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ABSTRACT

The collection of immunoglobulin genes in an individual’s germline, which
gives rise to B cell receptors via recombination, is known to vary significantly
across individuals. In humans, for example, each individual has only a frac-
tion of the several hundred known V alleles. Furthermore, this set of known
V alleles is both incomplete (particularly for non-European samples), and con-
tains a significant number of spurious alleles. The resulting uncertainty as to
which immunoglobulin alleles are present in any given sample results in inac-
curate B cell receptor sequence annotations, and in particular inaccurate inferred
naive ancestors. In this paper we first show that the currently widespread prac-
tice of aligning each sequence to its closest match in the full set of IMGT alle-
les results in a very large number of spurious alleles that are not in the sam-
ple’s true set of germline V alleles. We then describe a new method for infer-
ring each individual’s germline gene set from deep sequencing data, and show
that it improves upon existing methods by making a detailed comparison on a
variety of simulated and real data samples. This new method has been inte-
grated into the partis annotation and clonal family inference package, available
at https://github.com/psathyrella/partis, and is run by default with-
out affecting overall run time.

AUTHOR SUMMARY

Antibodies are an important component of the adaptive immune system, which
itself determines our response to both pathogens and vaccines. They are produced
by B cells through somatic recombination of germline DNA, which results in a
vast diversity of antigen binding affinities across the B cell repertoire. We typi-
cally learn about the development of this repertoire, and its history of interaction
with antigens, by sequencing large numbers of the DNA sequences from which
antibodies are derived. In order to understand such data, it is necessary to deter-
mine the combination of germline V, D, and J genes that was rearranged to form
each such B cell receptor sequence. This is difficult, however, because the im-
munoglobulin locus exhibits an extraordinary level of diversity across individuals
– encompassing both allelic variation and gene duplication, deletion, and conver-
sion – and because the locus’s large size and repetitive structure make germline
sequencing very difficult. In this paper we describe a new computational method
that avoids this difficulty by inferring each individual’s set of immunoglobulin
germline genes directly from expressed B cell receptor sequence data.
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INTRODUCTION

The heavy and light chain B cell receptor (BCR) loci arise from a random re-
combination of germline V, D, and J genes. Repeated across many B cells, this
generates the vast diversity of naive BCRs that is integral to the adaptive immune
system. As an additional source of population-wide variation, there is significant
variation of germline genes between individuals. Databases such as IMGT [1] aim
to collect and organize this ensemble of germline genes.

The analysis of BCR sequence data begins with the alignment of each sequence
against a set of germline V, D, and J genes. A variety of methods (e.g. [2–5]) have
been developed to accomplish the basic task of deciding which V, D, and J genes
gave rise to each observed sequence. There has been less work, however, toward
measuring the extent to which the set of germline genes used for this analysis
resembles the germline gene set actually present in the individual from which the
sequence data was derived. Most methods simply use the full set of germline
genes from a database such as IMGT [1] for all samples.

One problem with this approach is that the IMGT set includes genes from all
individuals of a species, while any single individual’s germline contains only a
fraction of these (roughly 50 out of 250 V genes, 25 of 35 D, and 6 of 12 J). This is
problematic for sequencing studies that use antigen-experienced B cells that have
been through several rounds of somatic hypermutation (SHM), which obscures
the identity of the original germline gene. As we show below, this leads to large
numbers of spurious gene assignments, and an inferred germline gene set with
many more alleles than are in the individual’s true set.

Another problem with this approach is that no database contains a perfect cat-
alog of the complete immunoglobulin germline diversity of each species. Se-
quencing continues to uncover novel human V genes that are not in any previous
database [6–13]. Additionally, a significant fraction of the sequences in existing
databases are likely the result of sequencing error rather than real biological vari-
ation [14–16]. Our knowledge of the immunoglobulin locus is even less complete
for other species [12, 17].

