a biologically accurate signal. We expand on the effect of low 

expression and gene counts in the next sections.  

Gene drop-offs caused by variation in parameters are unlikely to have a functional impact 

To characterize the gene-level alignments further, we can look at the changes or genes that are no 

longer expressed (‘drop outs’) across the parameters on a per sample basis. For most genes that do 

lose expression or drop out, these genes were originally associated with low counts, as shown by 

occurrence versus average CPM values (example sample ERR188479 in Figure S1A).  There are a 

few exceptions to the stricter alignment removing only low count genes observation and this was 

primarily in the HLA genes (e.g., HLA-DQB2 see Table 2). These could potentially be related to the 

natural genetic variation of these regions, their splicing, or other isoform related differences (19). 

However, most of the functional tests and tasks we performed are not affected by these genes.  

Although we report reads mapped uniquely, we are strictly looking at reads that map to genic or 

annotated regions, but there are still many reads unaccounted for. Where, then, do those reads map? 

If we look at the fraction of mapped reads that are mapped with the STAR “no features” label i.e., 

unannotated regions of the genome (comprising inter-genic and intronic regions), this number 

decreases slightly as we increase the stringency (Figure S2A). So, although we are mapping more to 

the genome under the more permissive parameters, we are principally mapping to less functionally 

annotated and also non-exonic regions, and therefore it should not be surprising that our 

assessments that rely on functionally annotated genes are affected. Although these fractions are fairly 

small (averaging near 5%), these reads are not contributing to any gene or function that can be 

assessed in an experimentally useful fashion (see supplementary text for additional discussion). 

Filtering of genes post-alignment does alter performance 

Although we find that parameter changes which toggle a small number of genes with low counts to 

zero (or back) have no major effect on performance, we know from the MAQC/SEQC benchmarking 

that filtering away low expressing genes generally improves replicability (20). To better explain this 

apparent discrepancy, we repeat our analysis holding all parameters constant at default but now 

filtering away low expressing genes at different count thresholds. Further to this, we repeat the 

analysis varying the mismatch parameter (nM) and downsampling total reads to simulate lower depth 

experiments. These three features represent important choices in sequencing and alignment: the 

recommended post-alignment filter, effect of sequencing errors and potential variation (SNPs, indels 

or SVs) and the effect of read depth. For the mismatch parameter, as with the minimum alignment 

score parameter, the more stringent the parameter, the less reads mapped but the gene detection 

does not vary as highly. Even though reads mapped ranged on average between ~13M and 22M 

reads (min 3M, max  63M), gene detection only changed between 14.2K and 14.9K (min 12.5K, max 

16.2K Figure S3A-C). Not surprisingly, filtering away genes with low counts changed gene detection 
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the most (Figure S3D).  This filtering is far larger in degree than the modest changes induced 

indirectly by changing most parameters, explaining its greater impact.  Alignment is robust well 

outside the range of expression values that are plausibly biologically important, requiring an 

independent basis for filtering. 

We then calculate the co-expression scores across the above parameter choices and plot the 

distributions. As before, we see similar scores across the parameters (only extreme parameters 

shown Figure 8A, all parameters in Figure S4) with the more stringent parameters almost identical, 

except when filtering away low expressing genes as reflected in the larger spread in the distribution of 

scores. This affirms the “low expressing genes are mostly noise” argument. Because downsampling 

reads does not have this effect (first violin plot pair in Figure 8A), this indicates that lower sequenced 

read depth, if randomly distributed, is less of a problem compared to low expressing genes. We then 

tested the effect of both alignment and filtering by calculating co-expression scores across both 

parameters, averaging the runs across samples and interpolating between points (Figure 8B). For the 

most part, the landscape is flat, with most parameters performing equally, with some variation (e.g., 

stringent minAS, extreme filtering). This is also consistent in a second dataset (Figure S6). 

DISCUSSION 

Our results paint a picture of an interesting landscape: in technical respects, alignment works well and 

similarly across algorithms, until it dramatically fails, with the point of transition being quite extreme in 

most data.  In addition, much of the technical variation in performance has little direct bearing on the 

degree to which biology can be intuited from the results.  We like the analogy of ice floes for this 

scenario, in which the landscape is relatively flat across a wide range of parameters, until one falls off 

the surface, with a hard-to-assess ground landscape always below (as suggested by Figure 8B).  

