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Abstract 20 

Prosthetic joint infections are clinically difficult to diagnose and treat. Previously, we demonstrated 21 

metagenomic sequencing on an Illumina MiSeq replicates the findings of current gold standard 22 

microbiological diagnostic techniques. Nanopore sequencing offers advantages in speed of detection 23 

over MiSeq. Here, we compare direct-from-clinical-sample metagenomic Illumina sequencing with 24 

Nanopore sequencing, and report a real-time analytical pathway for Nanopore sequence data, 25 

designed for detecting bacterial composition of prosthetic joint infections. 26 

DNA was extracted from the sonication fluids of seven explanted orthopaedic devices, and 27 

additionally from two culture negative controls, and was sequenced on the Oxford Nanopore 28 

Technologies MinION platform. A specific analysis pipeline was assembled to overcome the 29 

challenges of identifying the true infecting pathogen, given high levels of host contamination and 30 

unavoidable background lab and kit contamination. 31 

The majority of DNA classified (>90%) was host contamination and discarded. Using negative control 32 

filtering thresholds, the species identified corresponded with both routine microbiological diagnosis 33 

and MiSeq results. By analysing sequences in real time, causes of infection were robustly detected 34 

within minutes from initiation of sequencing.  35 

We demonstrate initial proof of concept that metagenomic MinION sequencing can provide rapid, 36 

accurate diagnosis for prosthetic joint infections. We demonstrate a novel, scalable pipeline for real-37 

time analysis of MinION sequence data. The high proportion of human DNA in extracts prevents full 38 

genome analysis from complete coverage, and methods to reduce this could increase genome depth 39 

and allow antimicrobial resistance profiling. 40 

Keywords 41 

Nanopore, joint infection, metagenomics, real-time, clinical  42 
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Background 43 

Joint replacement surgery may be complicated by prosthetic joint infections (PJI), a rare but serious 44 

event occurring up to five or more years post-operatively[1]. Recent studies in England of joint 45 

revisions undertaken for infection report an increase in prevalence for both knee and hip revisions 46 

[2, 3]. Improvements in speed and accuracy of diagnosis may improve outcomes following revision 47 

surgery by allowing more targeted therapy. PJI diagnosis can be challenging as infections may be 48 

associated with biofilms that colonise the orthopaedic devices [4], caused by fastidious or slow-49 

growing organisms that are not detectable by culture or from patients who have received prior 50 

antibiotics. Although culture of multiple periprosthetic tissue (PPT) samples remains the gold 51 

standard for microbial detection, it is relatively insensitive, with only approximately 65% of causative 52 

bacteria detected even when multiple PPT samples are collected [5–7].  53 

Development of molecular methods, such as multiplex-PCR, can be more sensitive in detection of PJI 54 

but are restricted by choice of primers to detect specific bacteria. An alternative is the use of 55 

metagenomic shotgun sequencing that can detect all bacteria directly from a sample. Sequencing 56 

directly from samples can provide accurate diagnostic information for PJIs when compared to 57 

laboratory culture and can also detect additional organisms[8, 9].   58 

Using third generation sequencing technology, developed by Oxford Nanopore Technologies (ONT) 59 

and Pacific Biosciences (PacBio), longer read lengths in faster turnarounds are possible. The ONT 60 

MinION potentially could allow analysis to be conducted in real-time with obvious advantages to 61 

clinical diagnosis of infection. Examples of metagenomic pathogen studies using MinION include viral 62 

detection from serum [10] and bacteria from urines and pleural effusions [11, 12]. These previous 63 

studies have shown proof-of- principle for direct from sample clinical sequencing using ONT MinION. 64 

However, PJI sequencing has a further challenge of high human DNA contamination which require 65 

specific laboratory preparation and bioinformatic analyses to overcome. 66 
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Here we describe proof-of-principle for the use of ONT MinION sequencing for the diagnosis of PJI 67 

when compared to standard microbiological culture and Illumina sequencing. We describe an 68 

analysis work-flow that differentiates between predicted infection species and background 69 

contamination and can be run during sequencing for real-time species detection. 70 

