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Abstract  1 

When combined with source modeling, magneto- (MEG) and electroencephalography (EEG) can be used to 2 

study long-range interactions among cortical processes non-invasively. Estimation of such inter-areal 3 

connectivity is nevertheless hindered by instantaneous field spread and volume conduction, which artificially 4 

introduce linear correlations and impair source separability in cortical current estimates. To overcome the 5 

inflating effects of linear source mixing inherent to standard interaction measures, alternative phase- and 6 

amplitude-correlation based connectivity measures, such as imaginary coherence and orthogonalized 7 

amplitude correlation have been proposed. Being by definition insensitive to zero-lag correlations, these 8 

techniques have become increasingly popular in the identification of correlations that cannot be attributed to 9 

field spread or volume conduction. We show here, however, that while these measures are immune to the 10 

direct effects of linear mixing, they may still reveal large numbers of spurious false positive connections 11 

through field spread in the vicinity of true interactions. This fundamental problem affects both region-of-12 

interest-based analyses and all-to-all connectome mappings. Most importantly, beyond defining and 13 

illustrating the problem of spurious, or “ghost” interactions, we provide a rigorous quantification of this 14 

effect through extensive simulations. Additionally, we further show that signal mixing also significantly 15 

limits the separability of neuronal phase and amplitude correlations. We conclude that spurious correlations 16 

must be carefully considered in connectivity analyses in MEG/EEG source space even when using measures 17 

that are immune to zero-lag correlations. 18 

 19 

Keywords  20 

Connectivity, MEG, EEG, Phase synchrony, Orthogonalized amplitude correlation, signal mixing, secondary 21 
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 1 

Highlights 2 

 3 

 Reliable estimation of neuronal coupling with MEG and EEG is challenged by signal mixing 4 

 A number of coupling techniques attempt to overcome this limitation by excluding zero-lag 5 

interactions 6 

 Contrary to what is commonly admitted, our simulations illustrate that such interaction metrics will 7 

still yield false positives 8 

 Spurious, or “ghost”, interactions are generally detected between sources in the vicinity of true 9 

phase-lagged interacting sources 10 

 Signal mixing also severely affects the mutual separability of phase and amplitude correlations 11 

 12 

 13 
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 1 

1 Introduction 2 

Inter-areal interactions among neuronal ensembles during rest or in active tasks are a hallmark of integrative 3 

brain function and have been the focus of a thriving body of research over the last decade [Bastos and 4 

Schoffelen, 2016; Biswal et al., 2010; Brookes et al., 2011; Foster et al., 2016; Harris and J. A. Gordon, 2015; 5 

Hutchison et al., 2013; Karl J., 2011; Mantini et al., 2007; Pizzella et al., 2014; Schoffelen and J. Gross, 2009; 6 

Siems et al., 2016; Sporns, 2015; van Diessen et al., 2015]. Magneto- (MEG) and electro-encephalography 7 

(EEG) offer a highly valuable approach for probing these interactions both by yielding direct 8 

electrophysiological recordings of neuronal activity, whole-head coverage and, most importantly, the 9 

millisecond-range temporal resolution required for observing fast neuronal dynamics. However, limited 10 

spatial resolution and signal processing complexities require attention to subtleties in the obtained coupling 11 

results and may lead to erroneous interpretations of the data.  12 

A central problematic issue results from signal spread, which translates to volume conduction in the case of 13 

EEG recordings, to field spread when it comes to MEG, and to signal leakage in source reconstructed EEG 14 

or MEG data. In both MEG and EEG, a spatially widespread group of sensors detects the activity of any 15 

single neuronal source. Therefore, correlations among signals measured at two distant sensors do not 16 

necessarily reflect the existence of two distinct interacting cortical sources. On the other hand, from the 17 

perspective of individual sensors, the same sensor can always pick up multiple sources. Thus, two 18 

instantaneously interacting (i.e., zero phase lag) sources are difficult to be distinguished from a single source 19 

whose activity recorded by the same sensors. In addition to these theoretical limitations due to signal spread 20 

effects, difficulties in relating results of sensor-level interaction analyses to known anatomical or functional 21 

systems, even if caused by true interactions, provide further arguments to why in general interaction analyses 22 

should not be performed in sensor space. 23 

The application of source estimation techniques to MEG/EEG data, followed by performing interaction 24 

analyses on reconstructed source activations, alleviates but does not fully solve the detrimental effects of 25 

signal spread [Gross et al., 2013; Palva and J. M. Palva, 2012; Schoffelen and J. Gross, 2009]. Inverse 26 

modeling techniques use spatiotemporal channel information and provide a plausible distribution of neuronal 27 

currents that may have generated the sensor-level measurements. The properties (e.g., the spatial smoothness) 28 

of the reconstructed source activity depend on the assumptions on which the inverse operator is built and 29 

vary across different inverse solutions [Baillet and Garnero, 1997; Gross et al., 2001; Hamalainen and R. J. 30 

Ilmoniemi, 1994; Van Veen et al., 1997]. No inverse solution, however, is perfect, and the interpretation of 31 

analysis results based on source reconstructed data should always consider the inherent spatial limitations of 32 

the inverse technique used. I.e., residual signal leakage will always characterize the source data. Generically, 33 

these spatial limitations can be investigated using realistic simulations that employ accurate forward models, 34 

in order to evaluate the inverse technique’s point spread (PSF) and cross-talk functions (CTF)   [Hauk and 35 

Stenroos, 2014; Hauk et al., 2011; Korhonen et al., 2014; Liu et al., 2002; Lütkenhöner, 2003]. These 36 

functions quantify, as a function of space, for any given source location, the extent to which the activity at 37 

the given location leaks to other locations (PSF), and the extent to which activity that leaks from other 38 

locations affects the estimate of the source activity at the given location (CTF). Both measures can be 39 

obtained from the so-called resolution matrix, which is the product of the inverse and forward operator 40 

matrices.  41 

The detrimental effect of spatial imperfections in the inverse operator manifests itself clearly in the context 42 

of interaction analyses between estimated source time courses. Conceptually, the estimated interactions can 43 
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be driven either by (a) true, (b) artificial or (c) spurious interactions among the reconstructed signals. These 1 

notions are defined in this study as follows: 2 

True interactions: these reflect estimated interactions that are caused by real interactions between neuronal 3 

groups observed at the considered locations. 4 

Artificial interactions: these reflect estimated interactions that are false positives and not caused by real 5 

interactions between neuronal groups at the considered locations. Rather, the ‘significant’ coupling is caused 6 

by signal mixing and often through cross-talk from dominant sources at other locations and thus reflects 7 

residual effects of the signal spread at the source level. One well-known example of this is sometimes 8 

referred to as ‘seed blur’. 9 

Spurious interactions: these reflect estimated interactions that are false positives and also result from cross-10 

talk [Palva and J. M. Palva, 2012]. Yet, the distinction with the artificial interactions described above is that 11 

the process underlying the estimated interaction is a genuine interaction between neuronal groups but the 12 

location of the interacting sources is misestimated. Concretely, signal spread results in pairs of sources in the 13 

vicinity of the actual interacting sources to also display significant coupling. In other words, spurious 14 

interactions arise as an unwanted by-product of a truly interacting pair of sources, and can be referred to as 15 

ghost interactions. 16 

One commonly used strategy to minimize false positives in interactions estimated with MEG is to use an 17 

experimental or baseline contrast in combination with either standard (e.g., coherence, amplitude correlations, 18 

etc.) or signal-mixing insensitive (as described below) interaction measures, and assume that the spatial 19 

structure in the false positives is similar across conditions. Obviously, this strategy is only applicable in 20 

situations where such contrasts can be made, and therefore it is not applicable in task-free (resting state) 21 

situations. More importantly, the validity of the interpretations heavily relies on the untenable assumption 22 

that the false positives are similar across conditions. For instance, differences in signal-to-noise ratio result in 23 

trivial differences in false positive differences in interactions [Bastos and Schoffelen, 2016].    24 