This view is consistent with our observation both of the variation in performance across algorithms in 

many individual assessments, where the most notable variation in performance was in occasional 

outliers, and also with our in-depth testing-to-destruction of STAR.  While the failure modes observed 

in STAR are not certain to generalize across methods or datasets, the aggregate trends strongly 

suggest they will.  Thus, bias arises naturally in algorithmic evaluation and comparison:  Any failure of 

one’s own algorithm is uncharacteristic of its general and well-understood performance.  That most 

meaningful variation between algorithms arises precisely from the incidence of such outlier cases is a 

fact that is easy to miss.  And, of course, strictly algorithmic assessment using simulated data, not 

sampling from the real perversities or oddities underlying such failures is essentially unrelated to any 

assessment of utility within biological data; many algorithms skate well across the technical surface. 

In a purely technical sense, alignment assessment is subject to Fredkin’s paradox, in which the 

difficulty of picking a winner reflects the broad similarity in output.  Moving past this to an assessment 

of biology will require a paradigm shift from developers, more narrowly targeting what users are 

interested in.  The best current assessments rely on either simulated datasets with a known ground 

truth (e.g., compcodeR (21), or (14)), real datasets with replicates (e.g., rnaseqcomp (5), URL: 

http://rafalab.rc.fas.harvard.edu/rnaseqbenchmark), or real datasets with complementary expression 
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values (e.g., nanostring results as in RNAontheBench (22), or qPCR results as with the MAQC data 

(20)).  Unfortunately, even using real expression values does not trivially solve the problem of 

assessment with gold standards that can generalize across datasets being hard to come by. Sex-

specific analyses offer a clear way forward, being both general (applicable to many datasets) and 

biological; its drawback, however, is that this particular test is too easy.  Establishing a few harder 

ground truth assessments from biological data should be possible, exploiting, for example, tissue or 

cell-type specificity.  While purely algorithmic developments should be encouraged, it is critical to 

distinguish them from improved biological assessment, which could be literally validated with a novel 

observation within pre-existing data, particularly meta-analytically. 

It shouldn’t be a surprise, perhaps, that most tools perform reasonably well with respect to simple 

metrics: they are designed to. What, then, should assessments and developers focus on?  We think 

understanding the factors leading to differences in performance is far more important than obtaining 

good performance.  All developers conduct internal validations which optimize the performance of 

their own tool; reporting all these performances has more utility than is currently appreciated. While 

characterizing a range of performances diminishes the degree to which new algorithms can be said to 

“beat” others, we suspect it more accurately reflects that methods work by being optimized for 

different tasks, which sometimes involves quite real trade-offs.  Knowing those trade-offs and making 

informed decisions would be useful.  Our second suggestion is for a greater appreciation that many 

technical metrics may show clear signals precisely in the domain where there is little variation in 

biological signal, whether because it is too strong (sex DE) or too weak (low expression). A focus on 

establishing biological benchmarks of broad utility would be valuable.  We lean towards co-expression 

and meta-analysis for reasons of generality, although it leaves something to be desired as a gold 

standard. However, there are alternatives: tasks such as attempting to assign novel functional 

properties for genes through a machine learning exercise, or defining meaningful expression.  In any 

event, the ultimate goal and best validation should be clearly directed toward novel biological 

discovery. 
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TABLE AND FIGURES LEGENDS 

 

Figure 1. Summarizing RNA-seq alignment tools. (A) RNA-seq alignment: typical experiment + sources of 

error. (B) Transcriptomics asks three broad questions which include transcript detection, differential gene 

expression and gene co-expression. (C) Growth and performance of RNA-seq tools - cumulative number of tools 

shows steady growth across all tool types.  
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Figure 2. Meta-analysis of RNA-seq alignment evaluations. (A) Fraction of reads aligned for aligners across 

different tools, datasets (real and simulated) and parameters. (B) SDs of the fraction mapped comparing 

averaging by dataset or by method. (C) Correlations of the relative expression levels of the output of different 

quantifiers in a set of 5 benchmarks. 