 71 

Methods 72 

Samples 73 

Samples used in this study were collected by the Bone Infection Unit at the Nuffield Orthopaedic 74 

Centre (NOC) in Oxford University Hospitals (OUH), UK, as previously described [8]. 9 samples 75 

previously assessed by Illumina MiSeq sequencing were chosen for further analysis by ONT MinION 76 

sequencing. Samples were chosen from the remaining DNA extracts that had sufficient DNA to either 77 

be sequenced directly, or amplified and sequenced, and to represent a range of disparate species 78 

and compositions. 79 

DNA preparation and sequencing 80 

Libraries were prepared for sequencing on an Oxford Nanopore MinION (Oxford Nanopore 81 

Technologies (ONT)) using genomic DNA previously extracted from sonication fluid samples [8]. 82 

Samples 259, 312, 335, 352 and 354 were prepared using the 1D genomic DNA by ligation protocol 83 

(SQK-LSK108) (ONT). Samples 229, 249, 506 and 509 had insufficient DNA for this protocol so were 84 

prepared using either a PCR-based protocol for low input genomic DNA with modified primers 85 

(DP006_revB_14Aug2015), followed by rapid sequencing adapter ligation (ONT) (sample 229) or the 86 

1D low input genomic DNA with PCR protocol (SQK-LSK108) (ONT) (samples 249, 506 and 509). 87 

Briefly, the protocols comprise DNA end-repair and dA-tailing (NEBNext Ultra II End Repair/dA-88 

Tailing Module, New England Biolabs (NEB), Ipswich, MA, USA) followed by purification using 89 

AMPure XP solid phase reversible immobilisation (SPRI) beads (Beckman Coulter, High Wycombe, 90 
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UK); Sequencing adapter ligation (Blunt/TA Ligase Master Mix, NEB) followed by additional SPRI 91 

bead purification. For the samples with insufficient DNA requiring PCR amplification, additional steps 92 

between end-repair and sequencing adapter ligation included; PCR adapter ligation (Blunt/TA Ligase 93 

Master Mix, NEB) followed by SPRI bead purification; PCR amplification (Phusion High Fidelity PCR 94 

Master Mix, NEB) with 18 cycles (samples 229 and 249) or 24 cycles (samples 506 and 509) followed 95 

by additional SPRI bead purification. Samples were sequenced on FLO-MIN105 (v.R9) (sample 229) 96 

or FLO-MIN106 (v.R9.4) (all other samples) SpotON flowcells. 97 

PCR analysis of sample 354a 98 

Quantitative real-time PCR (q-PCR) was performed for sample 354a to determine relative amounts 99 

of both Arcanobacterium haemolyticum and Fusobacterium nucleatum DNA in the original 100 

sonication fluid genomic DNA extract. qPCR was performed on a Stratagene MX3005P QPCR System 101 

(Agilent Technologies, Santa Clara, CA, USA) using Luna Universal Probe qPCR Master Mix (New 102 

England Biolabs, Ipswich, MA, USA). For A. haemolyticum, primers and probe were designed to 103 

target the phospholipase D gene: forward primer ATGTACGACGATGAAGACGCG (previously 104 

published, [13]), reverse primer TTGATTGCGTCATCGACACT, probe [6FAM]-105 

TTGGTAGTGCGGCTGCTGCGCC-[TAM]. For F. nucleatum, primers and probe were designed to target 106 

the nusG gene: forward primer CAGCAACTTGTCCTTCTTGATCC, reverse primer 107 

CTGGATTTGTAGGAGTTGGTTC, probe [6FAM]-AGACCCTATTCCTATGGAAGAGGAAGAAGTA-[TAM]. 108 

Reactions were performed in 20μl with 2ul of template DNA, 0.4μM of each primer and 0.2μM of 109 

the probe. Cycling conditions were an initial denaturation at 95°C for 1 minute, followed by 40 cycles 110 

of 95°C denaturation for 15 seconds and 60°C extension for 30 seconds. Genomic DNA, extracted 111 

from cultures of A. haemolyticum (Type Strain NCTC 8452) and F. nucleatum subspecies vincentii 112 