Recent years have witnessed the development of important and innovative measures that directly avoid false 25 

positive observations of coupling attributable to signal spread [Brookes et al., 2012; Hipp et al., 2012; Nolte 26 

et al., 2004; Vinck et al., 2011]. These methods exclude the contribution of instantaneous signal spread to the 27 

estimated interactions, and by design, thus address the issue of artificial interactions. For instance, the 28 

imaginary part of coherency [Nolte et al., 2004] removes the zero-phase lag interactions because these are 29 

entirely captured by the real part of coherency. Another types of measures aim to quantify the correlation in 30 

band-limited amplitude envelopes. Here, the signals are orthogonalized with respect to each other to remove 31 

zero-lag mixing prior to computing the correlation between the amplitudes [Brookes et al., 2012; Hipp et al., 32 

2012].  33 

While these methods can be very useful, they have an important limitation. Ignoring near-zero-lag 34 

interaction components makes the interaction estimate insensitive to leakage, also true near-zero-phase 35 

interactions will remain undetected.  36 

One important and frequently overlooked limitation of the above-mentioned leakage insensitive measures of 37 

interactions is that these measures do not protect against false positives due to spurious interactions, as 38 

defined above. Steps towards addressing this problem have already been taken in the case of amplitude 39 

correlations [Colclough et al., 2015], but generic interaction-metric independent solutions have remained 40 

elusive. Another subtle but equally important problem is the fact that, due to the unavoidable signal leakage, 41 

orthogonalized envelope correlation estimates may be affected by the concurrent presence of phase coupling. 42 

These limitations pose important challenges to the physiological interpretability of the results. Although the 43 
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issue of spurious interactions has been recognized by some experts in the field, it and the possible confusion 1 

of phase and amplitude couplings are not common knowledge and hence merit more widespread awareness. 2 

The purpose of this study is to demonstrate and quantify these ghost interactions and further elucidate the 3 

effects of phase coupling on orthogonalized amplitude correlation estimates.  4 

 5 

Footnote: the term “artificial” and “spurious” interactions are often used interchangeably in the literature. 6 

Here, spurious (or ghost) interactions refers only to false positives that arise independently of the chose 7 

interaction metric. Spurious/ghost interactions in this meaning have also been termed “inherited” interactions 8 

[Hauk and Stenroos, 2014; Colclough et al., 2015]. Furthermore, we do not discuss higher order artificial 9 

interactions, i.e. caused by common drive, third-party sources and cascade effects, although identifying them 10 

is of equal importance [Mannino and Steven L. Bressler, 2015; Mannino and Steven L. Bressler, 2015; 11 

Wollstadt et al., 2015]. 12 

 13 

  14 
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2 Materials and Methods 1 

2.1 Simulation of signals and interactions 2 

‘Estimated source signals’ were modelled as an instantaneous linear mixture (to model signal spread) of 3 

underlying source time series. To model these time series, we applied a two-stages mixing procedure.  4 

At the first stage, we modelled the underlying ‘true’ source time series as follows: One-dimensional random 5 

Gaussian time series 𝑛𝑖  were linearly mixed using mixing parameters 𝑐𝐴 and 𝑐𝜃. The mixed time series were 6 

filtered using complex Morlet wavelets, and time series to be used as instantaneous amplitudes and phases 7 

were computed as follows, 8 

𝐴𝑥(𝑡) = |𝐹(𝑛1(𝑡) + 𝑐𝐴𝑛2(𝑡))| = √𝑟𝑒 (𝐹(𝑛1(𝑡) + 𝑐𝐴𝑛2(𝑡)))
2

+ 𝑖𝑚 (𝐹(𝑛1(𝑡) + 𝑐𝐴𝑛2(𝑡)))
2

      (1) 9 

𝐴𝑦(𝑡) = |𝐹(𝑛2(𝑡) + 𝑐𝐴𝑛1(𝑡))|          (2) 10 

𝜃𝑥(𝑡) = 𝑝ℎ𝑎𝑠𝑒 (𝐹(𝑛3(𝑡) + 𝑐𝜃𝑛4(𝑡))) = 𝑎𝑡𝑎𝑛 (
𝑖𝑚(𝐹(𝑛3(𝑡)+𝑐𝜃𝑛4(𝑡)))

𝑟𝑒(𝐹(𝑛3(𝑡)+𝑐𝜃𝑛4(𝑡)))
)        (3) 11 

𝜃𝑦(𝑡) = 𝑝ℎ𝑎𝑠𝑒 (𝐹(𝑛4(𝑡) + 𝑐𝜃𝑛3(𝑡)))            (4) 12 

where 𝑛𝑖  is a vector containing (N=50000) samples of Gaussian white noise from i
th
 realization; F denotes 13 

complex Morlet wavelet transform  with basis function 𝜓(𝑥) = 𝑒−𝑥2 2⁄ cos (5𝑥);  𝑐𝐴 and 𝑐𝜃 are scalar mixing 14 

parameters; re and im are the real and imaginary part of complex number, respectively; A and θ are the 15 

amplitudes and phases, respectively. This approach allows us to model phase and amplitude interactions 16 

separately [Bruns et al., 2000].  17 

At the second stage, the amplitudes and phases (Eqs. 1–4) were used to assemble complex-valued time series 18 

in the following manner,  19 

𝑥(𝑡) = 𝐴𝑥(𝑡)𝑒𝑖𝜃𝑥(𝑡) + 𝑚𝐴𝑦(𝑡)𝑒𝑖(𝜃𝑦(𝑡)+𝜙𝑥𝑦)          (5) 20 

𝑦(𝑡) = 𝐴𝑦(𝑡)𝑒𝑖(𝜃𝑦(𝑡)+𝜙𝑥𝑦) + 𝑚𝐴𝑥(𝑡)𝑒𝑖𝜃𝑥(𝑡)          (6) 21 

where m is the spatial mixing parameter, modelling the instantaneous signal spread; ϕxy is the phase shift [-π, 22 

π], controlling the mean phase difference across sources x and y.  23 

To demonstrate the spatial effects of signal spread, we simulated source signals in a 13×13 square grid layout, 24 

with inter-source distance dg. The signal spread was modelled as a truncated 2-dimensional Gaussian 25 

function with parameters μ = 0 and = dg up to a range of three standard deviations so that,  26 

𝑚(𝑑) =
1

𝜎√2𝜋
𝑒

−
(𝑑−𝜇)2

2𝜎2 ,               𝑖𝑓 𝑑 ≤ 3𝜎           (7) 27 

𝑚(𝑑) = 0,                                     𝑑 > 3𝜎 .  28 

2.2 Quantification of interactions 29 

Interactions between oscillatory neuronal signals can be measured in a variety of ways, which either rely on 30 

measuring some consistency of phase differences, correlation of amplitudes, or on a combination of both 31 