Improving our understanding of the immunoglobulin locus, however, is not
simply a matter of applying standard genome sequencing protocols more broadly.
Most genome sequencing is performed on lymphoblastoid cell lines [18–20], whose
prior rearrangement has destroyed much of the information about the original im-
munoglobulin locus. The obvious solution would be to sequence other cell types;
however assembly challenges due to the complexity and repetitiveness of the lo-
cus [21] mean that even sequencing an intact immunoglobulin locus is not straight-
forward. The IGHV locus, for instance, consists of about 120 V genes, roughly
two-thirds of which are non-functional pseudogenes, spread over a megabase of
chromosome 14 [9]. The immunoglobulin locus is also subject to widespread gene
duplication, deletion, and conversion [7, 8, 22, 23]. Thus although databases such
as the 1000 Genomes project and the Simons Genome Diversity Project can be used
to investigate immunoglobulin diversity [23, 24], this approach is not without pit-
falls [25].

Discrepancies between a BCR-sequenced individual’s true set of germline genes
and the set used to analyze their BCR sequences cause a number of practical prob-
lems. First, finding associations between particular germline genes and an im-
munological response is difficult if the gene assignment itself is suspect. This
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would impact, for example, recent work on the effects of the presence or ab-
sence of individual alleles on broadly neutralizing anti-influenza antibody devel-
opment [26]. Second, such misassignment leads to inaccurate inferred naive an-
cestor sequences. Efforts to synthesize these inaccurate ancestral sequences in the
lab and study their binding properties may then result in erroneous conclusions,
since even single amino acid changes can have large effects on affinity [27]. And
finally, studies of mutation [28, 29] and selection [30, 31] during affinity matura-
tion depend upon accurate inferred naive sequences in order to correctly identify
somatic mutations.

Our current understanding of the immunoglobulin locus comes largely from
a small number of low-throughput genome and BAC library sequencing studies.
The first complete sequence of the locus [32], which has been included in the first
few drafts of the human genome, was assembled from several different cell lines
and is therefore not a haplotype. More recently, a single complete haplotype of
the heavy [9] and light [10] chain loci has been published. In addition to these
larger efforts, many less-comprehensive studies of the locus have been cataloged
at www.imgt.org.

Advances in sequencing technology, however, have allowed progress to come
also from inference on expressed BCR repertoires. Several initial studies inferred
germline sets by combining computational analysis with expert scrutiny, with
one paper reporting a high level of diversity with many novel (non-IMGT) alle-
les across 12 individuals [7], and a second extending those results to 18 complete
haplotypes [8]. Similar work by a different team used naive sequences to infer
germline sets and haplotype linkage information for two individuals [33]. None
of these studies, however, resulted in a generally-applicable software package or
included a broad-scale validation of their methods.

More recently, software packages have been developed that enable fully-automated
germline inference including novel allele discovery. TIgGER [11] uses a detailed
per-position fitting procedure to find new alleles separated by a small number
of point mutations from genes in a known database, and a heuristic prevalence
threshold-based procedure to infer germline sets. The IgDiscover package [12]
infers germline sets using Levenshtein distance-based hierarchical UPGMA clus-
tering on low-SHM IgM samples. This approach allows IgDiscover to find new al-
leles separated by an arbitrary number of point mutations and insertion/deletion
events, and frees it from the need for an initial species-specific starting database.

In this paper we present a new method for automated inference of per-sample
germline V gene sets from expressed BCR sequence data. We first compare our
method’s accuracy on a variety of simulated samples both to the common practice
of aligning against the full IMGT set, and to the two existing germline inference
methods, TIgGER and IgDiscover. We find that use of the full IMGT set results
in a very large number of spuriously-inferred alleles on typical samples, as well
as inaccurately inferred naive sequences. We further find that while our method
infers a similar fraction of correct and incorrect genes as TIgGER and IgDiscover,
its inferred genes are more similar to the true genes, and thus our method’s in-
ferred naive sequences are significantly more accurate. We then use a variety of
real data samples from the literature to compare the germline gene sets inferred
by our method to those from TIgGER and IgDiscover, and find a similar level of
concordance as in simulation. Because our method performs well on samples with
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elevated levels of SHM, it is more generally applicable than IgDiscover, which is
restricted to low-SHM IgM samples. In addition, while TIgGER and IgDiscover
are essentially standalone germline set inference packages, our method is inte-
grated with and run by default in the general-purpose partis package, which also
provides simulation, annotation, and clonal family inference. Because D inference
would be very challenging, and because the J locus varies much less between indi-
viduals than either V or D, in this paper we follow these other software packages
in limiting ourselves to studies of V diversity.