(Type Strain ATCC 49256), was diluted to 100,000 genome copies per μl then serially diluted to 10 113 

genome copies per μl and used to create copy number standard curves for both species. Negative 114 
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controls, replacing template DNA with water, were also performed. All reactions were performed in 115 

triplicate. 116 

 117 

Bioinformatics analysis 118 

We assembled an analysis pipeline for detection of bacterial pathogens using ONT MinION 119 

sequencing of orthopaedic device infections. The pipeline includes filtering steps for the genetic 120 

sequence data that have been tuned on seven positive samples with known infections and two 121 

culture negative samples. 122 

The analysis was performed within a Nextflow workflow [14] with the software contained within a 123 

Singularity [15] image generated from a Docker repository [16]. This workflow and software are 124 

available for public use, [17], with our intention for the analysis to be reproducible or replicable with 125 

other datasets on most systems.  126 

The workflow, CRuMPIT, has three major components, as shown in Figure 1. The first monitors the 127 

output of a MinION device or devices and creates batches of fast5 files (default 1000) as they are 128 

written to a storage drive location, Figure 1 (a,b). The second receives the fast5 files and uses a 129 

Nextflow workflow that basecalls data to be classified and aligns them to specific reference 130 

sequences with results pushed to a database, Figure 1 (c). Thirdly, analysis results including species 131 

identified, are determined and continually updated as the run progresses, Figure 1 (d). 132 

During the progression of this project, ONT have released several different software applications for 133 

basecalling, with each version improving accuracy [18]; we used the most up to date and reliable 134 

version at the time of sequencing. Basecalling from the fast5 files used different versions of either 135 

Metrichor (dragonet), MinKNOW-Live or ONT Albacore, Table 3. Fastq files were generated from the 136 

Metrichor or MinKNOW basecalled fast5 files using fast5watcher.py (commit b88e14a)[19] for 137 
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downstream analysis. Albacore is now used as the basecaller within the CRuMPIT workflow, with 138 

sequences basecalled directly to fastq files for analysis. 139 

To minimise spurious read classifications caused by repeat regions, sequences within the fastq files 140 

were separated based on molecular complexity, with only high complexity reads analysed further. 141 

Complexity was calculated using a dust score threshold of seven with prinseq-lite-0.20.4[20] which 142 

removes reads containing sequences consisting only of homopolymer, dipolymer and triploymer 143 

repeats.  144 

Centrifuge [21] was used to classify sequencing reads to a taxomic identifier. We used Centrifuge 145 

instead of Kraken[22] for this analysis because the initial starting match uses kmers of length 16, 146 

which is more suited to the Nanopore error profile compared to Kraken where databases are built 147 

with a default kmer size of 31. Additionally, the Centrifuge indexes require significantly less storage 148 

and memory compared to Kraken.  A Centrifuge index [21] was constructed using bacterial and viral 149 

genomes downloaded from NCBI RefSeq as of 03-March-2017, and the human reference genome 150 

(GRCh38). Low complexity regions with a dust score greater than 20 in the reference sequences 151 

were masked using dustmasker (v 1.0.0, NCBI). Alternatively, the precompiled 152 

“P_compressed_b+v+h” available to download from the Centrifuge authors was also used, yielding 153 

very similar results to our database. We used our database for this analysis because it is a more 154 

recent and complete dataset. However, for ease of reproducibility, the precompiled databases can 155 

also be used. 156 

Sequences with a taxonomic id, or a descendant, that belonged to a list of bacterial reference 157 

genome sequences downloaded from NCBI RefSeq, were mapped using minimap2 [23] (v2.2-r409). 158 

To be considered for detection, bacterial species were first classified by Centrifuge with a score of 159 

150 or greater with over 10% of the classified bacterial bases. The score of 150 was chosen as a 160 

suitable cutoff after several thresholds were tested, Supplemental figure 1. To remove spurious hits 161 

and background lab contamination, species were reported if they accounted for over 10% of the 162 
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classified bacterial bases by Centrifuge which also removed the majority of negative control hits, 163 