[Bastos and Schoffelen, 2016]. Here, we quantified interactions in terms of Phase Locking Value (PLV), and 32 
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in terms of the correlation coefficient (CC) of amplitude envelopes. In addition, we used the imaginary part 1 

of the complex-valued PLV (iPLV) and the correlation coefficient of orthogonalized amplitude envelopes 2 

(oCC) to account for the effects of linear mixing.  3 

Phase locking value (PLV) and imaginary part of phase locking value (iPLV) quantify the strength of phase 4 

coupling. PLV is defined as the magnitude of mean complex phase difference between amplitude-normalized 5 

source time courses [Lachaux et al., 1999], 6 

𝑃𝐿𝑉 = |∑ 𝑒
𝑖(𝜃𝑥(𝑡)−𝜃𝑦(𝑡))

𝑡 𝑁⁄ |           (8) 7 

where N is the number of samples; |·| denotes absolute value operator; θx(t) and θy(t) are the phases of x(t) 8 

and y(t), respectively. iPLV, on the other hand, is the imaginary part of the average, 9 

𝑖𝑃𝐿𝑉 = |𝑖𝑚 (∑ 𝑒
𝑖(𝜃𝑥(𝑡)−𝜃𝑦(𝑡))

𝑡 𝑁⁄ )|           (9) 10 

Thus, PLV theoretically compares to iPLV as coherence compares to the imaginary part of coherency [Nolte 11 

et al., 2004]. Nevertheless, it is important to keep in mind that the reliability of phase estimation inherently 12 

depends on SNR and may generally be more accurate in the presence of higher signal amplitudes [Palva et 13 

al., 2010]. Using the imaginary part, and thus discarding all real-valued contributions to the estimated 14 

interactions, effectively discards all zero-lag interactions, most of which are caused by instantaneous mixing 15 

and thus are considered detrimental to correlation estimates. 16 

Amplitude correlations were quantified using the Pearson correlation coefficient (CC) between amplitude 17 

envelopes of x(t) and y(t), Ax(t) and Ay(t), 18 

𝐶𝐶 =
𝑁−1 ∑ (𝐴𝑥(𝑡)−𝜇𝐴𝑥

)(𝐴𝑦(𝑡)−𝜇𝐴𝑦)𝑡

𝜎𝐴𝑥𝜎𝐴𝑦

= 𝑐𝑜𝑟𝑟(𝐴𝑥 , 𝐴𝑦)        (10) 19 

where N is the number of samples in signals x(t) and y(t); μAx and σAx refer to the average and standard 20 

deviation of Ax over time, respectively. 21 

Linear mixing between two signals x(t) and y(t) also affects the correlation between their amplitude 22 

envelopes. To exclude mixing-related amplitude correlations, two approaches [Brookes et al., 2012; Hipp et 23 

al., 2012] have been proposed, where the signals are orthogonalized prior to the calculation of CC. This 24 

orthogonalization removes all linear contribution from signal x(t) to signal y(t), or vice versa, provided that 25 

the signals are Gaussian—residual zero-lag mixing may remain for non-Gaussian signals [Brookes et al., 26 

2014]. In the time domain, orthogonalization of signal y with respect to signal x is achieved as follows: 27 

𝑦⊥(𝑡) = 𝑦(𝑡) − 𝑥(𝑡)[𝒙+𝒚]          (11) 28 

where x
+
 is the pseudoinverse of the vector x [Brookes et al., 2012]. 29 

Alternatively, orthogonalization can be performed in frequency domain as follows [Hipp et al., 2012]: 30 

𝑌⊥(𝜔) = 𝑖𝑚 (𝑌(𝜔)
𝑋(𝜔)∗

|𝑋(𝜔)|
)          (12) 31 

where 
*
 denotes complex conjugation.  32 

The orthogonalized CC (oCC) is then computed as CC, but using orthogonalized amplitude envelopes, 33 
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𝑜𝐶𝐶 = (𝑐𝑜𝑟𝑟(𝐴𝑥 , 𝐴𝑦⊥) + 𝑐𝑜𝑟𝑟(𝐴𝑦 , 𝐴𝑥⊥)) 2⁄         (13) 1 

Because this seed-based orthogonalization can be performed in two directions, either to obtain y
┴
(t) 2 

orthogonalized in relation to x(t), or to obtain x
┴
(t) orthogonalized in relation to y(t), the final oCC is defined 3 

as the average of the two correlation coefficients. Such orthogonalization works, however, only under the 4 

assumption of data being normally distributed, which might not be accurate for the typically heavy-tailed 5 

oscillation amplitude distributions. It should also be noted that more sophisticated approaches for estimating 6 

amplitude-amplitude correlations, which simultaneously orthogonalize all the time series and greatly reduce 7 

spurious connections, have been introduced recently [Colclough et al., 2015; O'Neill et al., 2015] 8 

In addition to iPLV, we also estimated the weighted phase lag index (wPLI) where the sign of the phase 9 

difference between two signals is weighted by the magnitude of the imaginary component of the cross-10 

spectrum [Vinck et al., 2011], 11 

𝑤𝑃𝐿𝐼 =
|𝐸{𝑖𝑚(𝑃𝑥𝑦)}|

𝐸{|𝑖𝑚(𝑃𝑥𝑦)|}
=

|𝐸{|𝑖𝑚(𝑃𝑥𝑦)|𝑠𝑖𝑔𝑛(𝑖𝑚(𝑃𝑥𝑦))}|

𝐸{|𝑖𝑚(𝑃𝑥𝑦)|}
        (14) 12 

Where E{} is the expected value, im() is the imaginary part of a complex value, Pxy  is the cross-spectrum, 13 

𝑃𝑥𝑦 = 𝑥(𝑡)𝑦∗(𝑡), x and y are complex signals, and * denotes the complex conjugate. 14 

2.3 Simulations using realistic anatomical information and sensor topology 15 

In addition to the synthetic simulations on the 2-dimensional ‘source’ grid, we investigated the effect of 16 

spurious synchrony in more realistic MEG/EEG settings. To this end, we simulated two correlated cortical 17 

parcels (left and right visual cortex) in a realistic anatomy and measurement geometry, and so that all other 18 

cortical parcels were given uncorrelated time series with equal amplitude distributions. The example parcels 19 

thus differed from others only by their correlation. We then performed a virtual MEG/EEG experiment by 20 

forward-modeling simulated source activity, followed by minimum-norm source reconstruction. 21 

Subsequently, we estimated all-to-all cortical interactions using the metrics outlined below.  22 

Cortical reconstruction and parcellation 23 

Volumetric segmentation of individual MRI images, reconstruction of anatomical surfaces, and cortical 24 

parcellation with Destrieux parcellation ([Dale et al., 1999; Fischl et al., 1999; Fischl et al., 2002]) were 25 

carried out with FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). The resulting parcellation contained 148 26 

parcels covering the entire cortex. The largest parcels were iteratively selected and further partitioned until a 27 

total 400 parcels of equal size was obtained, see  [Palva et al., 2010] for details. 28 

Forward modeling  29 

A realistic forward model was based on MRI data from one healthy subject (male, 32 years of age). T1-30 

weighted anatomical MRI scans of were obtained at a resolution of 1×1×1 mm with a 1.5-T MRI scanner 31 