Because of the high prevalence of both single nucleotide polymorphisms (SNPs)
and structural variants in the immunoglobulin locus, there is no single reference
genome to which all variants can be mapped, and thus standard SNP nomencla-
ture appears insufficient. In this paper the usage of “gene” and “allele” is thus
largely interchangeable. In addition, we define the “germline haplotype” as the
set of germline genes on a single chromosome, while “germline gene set” refers
to the full set on both the maternal and paternal chromosomes. In cases where
confusion is unlikely, the latter will be shortened to “germline set”.

RESULTS

Simulation methods summary. In order to establish an expectation for how germline
inference methods will perform on real data, we first investigate performance on a
number of simulation samples. BCR repertoires differ significantly in many differ-
ent variables such as SHM levels, germline set complexity, and clonal family struc-
ture. Although we would in principle like to explore germline inference accuracy
by varying all of these variables simultaneously, this is combinatorially infeasible,
and we thus adopt a two-stage approach to validation. We first vary one vari-
able at a time, while holding all others constant, using simplified “sparse” reper-
toires consisting of sequences stemming from only a few genes. We then choose
several representative values for each variable, and simulate full, realistic reper-
toires at these values. Geometrically, this can be imagined as investigating perfor-
mance first along many slices through the parameter space, and then at several
fixed points. This approach is motivated by the fact that, in sequence-similarity
space, realistic repertoires are composed of widely-spaced groups of genes, where
each group consists of a few genes that are much closer to each other than the
typical between-group spacing. The genes within each group are thus easily con-
fused with each other due to SHM, but not with genes in other groups. The sparse
repertoires effectively recreate the dynamics within such a group, while allowing
exploration of a much larger portion of parameter space than if we were to use full
repertoires for all simulations.

In this paper, the germline set for each sparse repertoire consists of one known
germline gene, and either one or two novel alleles. Each full-repertoire sample,
meanwhile, is generated by choosing a number of V, D, and J genes, and some
number of alleles for each of these genes, based on results from germline sequenc-
ing studies (see Methods), which results in roughly 55 V, 25 D, and 6 J alleles per
sample.

Validation results.
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FIGURE 1. Fraction of true alleles missing (not inferred) by par-
tis on simplified “sparse” repertoires for a variety of variables
as a function of the number of sequences in the sample. Top
left: SHM levels (the SHM distributions corresponding to “low”,
“typical”, and “high” are shown in Fig S1). Top right: new-allele
prevalence (as a fraction of the existing allele’s prevalence). Mid-
dle left: number of SNPs (Nsnp) separating new and existing alle-
les. Middle right: Nsnp with multiple new alleles, where, e.g. “1
+ 3” indicates two new alleles, separated by 1 and 3 SNPs from
the same existing allele. Bottom left: mean number of leaves per
clonal family. Bottom right: tree balance. Each point represents
the mean performance (± standard error) on 50 independent sim-
ulation samples of the indicated sample size.

Variation of individual variables on sparse repertoires. Using partis’s germline set in-
ference algorithm, we quantified the impact of six repertoire characteristics on sen-
sitivity and specificity. We did so by plotting the fraction of alleles in the true
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FIGURE 2. Fraction of partis-inferred alleles not in the true
germline set on simplified “sparse” repertoires for a variety of
variables as a function of the number of sequences in the sample.
For explanation see Fig 1.

repertoire that are missing from the inferred repertoire (Fig 1), and the fraction of
spuriously-inferred alleles (that are not in the true repertoire, Fig 2) as a function
of sample size for each variable.

Increasing the rate of SHM makes inference more challenging (Figs 1 and 2, top
left, with the corresponding SHM distributions in Fig S1). Because allele infer-
ence sensitivity is determined mainly by sequences with a small number of SHMs
(specifically, a number comparable to the number of SNPs separating the new and
existing alleles), raising SHM rates effectively reduces sample size.

Alleles that occur at low prevalence are more difficult to infer: as the fraction
of sequences stemming from the new allele decreases, so does sensitivity (Figs 1
and 2, top right).