Supplemental figure 2. Alternatively, a read number threshold could have been chosen, however the 164 

margin of proportional read numbers was deemed too narrow between positive samples and 165 

negative controls. Therefore, a further mapping step was added to validate the Centrifuge 166 

classification. 167 

To be confirmed as a positive the mapped reads required a mapping quality score (mapq) of 50 or 168 

above and had to account for greater than 1% of the classified bacterial bases. Mapq 50 was used to 169 

ensure high quality alignments and helped to remove any remaining indiscriminate alignments, 170 

Supplemental figure 3. The 1% bases threshold was used after plotting bases over reads for positive 171 

samples and negative controls, Supplemental figure 4. However, if a detection species meets these 172 

criteria, the mapped reads can have any Centrifuge score and are included in further analysis. 173 

Therefore, more reads can be included if mapping provides satisfactory alignment over Centrifuge 174 

classification. This filtering method was tuned to remove all hits from the negative controls but leave 175 

as many validated positive detection species reads as possible. It is therefore a heuristic method and 176 

can be tuned with greater power when more samples have been processed. 177 

The entire workflow was run in Nextflow [14] with the software contained inside a Singularity [15] 178 

image. This has enabled the entire pipeline to run on a distributed cluster (SLURM [24]) with the 179 

flexibility to run on other platforms. A SLURM cluster was setup and used to handle the high 180 

computational demands of basecalling with Albacore, with the remaining pipeline requiring less 181 

computer time to complete. The cluster setup was built from a head node and four worker nodes 182 

with a total of 21 worker cores. Centrifuge was only run on two of the nodes, each with at least 16gb 183 

of memory. The workflow can be run in real time and detect new fast5 files from a MinION 184 

sequencing run, process them and push the data to a MongoDB database for analysis. 185 
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Results 186 

Sample composition after analysis 187 

Nine samples previously sequenced with an Illumina MiSeq were sequenced using the Oxford 188 

Nanopore MinION platform. Seven samples were extracted from bacterial culture positive sonication 189 

fluid. The remaining two samples, extracted from culture negative sonication fluid, were used as 190 

negative controls. Between 0.2 and 2.8 gigabases were basecalled for each sequencing run, with 191 

read lengths averaging between 500 bp and 1.7 kb (Error! Reference source not found.). 192 

The majority of classified reads were human, Table 1, with a range of 80% to 97% of bases in the 193 

sequenced culture positive samples coming from host contamination. Of the remaining non-host 194 

bases, a range of 0.04% to over 6% of bases were classified as bacterial by Centrifuge in the culture 195 

positive samples, Table 1.  196 

Our analysis workflow identified one or more bacterial species per sample, with the exception of the 197 

two culture negative samples, 509a and 506a (Table 2). One sample, 354a, was polymicrobial, with 198 

Enterococcus faecalis, Arcanobacterium haemolyticum and Fusobacterium nucleatum identified. Two 199 

species of the same genus, Bacillus cereus and Bacillus thuringiensis, were identified in sample 352a. 200 

All other samples had only a single bacterial species identified. 201 

The results from ONT MinION sequencing correspond with previously published analysis of the same 202 

samples by conventional microbiology culture and metagenomic Illumina MiSeq sequencing, Table 1 203 

[8]. A notable difference between the two molecular analyses can be seen in sample 352a, where 204 

ONT MinION sequencing enabled species level detection. The Illumina short read sequencing 205 

identified Bacillus spp. only (agreeing with the corresponding culture results) whereas ONT MinION 206 

sequencing identified two species from the Bacillus cereus group: Bacillus cereus and Bacillus 207 

thuringiensis. It is worth noting that speciation within the Bacillus cerus group is problematic as 208 
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species within this group share a high level of genome sequence identity [25]. Further investigation 209 

would be required to determine whether both species are actually present in this sample.  210 

Another difference observed between the two sequencing techniques is in sample 354a, and 211 

concerns the relative abundance of sequencing reads/bases for the multiple species classified in this 212 

polymicrobial sample. The Illumina MiSeq sequencing identified A. haemolyticum as the most 213 

abundant species, at 72% of bacterial reads, with F. nucleatum representing 7% of bacterial reads. 214 