(Siemens, Germany). MNE-suite (http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php) 32 

was used to build a source model with 8196 current dipoles distributed evenly on the surface of the white 33 

matter and oriented normally to the local cortical surface. Also, a 3-layer MEG and EEG volume conduction 34 

model was created, which was used with the source model to construct the gain matrix G, using the linear 35 

collocation boundary-element method (BEM), as implemented in MNE-Suite. MEG and EEG sensor 36 

positions with respect to the head were taken from a concurrent MEG/EEG recording session [Palva et al., 37 

2010]. 38 
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Inverse modeling 1 

We used L
2
 minimum-norm estimation, as implemented in MNE Suite Matlab toolbox, to obtain a 2 

distributed cortical current estimate from the simulated sensor-level data. The inverse operator matrix M was 3 

computed as M = RG
T
(GRG

T
 + 

2
C)

-1
, where regularization parameter 


 = 0.1. The noise covariance matrix 4 

C was computed from empty-room noise for the MEG part; for the EEG part, an identity matrix was used 5 

(see for details, see [Palva et al., 2011]). The source covariance matrix R was set to an identity matrix. 6 

Simulated cortical sources 7 

We first simulated independent time series of 50,000 samples for each cortical parcel. We next simulated a 8 

ground truth interaction as correlation between two visual areas (Eqs. 1-4; see Fig. 6 for their anatomical 9 

locations). We then simulated EEG/MEG sensor data by forward-modeling these parcel time series to 10 

acquire sensor time series. Sensor time series were subsequently inverse-modeled to acquire reconstructed 11 

8196 source time series, which was in turn collapsed into 400 parcels using a sparsely weighted collapse 12 

operator for optimal modeling accuracy [Korhonen et al., 2014]. Finally, we estimated all-to-all connectivity 13 

with oCC, iPLV and wPLI. For oCC estimation, we simulated coupling with cA = 0.9, cΘ = 0; for iPLV and 14 

wPLI estimation, we simulated coupling with cA = 0, cΘ = 0.9 and a phase difference of ϕxy = π/2.  15 

The cortical spread of spurious correlations is determined by the cross-talk function (CTF), which describes 16 

how other sources influence the reconstructed time series of a source of interest. The CTF is obtained for the 17 

n-th cortical source as the n-th row of the product of the inverse and forward solutions, CTF(n) = (MG)n 18 

[Hauk et al., 2011], which we denoted as parcel-to-parcel PLV0  (Fig. 6). 19 

 20 

 21 

  22 
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3 Results 1 

To illustrate the concepts of artificial and spurious connections, we examine how variable linear signal 2 

mixing affects measures of phase and amplitude correlations under variable strengths of true phase and 3 

amplitude correlations. We aim here (1) to illustrate that spurious correlations which arise from linear mixing 4 

will be detected by interaction metrics supposed to be insensitive to linear-mixing, and (2) to characterize 5 

how the interpretation of phase and amplitude correlation measures is confounded by the interaction between 6 

linear mixing and the phase of true interactions.  7 

3.1 Phase-locking value yields false positive correlations in the presence of signal mixing 8 

Phase-locking value (PLV) is a commonly used measure of phase consistency between two time series 9 

[Lachaux et al., 1999]. PLV, like coherency and phase coherency in frequency domain, is sensitive to linear 10 

mixing of source signals in MEG and EEG recordings. A well-known example is that a single neuronal 11 

source (e.g. a cortical current dipole) generates strong and widespread channel-to-channel correlations  12 

[Schoffelen and J. Gross, 2009]. Figure 1A-C illustrates the effect of signal mixing on the PLV. We first 13 

simulated two signals that were phase-coupled with a phase lag of 54 deg (norm. phase lag of 0.3, see Fig. 14 

1A, m = 0) and quantified their phase difference distribution, which as expected peaks at the simulated phase 15 

lag (Fig. 1B, green). Linear mixing of these time series (mixing parameter m = 0.4, see Eq. 5, Fig. 1A bottom 16 

half) has two effects on the phase difference distribution: it becomes narrower, i.e., phase difference between 17 

x and y was observed as being more consistent, and the peak is shifted towards zero (Fig. 1B). These effects 18 

are reflected in the changes in the magnitude and phase, respectively, of complex-valued average phase 19 

difference vectors (Fig. 1C). 20 

Figs 1D-G illustrate the effect of signal spread on the estimated interactions, and illustrate the distinction 21 

between what we defined as artificial and spurious interactions. We simulated source reconstructed data on a 22 

13x13 grid with a well-defined point-spread characteristic, as defined in equation 7, and computed all 23 

pairwise interactions between the reconstructed sources. The cyan and red contours in figs 1D-G specify the 24 

point-spread for the two sources at the centre of these regions. The grayscale of the edges connecting source 25 

locations reflect the estimated interaction strength between the reconstructed signals, after signal mixing. 26 

Prior to mixing, the activity of two of the sources (the central nodes of the cyan and red regions in Figs 1D-G) 27 

was coupled by non-zero phase lag with a coupling strength c. Figs. 1D-E show the estimated PLV and iPLV 28 

when c was set to 0, i.e. no phase correlations. After source mixing, the PLV (Fig. 1D) shows strong local 29 

artificial interactions, which are not visible in the iPLV (Fig. 1E). These false positive, artificial connections 30 

are caused directly by signal mixing and have unimodal phase difference distributions centered around zero-31 

lag.  32 

Figs. 1F-G show a simulation where a true phase correlation was introduced between the central sources of 33 

the cyan and red regions (c = 0.4). This true coupling still resulted in local artificial interactions in the PLV 34 

(Fig. 1F), which were abolished in the iPLV (Fig. 1G). Importantly, apart from revealing the true interaction 35 

(green lines in 1F and 1G), many spurious interactions were present, both using PLV and iPLV as interaction 36 

measure. 37 

3.2 Linear-mixing insensitive phase-locking measures do not eliminate spurious correlations 38 

The imaginary part of the complex PLV (iPLV, Fig. 1C) also indexes phase consistency of the two time 39 

series but like its frequency-domain homolog, imaginary coherency, it is insensitive to the direct effects of 40 

linear mixing that have zero-phase-lag and are reflected in the real part of the complex interaction metric 41 

[Nolte et al., 2004; Vinck et al., 2011]. The insensitivity of iPLV to instantaneous linear mixing is clear in the 42 

grid-source simulation where in the absence of true phase-lagged coupling, no significant correlations were 43 
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detected (Fig. 1E). In the presence of a true phase correlation (as in Fig. 1F), this correlation was correctly 1 

identified by iPLV (Fig. 1G). However, like PLV, iPLV also discovered dense spurious correlations, i.e., 2 

ghost interactions in the vicinity of the true connection. Thus, even if iPLV correctly rejects within-region 3 

signal mixing effects, it is as sensitive to spurious correlations as PLV is. 4 

Taken together, in the presence of signal spread, any bi-variate measure that estimates phase coupling 5 

influenced by linear mixing will yield both artificial and spurious false positive observations, whereas 6 

measures insensitive to instantaneous mixing do not detect the artificial correlations but they do yield 7 

spurious interactions, i.e. , the ghost edges surrounding true interactions (Fig 1 G). 8 