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220285doi: bioRxiv preprint 

https://doi.org/10.1101/220285
http://creativecommons.org/licenses/by-nd/4.0/


7

V naive inaccuracy # missing # spurious # correct
low SHM full IMGT 0.22± 0.02 5.0± 0.0 53.0± 2.4 50.3± 0.7

IgDiscover 0.36± 0.08 3.7± 0.2 3.4± 0.3 51.6± 0.6
TIgGER 0.42± 0.07 2.7± 0.3 0.4± 0.2 52.6± 0.6
partis 0.08± 0.02 2.4± 0.4 1.3± 0.3 52.9± 0.9

high SHM full IMGT 0.31± 0.02 5.0± 0.0 80.3± 3.5 51.5± 1.0
TIgGER 1.78± 0.36 7.8± 0.4 0.0± 0.0 48.7± 0.9
partis 0.27± 0.03 9.3± 0.7 2.9± 0.3 47.2± 0.7

TABLE 1. Summary full-repertoire simulation performance for
the three germline inference methods plus “full IMGT” annota-
tion. Results are the mean (± standard error) of ten independent
50,000-sequence samples for both low-SHM (top) and high-SHM
(bottom). V naive inaccuracy is the mean Hamming distance be-
tween true and inferred V region naive sequences (excluding the
three most 3’ bases). We also show the mean number of true alle-
les missing from the inferred germline set (# missing), the number
inferred that are not in the true germline set (# spurious), and the
number in common between the inferred and true germline sets
(# correct). We show IgDiscover only for the low-SHM samples,
since it is designed only for IgM.

The number of SNPs (Nsnp) separating a new allele from its most similar known
counterpart also affects the details of germline inference. We show performance
for differentNsnp for both a single new allele (Figs 1 and 2, middle left) and for sev-
eral combinations of multiple new alleles (Figs 1 and 2, middle right). Sensitivity
is independent of Nsnp for smaller Nsnp (three or less), and then decreases slightly
with increasing Nsnp. The presence of multiple new alleles, on the other hand,
does not appreciably affect sensitivity as long as their SNPs do not occur at the
same positions. Because the occurrence of multiple new alleles with the same SNP
positions is rare in real data, we do not show results for this case. In many cases
it is in fact possible to disentangle such alleles, but this depends on the details of
each new allele’s prevalence and Nsnp.

The shared mutations within a clonal family complicate allele inference be-
cause independent mutations are required for accurate fitting. We find that in-
creasing clonality effectively decreases sample size (Figs 1 and 2, bottom left),
rather than introducing the spurious alleles that would result from fitting with
non-independent mutations. This indicates that our method of selecting a small
number of sequences to represent each clonal family (see Methods) provides a
sufficiently accurate method of choosing sequences with independent mutations.

We find that variations in phylogenetic tree shape do not greatly affect our
method (Figs 1 and 2, bottom right). We change tree shape by using the TreeS-
imGM package [38] to vary the shape parameter of a Weibull distribution control-
ling an age-dependent speciation process.

These single-variable results show that our method’s sensitivity is high enough
to give useful results with the sample sizes and SHM rates characteristic of typi-
cal full-repertoire samples, and that it models repertoire details well enough that
spurious alleles are rare. Note that TIgGER and IgDiscover are not shown on
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FIGURE 3. Full-repertoire V naive accuracy (Hamming dis-
tance between true and inferred V naive sequences) for the three
germline inference methods, plus annotation with the full IMGT
set. Each point represents the number of sequences (y) with a
given error (Hamming distance, x). Shown on the first three repli-
cates (0-2) of both the low-SHM (left), and high-SHM (right) full-
repertoire simulation samples (see text).

these sparse samples because both methods use hard-coded assumptions tailored
to typical full repertoires that cause crashes on these sparse repertoires.

Full-repertoire samples. In the second validation stage, we show performance on a
smaller number of large, realistic repertoires using partis (v0.9.0), TIgGER (v0.2.10),
IgDiscover (v0.6.0), and annotation with the full IMGT set. All software was run
with default parameters.
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We split these full-repertoire samples among two difficulty levels: ten samples
with more-uniform allele prevalence and low SHM, and ten samples with less-
uniform allele prevalence and higher, typical SHM (details in Methods). Results
with IgDiscover are shown only for the low-SHM samples, since IgDiscover is
designed to work only on low-SHM IgM-specific data.

We measure the influence of germline set accuracy on practical results in two
ways: in terms of the actual genes and alleles inferred, and in terms of the result-
ing annotation accuracy. The former is more relevant to germline databases and
studies of gene association, while the latter is of more concern when inferring and
studying the function of ancestral sequences.