However, ONT MinION sequencing classified very similar base numbers for both F. nucleatum and A. 215 

haemolyticum (493,717 and 547,413 bases respectively) We speculated that this observed 216 

difference in proportions of reads for the F. nucleatum and A. haemolyticum was caused by platform 217 

sequencing bias, possibly as a result of variable genome GC content: The A. haemolyticum genome is 218 

54% GC, compared to 27% for F. nucleatum. We used qPCR to test our hypothesis, and investigate 219 

which platform represents an estimate of genome abundance of these two species that is closest to 220 

the original DNA extract from sample 354a. qPCR results detected approximately equal copy 221 

numbers of both A. haemolyticum and F. nucleatum genomes in the original DNA extract, suggesting 222 

that ONT MinION sequencing has given a more accurate representation of species abundance in 223 

sample 354a, Table 4. However, standard deviations were high therefore further investigation will 224 

be needed to confirm this.  225 

 226 

Real time analysis 227 

Using the ONT MinION platform, it was possible to analyse sequences in real-time, and predict the 228 

species composition of culture positive samples minutes after data acquisition. Samples containing a 229 

larger yield of bacterial DNA, such as 354a and 249a, produced several hundred kilobases of 230 

sequences within the first two of hours, Figure 2A+B. Samples with lower yields, such as 352a, 231 

produced less sequence data, with several kilobases generated in the first two hours, Figure 2C. For 232 

all the species identified that passed the analysis thresholds, however, the sequences generated 233 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2017. ; https://doi.org/10.1101/220616doi: bioRxiv preprint 

https://doi.org/10.1101/220616
http://creativecommons.org/licenses/by/4.0/


 11

after data acquisition were consistent with the species identified by traditional culture methods and 234 

MiSeq sequencing, Figure 3. Each batch analysed within the Nextflow workflow took between four 235 

and fifteen minutes to process using a single core, depending on which node the job was submitted 236 

to, Supplemental figure 5. Therefore, real-time in this context needs to include this bioinformatics 237 

analysis time, the majority of which is basecalling. 238 

Discussion 239 

Here we demonstrate proof-of-principle that long-read sequencing using the ONT MinION can 240 

detect bacterial infections from DNA extracted directly from sonication fluid samples, and 241 

potentially do so within minutes of starting sequencing. If DNA extraction techniques can be similarly 242 

optimised, these technologies have the potential to make intra-operative diagnosis of the causes of 243 

specific infections possible. This would allow both local and systemic antibiotics to be targeted to the 244 

causative organisms in prosthetic joint infections, starting at the time of surgery.  245 

Analysis of the MinION data indicates concordance with the current gold standard laboratory culture 246 

and also Illumina short-read sequencing. In addition, we present a new analytical tool, CRuMPIT, 247 

which automates analysis of MinION data in this setting, and could be applied by other researchers 248 

and clinicians. By using negative controls we were able to determine signatures of background 249 

contamination - a challenge to diagnostic metagenomic interpretation [8, 26]. The thresholds and 250 

scores used within our bioinformatics workflow were determined after sequencing two negative 251 

controls that allow us to create heuristic thresholds to remove background sequences and false 252 

positives without masking the infection species. Future studies will involve sequencing more samples 253 

so refined threshold scores can be determined. This can be done as before with a Youden Index and 254 

J-statistic [8]. Sensitivity and specificity of the MinION cannot be determined from this study and 255 

therefore further, more extensive studies are required before use in a routine diagnostic 256 

microbiology laboratory can be recommended. 257 
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Although we were able to predict each species present within the sequenced samples, the vast 258 

majority of DNA sequenced was human, from host contamination, despite efforts to reduce this in 259 

the laboratory preparation. Depletion of host DNA contamination will facilitate greater pathogen 260 

genome sequencing coverage but this continues to present challenges as the numbers of bacterial 261 

cells in joint infections is low [5] in relation to human cells. Previous studies with ONT MinION on 262 

direct clinical samples have used samples with relatively high concentrations of bacteria in urine [11] 263 