3.3 Correlation coefficient produces artificial and spurious amplitude correlations 9 

Figure 2 demonstrates the effect of signal spread on amplitude correlation measures. We simulated two 10 

amplitude-coupled signals and computed the correlation coefficient (CC) between the signals’ amplitude 11 

envelopes before and after signal mixing at m = 0.4. As expected, signal mixing increases the similarity 12 

between amplitude envelopes (Fig. 2A) and strengthens CC (Fig. 2B).  13 

In the source-grid analysis, when true correlations were not present, the mixing of random source signals 14 

produced region-constrained artificial amplitude correlations (Fig. 2C), exactly as found for PLV (see Fig. 15 

1D). In the same vein, a true correlation was accompanied by long-range spurious CC between the coupled 16 

regions, in addition to the artificial correlations (Fig. 2E). Hence CC, similarly to PLV, yields both artificial 17 

and spurious observations of amplitude correlations in the presence of signal mixing. 18 

3.4 Orthogonalized correlation coefficient produces spurious amplitude correlations 19 

Orthogonalization, i.e., the removal of linear dependencies, of the two real-valued signals, x(t) and y(t), 20 

before the estimation of the amplitude envelopes and their correlation, excludes the contribution of linear 21 

mixing to the correlation estimates [Brookes et al., 2012; Hipp et al., 2012].  22 

Similarly to CC, orthogonalized CC (oCC) identifies the correlation between two coupled simulated signals. 23 

After linear mixing and orthogonalization of signal y with respect to x, the oCC between Ay and Ax was 24 

smaller than CC, but still greater than the oCC obtained before mixing (Fig. 2B). 25 

The insensitivity of oCC to artificial amplitude correlations was clear in grid-model simulations. A mixing of 26 

random source time courses did not lead to significant oCC between any sources (Fig. 2D). However, when a 27 

true amplitude correlation was present, it was mirrored into multiple FP spurious correlations in estimated 28 

oCC interaction matrix, which are shown as widespread ghost edges in the synchrony graph (Fig. 2F). Thus, 29 

amplitude correlations estimated with oCC share the caveats of phase correlations identified with iPLV. 30 

3.5 PLV and iPLV are differentially sensitive to signal mixing and phase difference 31 

Next we assessed the effect of linear mixing on the PLV and iPLV estimates under different regimes of true 32 

phase coupling and phase differences (Fig. 3).. We simulated two signals x(t) and y(t) and parametrically 33 

varied their phase coupling (cΘ = 0 … 1; Eqs. 3–4), phase difference (ϕxy = − … ) and linear mixing (m = 34 

0 … 0.6; Eqs. 5–6). For each combination of these parameters, we computed the PLV and iPLV. Fig. 3A 35 

shows the effect of the amount of actual phase coupling on the estimated PLV under various amounts of 36 

linear mixing, keeping the phase difference fixed at 0.3 (norm. phase). Fig. 3C shows the estimated PLV as a 37 

function of the phase difference, given a fixed amount of actual phase coupling of 0.4. Both panels show a 38 

strong nonlinear dependency of the coupling strength and the phase difference on the estimated PLV, which 39 

in itself depends on the amount of linear mixing. At low phase differences in particular, the PLV shows a 40 

positive bias, which increases with the strength of signal mixing. This observation can be explained by the 41 
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fact that the relative contribution of the zero phase lag linear mixing to the estimated PLV works 1 

‘synergetically’ with the true coupling at small phase differences, whereas it has a ‘counteracting’ effect 2 

when the phase difference of the true coupling is far away from 0. Moreover, this effect saturates at higher 3 

values of true coupling, because the PLV is by definition bounded to a maximum value of 1. For the same set 4 

of simulations, Fig. 3B and 3D show the iPLV. In contrast to PLV, linear mixing reduces the estimated iPLV 5 

for all cΘ, at a fixed phase difference of 0.3π, and most strongly does so for large cΘ values (Fig. 3B). iPLV is 6 

reduced by increasing signal mixing because the phase difference distribution shifts towards zero with 7 

increasing mixing (Fig. 1B).  8 

Algebraically, PLV (Eq. 8) is independent of the mean phase difference, ϕxy. Yet, in the presence of linear 9 

mixing, the estimated PLV is dependent on ϕxy (Fig. 3C). The bias from ϕxy on the estimated PLV can be 10 

positive or negative: it is positive for small phase differences (ϕxy < π/2, i.e. 90 deg) because under such a 11 

regime the interaction and mixing effects add up. Consequently, the bias is negative for near “anti-phase” 12 

narrow-band synchrony when ϕxy approaches ±, and x(t) and y(t) have reverse polarities. The case is, again, 13 

very different for iPLV, which is zero for ϕxy = 0 and ±, as can be seen from its definition (Eq. 9). Between 14 

these poles, iPLV is always negatively biased by signal mixing, regardless of the mean phase difference (Fig. 15 

3D). 16 

Taken together, iPLV is not positively biased by signal mixing as PLV is, although it has the disadvantage of 17 

failing to detect true synchronizations that are near zero- or anti-phase-lag. The properties of these two phase 18 

correlation measures lead to an interesting worst-case scenario, where phase synchrony is accompanied by 19 

strong signal mixing and iPLV = 0. Then PLV can have almost any value, depending on the actual cΘ and 20 

whether ϕxy = 0 or ±21 

3.6 CC and oCC are biased by signal mixing and phase effects 22 

In our grid simulations, the behavior of CC and oCC was almost identical to that of PLV and iPLV, 23 

respectively. We asked next if their similarities extend to phase effects. Phase effects are not often 24 

considered in studies of amplitude correlations, because CC and oCC are thought to quantify the correlation 25 

between amplitude envelopes and amplitude is independent of phase.  26 

We first simulated two signals x(t) and y(t) and parametrically varied their amplitude coupling (cA = 0 … 1; 27 

Eqs. 1–2), phase difference (ϕxy = − … and linear mixing (m = 0 … 0.6; Eqs. 5–6). We then computed 28 

CC and oCC for each combination of parameters. In the absence of any concurrent phase correlations, signal 29 

mixing introduced as expected a positive bias on the CC, in particular at low to intermediate values of cA 30 

(Fig. 4A). The effect of signal mixing was different for oCC, in close resemblance to what was found for 31 

iPLV (Fig. 3B): signal mixing drastically reduced oCC for high values of cA (Fig. 4B).  32 

Interestingly, introduction of a true phase correlation (cΘ = 0.4) resulted in a phase different dependent effect 33 

on the estimated CC and oCC, with a variable influence of signal mixing (Fig. 4C and 4D). Comparing the 34 

straight lines (representing the absence of phase coupling) with the curves of the same colour (representing 35 

the presence of phase coupling), signal mixing increased the estimated CC when the phase difference ϕxy was 36 

small and reduced the estimated CC when the signals were close to anti-phase, i.e. ϕxy =  ± (Fig. 4C). This is 37 

because the phase correlation at small phase differences leads to an alignment of the peaks of x(t) and y(t). 38 

Now, if Ax and Ay are in fact correlated, the linear mixing effectively ‘amplifies’ this correlation, because 39 

high peaks will match with high peaks more often than with low peaks (and low peaks will match more often 40 

with low peaks than with high peaks). 41 

For the estimated oCC, the presence of actual phase coupling affected the estimates in a nonlinear and phase 42 

difference dependent way. This is a result of the orthogonalization process (see Eqs. 11–12), which, before 43 
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computing the amplitude correlation, implicitly either regresses out the real valued contribution of signal x(t) 1 

to y(t) (Eq.11) or explicitly only uses the imaginary component of the cross-terms between signals x and y 2 