 

 

 

 

Figure 3. Comparative performances on the GEUVADIS dataset. (A) Mapping rates for 462 samples varying 

a single parameter, minAS (--outFilterScoreMinOverLread). The default is 0.66. The most permissive parameter 

we tested was 0.55, and the most stringent at 0.99. (B) Spearman correlations between a sample and its default 

counts across the same parameter space. (C) Number of protein coding genes detected for each alignment 

parameter.    
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Figure 4.  Differential expression by sex in the GEUVADIS dataset. (A) Overlap of all DE genes (FDR <0. 05 

and |log 2 FC| >2) for the default minAS= 0.66 and extreme minAS=0.99  (B) and then across parameters with 

the default parameter.   (C) ROCs for each set using average rank of the fold change and the adjusted p-value 

(see methods).  (D) AUROCs across the minimum alignment parameters for the two gene sets tested for both 

negative and positive controls. These are averaged across 10 runs of the analysis, sampling 200 males and 200 

females from the totals.  
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Figure 5.  Performance details for sex-specific differential expression. (A) Distribution of number of Y 

chromosome genes expressed in female (red) and male (blue) samples across all parameters. (B) Average 

expression of these genes, and a measure of the female-ness and male-ness of the samples (fraction of 

chromosome Y genes detected) at default minAS=0.66. Samples colored by sex (females in red, males in blue). 

(C) Two sample experiments showing the change in expression and number of Y genes detected as minAS 

changes. Top panel is a female sample showing more genes are detected as expressed with higher expression 

levels as we decrease the minAS (rhos=0.98), but this relationship is inverted for a male sample (bottom panel, 

rho=-0.97). (D) Plot of the correlation between average expression and Y genes detected across the minAS for 

all samples showing the same trends as in (C). There are a few samples where these relationships are much 

weaker.  
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Figure 6. Alignment parameter impact on co-expression. (A) Distribution of co-expression scores for the 

different alignment parameters. (B) Differences in SDs when comparing across parameters or across samples, 

with more between sample variance than between parameter variance. (C) Scatterplot comparing the extreme 

parameter to default. Each point is the co-expression score of a sample.  The grey is the average SD of the 

whole experiment and the identity line in black. (D) Scatterplots of each parameter against another, each point 

representing a sample, and each matrix square a comparison between parameter choices for the minimum 

alignment parameter.  
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Figure 7. Four score and ten alignment parameters. Scatterplots comparing the co-expression score to (A) 

the fraction mapped (rs=-0.12), (B) correlations (rs=0.001) (C) and gene detection (rs= 0.13). Each color 

represents the alignment parameter tested. The grey dotted lines represent the quartiles of the scores and 

metrics. The co-expression scores do not correlate with the technical metrics, but are influenced by number of 

genes.  

 

     

Figure 8. Defining the parameter landscape of STAR.  (A) Distributions of scores for the extreme parameters 

tested on the GEUVADIS dataset. The purple distribution shows the scores per sample of the most permissive 

parameter and the grey distribution the most stringent. Downsampling reads has little effect on the co-expression 

scores. Filtering low expressing genes by counts has the greatest impact, consistent with the SEQC replicability 

experiments. Allowing for mismatches has little impact. The minimum alignment score parameters are also 

placed for comparison. (B) Interpolated co-expression scores showing alignment and post-alignment filter 

hotspots (light blue to white). Dark areas are least replicable. These results are averaged over all 462 samples 

for 1000 runs, and interpolated between the dashed lines. Contours define interpolated score boundaries.  
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Table 1 Genes on the Y chromosome detected in at least 75% of samples 

Gene symbol Paralog(s) X Number of 
samples 

EIF4A1P2  461 

PSMA6P1  461 

RPS4Y1 RPS4X 433 

DDX3Y DDX3X 419 

VDAC1P6 VDAC1P1, VDAC1P2, VDAC1P3 383 

RPL26P37  373 

KDM5D KDM5C 368 

EIF1AY EIF1AX 365 

TXLNGY TXLNGX 364 

USP9Y USP9X 351 

 

Table 2 Drop out genes between default and extremal parameter  

Gene 
Number of  

Samples 

HLA-DQB2 101 

HLA-DRB5 93 

HLA-DQB1 43 

EIF5AL1 36 

HLA-DQA2 28 

HLA-G 8 

RPSAP58 4 

PABPC3 2 

FKBP1C 1 

POLR2L 1 

FRG1B 1 
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