(compared to PJI samples) or moderate to high viral titres in blood [10]. The MinION has also been 264 

used for metagenomics in environmental samples [27]. However, reduction of human DNA could 265 

allow better genotyping, transmission analysis and antimicrobial resistance gene prediction as the 266 

proportion of bacterial DNA increases. Currently, this depends on laboratory development to reduce 267 

the number of human cells in samples rather than downstream bioinformatic analysis. 268 

The sequencing yields here were low compared to other ONT MinION sequencing yields sequenced 269 

within the same lab (data not shown).  DNA read lengths sequenced in this project are also relatively 270 

short, with the average under 1 kilobase, where mean read lengths can be expected over 10 271 

kilobases with this method. This is likely due to the DNA extraction methods used, as they were 272 

optimised for MiSeq sequencing. However, of the four samples processed by PCR due to low DNA 273 

concentration, there was variation in read length and depth ranging from highest to lowest.  274 

There are known biases for organisms associated with GC content in using PCR-based methods for 275 

sample preparation [28] and with Illumina metagenomic data [29]. We found some evidence that 276 

MinION sequencing may better reflect the relative abundance of pathogen DNA in polymicrobial 277 

infections, as it appeared less prone to GC biases than Illumina MiSeq short-read sequencing.  278 

Detection of the species was possible within minutes of the sequencing run starting, and this 279 

includes the time required to process the sequencing data, with basecalling being the biggest 280 

bottleneck. The fast5 file batch size has an effect on turnaround time and reducing batch sizes is 281 

preferable for longer reads that take more time to basecall. We have tested the pipeline on a SLURM 282 
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cluster on the same network as the computers running the MinION sequencer, enabling us to scale 283 

to the rate of sequencing and basecall with greater throughput than we could with a single machine.  284 

A limitation of this study was seen in runs where reads were live basecalled with the MinKNOW 285 

basecaller: the runs produced data too quickly for the system to keep up. Retrospective basecalling 286 

was not possible at the time and the skipped reads have since been discarded. Therefore, in future 287 

studies using Albacore, as is the case with the most recent two sequencing runs (506a and 509a), we 288 

expect the average DNA read lengths and yields to increase, which will aid species classification and 289 

potential De novo assemblies.  290 

The ONT MinION sequencing process has undergone continual development with substantial 291 

improvements since this project began. Therefore, we have used three different basecallers, 292 

Metrichor, MinKNOW and Albacore, for converting the raw signal or event data to DNA sequences. It 293 

is possible to rebasecall some of this data, but as we no longer have access to some sample raw data 294 

files, we cannot rebasecall all the samples. Also, as this would not reflect the real-time analysis 295 

carried out, we have not rebasecalled all samples with the same software version. Future studies 296 

should continue to use the most accurate, current, and efficient basecaller for real-time analysis.  297 

Although analysis of the sequencing is close to real-time, the DNA extraction and library preparation 298 

takes several hours. There are rapid library preparation kits available, however we feel the 299 

sequencing yield is currently too low for these to be a viable route to detection of pathogens directly 300 

from samples, particularly in samples with high host contamination. This project was a proof of 301 

concept, but to be cost effective in the future, multiplexed samples or reusable/washable flowcells 302 

may need to be employed. 303 

Conclusions 304 

The study shows reliable detection of infection species composition in prosthetic joint infections 305 

using ONT MinION sequencing. This represents proof of concept for utilising real time ONT MinION 306 
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sequencing for PJI diagnostics. The speed of detection indicates that this technology has the 307 

potential to deliver results to the clinician in a timelier manner than traditional microbiological 308 

methods. Reduction of diagnostic time could have a significant positive influence on patient 309 

outcome, allowing prompt, targeted antimicrobial therapy.  310 

The development of a reproducible workflow, as described in this study, has potential use for any 311 

clinical sample metagenomic ONT MinION sequencing, not just sonication fluids. The software used 312 

for analysis is provided [17] and can be installed and run locally or in a distributed cluster to scale 313 

with throughput.  314 

Figures and supplemental 315 

Total Mean Median Low complexity Human Bacteria 

Sample Bases Reads 

 read 

length 

 read 

length bases reads bases reads bases reads 

229a 204,346,556 124,218 1,645.06 1,745 113,836 69 198,972,861 117,821 1,692,097 914 