(after amplitude normalization for one the signals). Either way, the real/imaginary part of a complex-valued 3 

signal mixes phase information with amplitude information. A deviation from a uniform distribution of phase 4 

differences across observations (i.e., the presence of phase coupling), will affect the orthogonalization 5 

process in a non-trivial way, despite the fact that consecutively only the amplitude terms are used to compute 6 

the correlation. Our simulations show that phase correlations do indeed have an impact on oCC. In the 7 

presence of phase correlations and linear mixing, the estimated oCC is reduced when the mean phase 8 

difference is close to 0 (Fig. 4D). On the other hand the estimated oCC is inflated when ϕxy is close to  ±/2. 9 

These phenomena can be understood from the properties of orthogonalization, where the orthogonalized 10 

amplitudes of a signal are obtained by projecting the complex-valued phase-amplitude vector onto the 11 

imaginary axis, after rotation with the phase of the other signal. A consistent phase relationship across 12 

observations (phase coupling) will amplify the estimated correlation due to a consistent rotation of the single 13 

observation phase-amplitude vectors towards the imaginary axis, thus increasing the contribution of the 14 

spatially leaked amplitudes. A consistent phase relationship of around 0 will result in a consistent absence of 15 

vector rotation prior to imaginary axis projection, and any spatially leaked amplitude components will be lost 16 

when taking the imaginary component. Phrased differently, for highly similar time series, the resulting 17 

orthogonalized signal will be almost negligible, i.e. y
┴
(t) ≈ 0, leading to small envelope correlation values. 18 

On the other hand, when the phase difference between x(t) and y(t) are mostly at ±/2 , they are considered 19 

already orthogonal and are barely affected by the orthogonalization procedure, i.e. y
┴
(t) ≈ y(t), even if there 20 

are correlations induced by signal mixing. 21 

Hence, for a range of values of phase lags, ϕxy, the estimated amplitude correlation can be significantly 22 

affected by the presence of concurrent phase coupling. To get a more complete picture of the interaction 23 

between cA, cΘ and ϕxy, we extended these simulations for a large part of the parameter space and for both the 24 

regression- and the imaginary-projection-based orthogonalization methods (Supplementary Figs S1 and S2). 25 

Both methods were approximately equally affected by true neuronal phase correlations, both in the presence 26 

and in the absence of linear mixing. These findings thus show that oCC produces false positive amplitude-27 

correlation observations in the absence of any true amplitude correlations when true phase correlations are 28 

present (see Figs S1-S2 for cA = 0 and cΘ is high). 29 

3.7 Weighted phase-lag index (wPLI) estimates of phase coupling are not biased by mixing  30 

The wPLI estimates the extent to which phase leads and lags between two signals are non-equiprobable, and 31 

it weighs the observations by the magnitude of the imaginary component of the cross-spectrum [Vinck et al., 32 

2011]. Unlike what was observed with iPLV, linear mixing does not affect the wPLI estimates across the 33 

tested range of coupling strengths (Fig 5A) or over different phase differences of a true correlation, cΘ = 0.4 34 

(Fig 5B). Taken together, wPLI estimates are not affected by mixing as iPLV estimates are, but are still 35 

compromised in overall utility by the phase-difference dependence of the metric value and its inability to 36 

detect true near zero- or anti-phase-lag phase synchronizations. Moreover, wPLI is only insensitive to mixing 37 

for not more than two sources.   38 

3.8 All linear-mixing insensitive interaction metrics produce wide-spread spurious synchrony in a 39 

realistic simulations 40 

To demonstrate the effect of spurious synchrony in real MEG/EEG settings, we performed a simulation 41 

using a realistic model based on individual MR images and a real MEG/EEG measurement geometry. We 42 

simulated independent time series across the whole cortex except for two highly correlated sources located in 43 

left and right visual areas. After a virtual MEG/EEG experiment, i.e., forward- and inverse-modeling of the 44 
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simulated time series, we estimated all-to-all connectivity and visualized the extent of spurious phase 1 

correlations in synchrony graphs displayed together with the magnitude of cross talk on a flattened cortical 2 

maps. (right column, Fig. 6). All tested interaction metrics, iPLV, wPLI, and oCC yielded significant 3 

amounts of ghost connections (grey) around the true connection (black) among parcels of which the signals 4 

were mixed with those of the two truly connected parcels. Cross talk was measured here among all parcels 5 

by PLV estimates of forward- and inverse-modeled filtered noise parcel signals.  To provide another example 6 

with more distant true sources than the two visual ones, we performed a similar analysis where a true 7 

interaction was simulated between middle frontal gyrus and inferior parietal gyrus (Fig. S3A). This analysis 8 

revealed a qualitatively identical result with ghost/spurious connections surrounding the true connection. 9 

These realistic simulations thus show that ghost connectivity is a tangible problem in MEG source space 10 

connectivity analyses and involves significant distances across the cortical surface. Importantly, the problem 11 

cannot be alleviated by picking a coarse parcellation resolution as adjacent parcels will express mixing in 12 

any case. To illustrate this, we displayed the parcel-parcel crosstalk of a parietal and frontal parcel with their 13 

surroundings for the Desikan-Killiany atlas (68 parcels), the Destrieux atlas and its subdivisions (148, 200, 14 

400 parcels), and the source dipoles per se of the cortical source model (6400 sources, Fig. S3B). Significant 15 

mixing of similar spatial extent was visible at all resolutions. 16 
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4 Discussion 1 

In recent years, connectivity measures that ignore zero-phase-lag interactions have been developed to protect 2 

interaction estimates against inflation and false positive findings by linear mixing of the underlying signals, 3 

which is an unavoidable phenomenon in MEG and EEG research. In this study, we question the often written 4 

claim that, in the presence of true interactions, such coupling measures (such as iPLV, wPLI and oCC) would 5 

be de facto immune to false positive detections. Although these measures can be overly conservative by 6 

missing true near-zero-phase interactions, we show here that they also yield false positive interactions due to 7 

signal spread. This is because field spread in the vicinity of a true non-zero phase interaction gives rise to 8 

spurious “ghost” interactions, that appear as false positives with any bivariate interaction measures. 9 

Moreover, indicating further interpretational challenges, our simulations showed that orthogonalized 10 

amplitude correlation coefficients are not independent of concurrent phase coupling. In fact, they are non-11 

trivially affected by the presence of true phase coupling and linear mixing in a phase-difference dependent 12 

manner and may yield both false positive and negative findings. 13 

Our simulations illustrate the expected effect of volume conduction or field spread on standard measures of 14 

amplitude-amplitude and phase-phase coupling: in the presence of linear mixing, CC and PLV estimates 15 

yield artificially inflated coupling estimates for sources with a true interaction. Notably, this phenomenon 16 

leads to purely artificial coupling even when two source time series are uncorrelated. Our simulations also 17 

corroborated earlier studies by showing that modified versions of these measures that are insensitive to 18 

instantaneous coupling (i.e., oCC and iPLV/wPLI) detected no coupling in the absence of a true interactions 19 

despite of the presence of signal spread. However, in the presence of a true interaction, signal spread 20 

produces spurious “ghost” interactions among uncorrelated sources in the vicinity of the truly interacting 21 

sources. 22 

Furthermore, we show that signal spread affects different interaction estimates in different ways. Notably, 23 