249a 723,925,562 585,098 1,237.27 1,006 403,668 370 563,888,189 411,612 44,502,912 34,773 

259a 1,057,865,247 600,291 1,762.25 1,321 390,209 289 949,663,786 502,426 512,827 312 

312a 1,121,119,742 1,004,818 1,115.74 674 1,905,423 1,044 1,038,235,876 882,763 30,426,198 14,948 

335a 2,847,687,425 1,717,810 1,657.74 1,171 2,835,054 1,362 2,783,128,118 1,605,466 1,388,748 989 

352a 803,638,340 986,867 814.33 609 567,656 630 669,796,136 752,022 459,779 579 

354a 706,380,170 945,929 746.76 596 680,560 848 570,485,740 717,662 2,151,551 2,443 

509a 2,740,060,527 4,940,241 554.64 439 16,355,839 24,413 1,199,779,866 1,352,438 6,240,425 2,628 

506a 2,451,399,949 4,700,013 521.57 431 20,014,343 23,631 1,161,796,584 1,671,726 4,705,919 2,139 

 316 

Table 1. Oxford nanopore technologies MinION sequencing yields and basic details and breakdown of centrifuge 317 

classification. Bacteria, Human with a centrifuge score greater than 150, and total reads including unclassified reads. 318 
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Samples 509a and 506a are culture negatives and used as negative controls. Results are after removing low complexity 319 

reads.   320 

Sample ONT minion species TaxID 

Mapped reads 

(% of identified 

bacterial) 

Mapped bases (% 

of identified 

bacterial) 

Sonication species 

Tissue culture 

species 

MiSeq reads 

(% of 

bacterial) 

229a Staphylococcus aureus 1280 815 (89) 1,912,820 (113) S. aureus S. aureus 6,038 (98) 

249a Cutibacterium acnes 1747 23,500 (68) 29,443,269 (66) P. acnes P. acnes 108,940 (100) 

259a Staphylococcus epidermidis 1282 155 (50) 223,611 (44) S. epidermidis S. epidermidis 749 (86) 

312a Citrobacter koseri 545 11,629 (78) 24,631,203 (81) C. koseri C. koseri 221,516 (95) 

335a Morganella morganii 582 613 (62) 515,991 (37) M. morganii M. morganii 3,555 (94) 

352a 

Bacillus thuringiensis 1428 41 (7) 27,026 (6) 

Bacillus species Bacillus species 1,109 (86*) 

Bacillus cereus 1396 119 (21) 85,627 (19) 

354a 

Arcanobacterium haemolyticum 28264 584 (24) 547,413 (25) A. haemolyticum 

 

11,182 (72) 

Fusobacterium nucleatum 851 529 (22) 493,717 (23) 

 
 

1,156 (7) 

Enterococcus faecalis 1351 225 (9) 223,665 (10) E. faecalis E. faecalis 1,173 (8) 

506a Non detected No growth No growth Non detected 

509a Non detected No growth No growth Non detected 

 321 

 322 

Table 2. Species detected after read classification and reference genome alignment in CRuMPIT. Samples 509a and 506a 323 

are culture negatives and used as negative controls, no bacterial species were detected after filtering thresholds were used. 324 

Species detected from sonication fluid, tissue culture and MiSeq sequence analysis using Kraken. Adapted from [8]. (*) 325 

indicates % of bacterial reads taken from the Bacillus cereus group level (taxonomic id of 86661). 326 

 327 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2017. ; https://doi.org/10.1101/220616doi: bioRxiv preprint 