the presence of linear mixing leads to an inflation of the estimated PLV and CC, but to an underestimation of 24 

true coupling when using iPLV or oCC. This is an important observation as it challenges the widely 25 

supported claim that the interpretation of signal spread insensitive coupling measures are not affected by 26 

linear mixing, although wPLI constitutes an important exception from this. 27 

Moreover, we show that impact of signal mixing on both PLV and iPLV estimates is dependent on the phase 28 

difference of the true coupling. Hence changes in phase differences in the absence of changes in coupling 29 

strength between contrasted conditions would appear as false positive changes in coupling strength in a 30 

signal-mixing dependent manner. Moreover, while wPLI is independent of signal mixing here, it is still very 31 

dependent on the phase difference and would thus be similarly confounded. 32 

As a major methodological finding, we observed that phase coupling and its phase difference influenced also 33 

the CC and oCC estimates of amplitude correlations among oscillations. These latter results indicate that 34 

phase coupling among the signals can impact the estimation of amplitude coupling, and this effect is 35 

amplified with increasing amounts of linear mixing. This poses serious limitations on distinguishing pure 36 

phase- from pure amplitude-coupling phenomena, and more generally limits the interpretability of such 37 

measures in isolation.  38 

In summary, our simulations, including realistic MEG/EEG configuration, illustrate two main problems that 39 

need to be acknowledged to avoid false interpretations of connectivity analyses. First, we show that using 40 

measures that do not detect zero-phase coupling is by no means a guarantee against false positives. As 41 

acknowledged, these measures are indeed not affected by artificial coupling caused by linear mixing, but 42 

they are still prone to detecting ghost connections, i.e., spurious interactions that arise in the vicinity of true 43 
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interactions. These “2
nd

 order false positives” are caused by the unavoidable cross-talk between the source 1 

estimates that is preserved at all resolutions of source parcellations. It is important to note that the spatial 2 

structure in the cross-talk function is generally not smooth as a function of distance to the source of interest. 3 

As a consequence, spurious interactions may arise at locations further away from the primarily interacting 4 

sources. The exact form of the cross-talk function is also a property of a specific inverse solution, but it 5 

universally leads to linear mixing among numbers of sources and thus the problem of spurious interactions is 6 

qualitatively identical to all source reconstruction approaches. Second, by showing the effects of phase 7 

correlations on amplitude correlation measures with varying amounts of linear mixing, we demonstrated the 8 

limitations on the separability of phase and amplitude interactions. In a worst-case scenario, for instance, 9 

linear mixing and strong phase coupling at around /2 phase lag will lead to large values of the estimated 10 

oCC in complete absence of true amplitude correlations. This represents an extreme case of false positives 11 

that this measure can produce. Conversely, through the effect of signal-to-noise ratio on the accuracy of 12 

phase estimates, also phase correlations can be affected by amplitude dynamics and correlations [Palva et al., 13 

2010]. 14 

We consider the above limitations to be of major importance to the EEG and MEG field. Our results confirm 15 

the added value of recently proposed coupling measures which focus on the non-zero phase interactions. 16 

However, they also reveal a number of limitations that have been either underrated or simply hardly taken 17 

into consideration. Most importantly, the red flag raised here based on simulations is valid for real data 18 

situations. The behavior of the coupling estimators was investigated by modulating all principal parameters 19 

that affect the measures used. Although we did not test the effect of additive noise, our main findings are 20 

expected to remain identical in the presence of noise. In addition, the reported limitations hold for both 21 

spontaneous and evoked data, with and without a contrast condition comparison. Moreover, all forms of 22 

cross-frequency or other non-linear couplings, albeit immune to the artificial interaction effect per se, will 23 

also equally suffer from the spurious/ghost coupling effect. 24 

Since the main limitation of the oCC and iPLV methods shown here is that these measures also will yield 25 

ghost connections, mostly in the vicinity of the true connections, one might argue that the problem could 26 

probably be addressed by local selection of the edges with the highest coupling strength, using a clustering 27 

approach, or accept and exploit their presence by spatially non-homogeneous smoothing [Schoffelen and J. 28 

Gross, 2011]. With respect to the local selection of the strongest edge, it should be noted that the strongest or 29 

statistically most significant interactions will not necessarily correspond to the true interaction. A simple 30 

theoretical example would be a situation where there are two pairs of truly (and similarly) interacting sources. 31 

Source estimates at locations in between the individual nodes of each interacting source pair will be affected 32 

by cross-talk from the interacting nodes, which leads to spurious connections, of which the amplitude and 33 

statistical robustness may exceed that of the true interactions around it. Generally speaking, there is no 34 

guarantee that true interactions will exhibit a greater coupling strength or display higher statistical 35 

significance than ghost connections.   36 

For this account to be forward-thinking and constructive, it is important to explore potential 37 

recommendations and suggestions that arise from our observations. The first recommendation is that one 38 

should understand and acknowledge the limitations of the source reconstruction and coupling method used 39 

when reporting the MEG/EEG connectivity results. Claims about ruling out false positives using methods 40 

insensitive to instantaneous coupling should be avoided. Likewise, it is essential to move from analyses 41 

limited to a few regions-of-interest into full source-space interaction mapping to avoid neuroanatomical 42 

misinterpretations of the coupled sources.. Restriction to a seed-based approach might imply that one might 43 

focus interpretations on a detected interaction, but will fail to notice potential coupling that exists in its 44 

vicinity or mistake a ghost interaction for a true one. Neighboring connections might in theory contain the 45 

true interacting pair of sources while the one revealed in a seed-based approach could simply be a ghost of 46 
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the real interaction. Additionally, a general recommendation would be to also explore phase coupling even 1 

when the main interest lies in assessing amplitude coupling. We have shown that if strong phase correlation 2 

is present, linear mixing can lead to erroneous amplitude correlation estimations. Systematically assessing 3 

phase and amplitude coupling might therefore be very helpful when interpreting the findings.  4 

Ultimately, finding the ideal measure to characterize interactions using MEG or EEG is limited by our 5 

knowledge of the true mechanisms of neuronal interactions. The best we can do is to estimate brain 6 

interactions with one or several methods for which we have a thorough understanding of the strengths and 7 

drawbacks. The limitations of the connectivity measures we choose to use need to be explicitly 8 

acknowledged and potential implications on the interpretation of the data need to be discussed. There are 9 

also new analysis possibilities, such as using multivariate correction [Brookes et al., 2014; Colclough et al., 10 

2015; Soto et al., 2016] and hyper-edge bundling (Wang et al., submitted) approaches, that alleviate the 11 

problem of ghost interactions but each with their limitations. Beyond sounding the alarm, the current study 12 

intends to help improve good practice in MEG & EEG source connectivity analyses by outlining potential 13 

interpretational pitfalls and promoting some standards of good practice. 14 
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Figure legends 1 

Fig.1 PLV and iPLV measure the strength of phase correlation but are biased by signal mixing. A) Coupled 2 

(c = 0.4) real-valued signals x(t) and y(t) and their phases Θx(t) and Θy(t) in the absence (m = 0) and presence 3 

(m = 0.4) of linear mixing. B) Distribution of the phase difference ϕxy with (m = 0.4) and without (m = 0) 4 

linear mixing. The true phase difference (φxy) = 0.3π. C) Vector interpretation of the distributions in B. Left: 5 

without mixing, right: with mixing. Increasing linear mixing biases phase difference distribution towards ϕxy 6 

= 0, therefore increasing PLV while decreasing iPLV. D) Mixing causes false positive artificial PLV 7 

interactions, within the mixing region even in the absence of true correlations. Activity of 169 uncoupled (c = 8 

0) sources (black dots) placed into a 13x13 grid was simulated and the 20 strongest PLV edges of the two 9 

sources-of-interest (centers of the cyan and red regions) were picked for visualization. The cyan and red 10 

color gradients indicate mixing strength. No supra-threshold PLVs occur between sources that are not 11 

linearly mixed. E) iPLV analysis of the same data as in D shows that iPLV does not discover artificial 12 

interactions. F) True phase correlations are mirrored into false positive spurious correlations, between 13 

different mixing regions when there is a true interaction (c = 0.9) between two sources-of-interest (centers of 14 

the mixing regions). Note that the strongest edges detected were artificial. G) iPLV does not discover 15 

artificial interactions, but it detects spurious interactions similarly to PLV. Spurious correlations arise 16 

because any two sources in separate mixing regions partially retain the non-zero phase difference of their 17 

center sources. 18 

Fig. 2 Measures of amplitude correlation, CC and oCC, are corrupted by signal mixing similarly to estimates 19 

of phase correlation. A) Coupled (c = 0.4) real-valued signals x(t) and y(t) and their amplitude envelopes Ax(t) 20 

and Ay(t) in the absence (m = 0) and presence (m = 0.4) of linear signal mixing. The true amplitude 21 

correlation is artificially amplified by the linear mixing. B) Ax(t) and Ay(t) values with and without linear 22 

mixing for estimation of CC (left; each dot represents a sample) and Ax(t) and orthogonalized Ay(t) values for 23 

estimation of oCC. C) CC is biased by linear mixing similarly as PLV (visualization and simulations as in 24 

Fig. 1 D) D) oCC is insensitive to artificial correlations similarly to iPLV (data as in C). E) True correlation 25 

interaction is surrounded by spurious edges in CC interaction. The strongest edges detected were artificial. F) 26 

oCC ignored the artificial correlations, as in D. However, orthogonalization did not solve the problem of 27 

spurious edges: oCC detects spurious correlations similarly to CC (data as in E).  28 

Fig. 3 PLV and iPLV are affected by phase coupling strength cΘ, phase difference nϕxy and linear mixing m. 29 

Phase coupling and linear signal mixing (m = 0 (blue), 0.1 (green), 0.2 (red), 0.3 (violet), 0.4 (cyan), and 0.6 30 

(orange)) were simulated between two signals. A) PLV between the signals as a function of cΘ and m, when 31 

nϕxy = -0.3. Open circles at cΘ = 0.4 visualize the coupling strength used in C and D. B) iPLV between the 32 

signals as a function of cΘ and m. C) PLV as a function of nϕxy, when cΘ was set to 0.4. PLV is greatly 33 

affected by the phase difference when signal mixing is strong. Open circles at nϕxy = -0.3 visualize the nϕxy 34 

used in A and B. D) The strength of iPLV depends highly on the phase difference, and it is biased towards 35 

large phase difference; iPLV is abolished when nϕxy = 0 or nϕxy =  ±. 36 

Fig. 4 CC and oCC (Brookes et al, 2012) vary as a function of amplitude coupling strength cA, phase 37 

difference nϕxy and linear mixing m. Two signals with distinct coupling strength for amplitude and phase (cΘ) 38 

were simulated and linearly mixed. A) CC between the signals as a function of cA and m in the absence of 39 

phase correlations (cΘ = 0, nϕxy = 0).  Open circles at cA = 0.4 visualize the coupling strength used in C and D. 40 

B) oCC between the signals as a function of cA and m.  C) CC between the signals as a function of nϕxy of the 41 

phase coupling, when cΘ = 0.4. The horizontal lines visualize the mean CC obtained at cΘ = 0. Open circles 42 

mark nϕxy = 0 and cΘ = 0 used in A and B. D) oCC between the signals as a function of nϕxy, when cΘ = 0.4. 43 

Note that when a phase coupling is present in addition to the amplitude coupling, both CC and oCC are 44 

biased by nϕxy, but in different manners. 45 
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Fig. 5 A) Linear mixing positively bias wPLI estimates, but the amount of mixing does not seem to 1 

differentiate wPLI estimates like what was observed with iPLV (gray lines, cf Fig. 3B). B) When a true phase 2 

interaction is present (cΘ = 0.4), mixing does not bias wPLI estimates at any of the tested phase lags (nφxy) 3 

Fig 6 Left: Illustration of the mixing effect, quantified with parcel-to-parcel PLV0, simulated parcel time 4 

series data on a 3D model of brain of one subject. The colour gradient on the flattened cortical map indicates 5 

the intensity of mixing from the simulated parcels. Red: mixing of left occipital pole (Opole). Cyan: right 6 

Opole. Right: amplitude and phase coupling were simulated between left and right Opole while the rest 7 

cortical parcels time series was uncorrelated. Simulated time series were forward- and inverse-modeled and 8 

estimated with oCC, iPLV and wPLI. The strongest 60 edges were overlaid on flattened cortical map. oCC 9 

graph (Brookes, 2012) was computed using time series that was simulated with cA = 0.9, cΘ  = 0.  iPLV and 10 

wPLI graphs were computed using time series that were simulated with cA = 0, cΘ  = 0.9, nφxy = -0.5. 11 

Table 1 Division of interaction metrics into four groups by the correlation they measure (phase or amplitude) 12 

and their sensitivity to zero-phase lag interactions. (cf. Vinck et al., 2011) 13 

Fig. S1 When phase coupling is present, oCC is biased by the phase difference. To comprehensively 14 

visualize the dependency of oCC (as computed in {{1725 Brookes 2012;}} ; Eq. 11) on nϕxy, constant values 15 

were set for cA (cA = 0, cA = 0.2, and cA = 0.4), cΘ (cΘ = 0, cΘ = 0.1, cΘ = 0.2, cΘ = 0.3, cΘ = 0.4, cΘ = 0.5, and 16 

cΘ = 0.6) and m, and nϕxy was varied between -1 and 1. When phase correlations are present, oCC is biased 17 

by nϕxy, independent of linear mixing. Strong phase correlation (cΘ ≥ 0.4) leads to false positive oCC in the 18 

presence of linear mixing, even in absence of true amplitude correlations. Horizontal lines that show the 19 

mean oCC without bias from phase correlations (cΘ = 0) have been calculated as an average over the nϕxy 20 

range with cΘ = 0 and cA = 0, cA = 0.2, and cA = 0.4 (the uppermost row). 21 

Fig. S2 Same as in Fig. S1, but oCC was calculated as described in {{1536 Hipp 2012;}} (Eq. 13). The two 22 

orthogonalization methods differed mostly in the strength of the mixing effect, when real amplitude 23 

correlations were present. In terms of nϕxy bias, there is no difference between the two methods. 24 

Fig. S3 A) Illustration of the mixing effect comparable to that in Fig. 6 but for a case where the true 25 

interaction was simulated between medial frontal gyrus (red) and the inferior parietal gyrus (cyan). B) 26 

Illustration of parcel-to-parcel mixing (as in A and Fig. 6) for multiple resolutions of cortical parcellations. 27 

 28 
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