https://doi.org/10.1101/220616
http://creativecommons.org/licenses/by/4.0/


 16

Sample Basecaller Software version 

229a Metrichor (dragonet) 1.22.4 

249a MinKNOW-Live-Basecalling 1.4.3 

259a MinKNOW-Live-Basecalling 1.3.30 

312a Metrichor (dragonet) 1.23.0 

335a Metrichor (dragonet) 1.23.0 

352a MinKNOW-Live-Basecalling 1.1.21 

354a MinKNOW-Live-Basecalling 1.1.20 

509a ONT Albacore Sequencing Software 1.1.0 

506a ONT Albacore Sequencing Software 1.1.0 
 328 

Table 3. Nanopore basecallers and versions used for each sample. 329 

Species Std curve RSq Efficiency Replicate CT Copies Average ± Std Dev 

Arcanobacterium haemolyticum 0.991 89.20% 1 29.12 2356 3214 ± 965 

2 28.72 3028 

3 28.19 4258 

Fusobacterium nucleatum 0.999 86.00% 1 28.93 4269 3421 ± 1304 

2 30.22 1919 

  3 29.01 4075 

Table 4. qPCR results. 330 

Figure 1, Diagram of analysis process. (a) MinION sequencing using MinKNOW (runs outside of CRuMPIT). (b) Fast5 files are 331 

detected and submitted as batches for the Nextflow workflow. (c) Nextflow workflow which is contained within a singularity 332 

image and can be distributed across a cluster (SLURM used here) or on a local machine. (d) Run analysis using data pushed 333 

to a MongoDB database, this can be conducted separately on any machine with network access to the database. Each 334 

component (green or blue rounded rectangle) of CRuMPIT can be run independently from the same or different networked 335 

computers, (e) or the entire process can be run from a single program. Square rectangles represent programs, some of 336 

which are within python wrappers. Arrows represent direction of data transfer within the workflow or between 337 

componants. 338 

Figure 2, Cumulative bases classified by Centrifuge and minimap2 reference alignment over the first few hours of 339 

sequencing on the MinION. Each marker on the plots represents a new sequence classified. Times are on the day of 340 

sequencing and taken from the read timestamp and doesn’t include bioinformatic time. Three samples shown showcasing 341 

the best and worst performers. (A) Sample 354a containing three different species. (B) Sample 249a containing 342 

Cutibacterium acne. (C) Sample 352a containing two different Bacillus species. 343 
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Figure 3, Percentage of mapped bases (minimap2) to total centrifuge classified bacterial bases over the first two hours of 344 

sequencing. As with Figure 2, each marker on the plots represents a new sequence classified. Times are on the day of 345 

sequencing. Three samples shown showcasing the best and worst performers. (A) Sample 354a containing three different 346 

species. (B) Sample 249a containing Cutibacterium acne. (C) Sample 352a containing two different Bacillus species. 347 

Supplemental figure 1. Bases classified total or target over centrifuge score. Each sample has two lines of the same colour. 348 

The top line is total bacterial bases identified by centrifuge over the score threshold used. The second lower line is the 349 

validated detected species/infection for the sample (Target). As the score threshold increases, the number of total classified 350 

bases reduces at a great rate than the target bases, until a plateau and diminishing returns at approximately 150. 351 

Supplemental figure 2. Each species identified by centrifuge showing total bases over number of reads as proportions of 352 

total bacterial bases and total bacterial reads respectively. Species detections below the 0.1 proportion (i.e. less than 10%) 353 

of bases threshold are dots and species detections above the 0.1 proportion threshold are crosses. Culture negative controls 354 

are red and Culture negative positive samples are blue. 355 

Supplemental figure 3. Indiscriminate(indis) read and discriminate(dis) mapping qualities. Quality scores taken from 356 

mapping all reads to a reference with minimap2. Discriminate scores are from reads that have passed through the pipeline 357 

filtering thresholds and are determined to be reads specific to the reference. The indiscriminate are other reads that were 358 

likely to be host and/or contamination. 359 

Supplemental figure 4. Each species identified by minimap2 mapping showing total bases over number of reads as 360 

proportions of total bacterial bases (centrifuge) and total bacterial reads (centrifuge) respectively. Species detections below 361 

the 0.1 proportion (i.e. less than 1%) of bases threshold are dots and species detections above the 0.01 proportion threshold 362 

are crosses. Culture negative controls are red and Culture negative positive samples are blue. Shows shortened axis of 363 

below threshold hits. 364 

Supplemental figure 5. Batch job duration times in minutes sample report taken from Nextflow. Using sample 354a as a 365 

representative for the bioinformatic analysis. Batches were run over a heterogeneous SLURM cluster with variable node 366 

CPU speeds affecting Albacore performance. 367 
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