We find that the practice of aligning against the full IMGT set results in a very
large number of spurious gene inferences, even on low-SHM samples (Table 1
and Fig 4). The three explicit germline inference methods, while all giving much
smaller numbers of spurious genes, harbor significant differences. The partis-
inferred missing and spurious alleles are found on relatively short branches com-
pared to those of the other programs (Figs 5, 6, 7). This results in partis’s signifi-
cantly more accurate V naive inference (Table 1). By considering the distribution
of Hamming distances between true and inferred naive V sequences (Fig 3), we
see that the relative inaccuracy of TIgGER and IgDiscover is driven by rare se-
quences that are assigned to genes that are very dissimilar to their true gene. We
also note that TIgGER shows reduced sensitivity at typical SHM rates (Fig 6 right),
compared to low SHM rates (Fig 6 left), in fact failing to infer any of the novel
(non-IMGT) alleles at typical SHM rates.

These simulation samples, together with true and inferred germline sets, are
available at https://zenodo.org/record/1037464#.WfISc3BrwUE.

Results on real data. In order to evaluate performance on real data, it would be
natural to deep sequence individuals for whom we also have accurate results from
germline sequencing. Unfortunately, as described above, the difficulty of germline
sequencing means that such samples are not readily available. We instead use two
types of comparison that, while not definitive, provide some insight.

We first compare results from the different inference methods when run on the
same sample, and find agreement on 70-90% of the total genes (Figs 8, 9, 10, S2, S3).
While this is reassuring, some caution is advised, as the methods are far from
uncorrelated (see Supplement). IgDiscover is shown only for IgM samples (Fig 10,
and non-IgM samples with very low SHM rates (Figs 8, S2, S3). Also of note is the
large cluster of closely-related novel alleles inferred only by TIgGER in the IgM
data from subject lp23810 [36] (Figs 10, 13).

We next compare the results of each inference method on several different sam-
ples from the same individual. We find a similar overall level of agreement both
when comparing samples from different time points (Figs 11, 12), and of different
isotypes (Fig 13). These comparisons give some idea of each method’s uncertainty
because, while the physical germline genes are in each case identical, the SHM
rates, gene expression levels, and clonal family structure vary significantly with
both time and isotype.

We also use the partis-inferred germline sets to make an estimate of the number
of genes that are expressed at levels too low for us to detect. Previous work has
reported a range of values for the total number of functional V genes per individ-
ual. One study [9] reported 43 full-length functional V genes (plus 1 truncated)
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for a single haplotype, while another [39] reported a range of 38-46 per haplotype.
In order to convert these per-haplotype totals to per-diplotype totals, we calculate
the mean fraction of alleles shared between the inferred germline sets from two
unrelated individuals. For the sequencing data in this paper, this mean overlap is
67% (range 50-85%). This suggests that to go from per-haplotype to per-diplotype
totals we multiply by 1 + (1 − 0.67), which yields per-diplotype estimates of 57
for [9] and 51-61 for [39]. These values, both for total genes and for the fraction
of genes shared between unrelated parental haplotypes, roughly agree with two
other studies that found 35-46 per haplotype and 39-55 per diplotype [8], and 45-
60 per diplotype with a mean alleles per gene of 1.2 [7]. The mean total number
of partis-inferred V genes observed in individuals in this paper, meanwhile, is 47
(range 38-62). This suggests that the sample sizes, clonal family structures, mu-
tation rates, and expression levels, together with our method’s sensitivity, result
in a failure to detect about 0 to 10 genes per individual. We have not accounted
for spuriously-inferred alleles in this calculation because our validation results
suggest that when partis does infer spurious alleles, each simply replaces a very
similar true allele, and thus does not have an appreciable net effect.

The fasta files for each inferred germline set are available at https://zenodo.
org/record/1037464#.WfISc3BrwUE. We have made the command-line script
used to make phylogenetic comparison plots available for general application at
https://git.io/vFo2B.

DISCUSSION

We have developed a practical new tool for inferring per-sample immunoglobu-
lin germline gene sets, and performed extensive validation and comparison against
existing tools. Our tool is implemented in the existing partis annotation and clonal
family inference package. We have shown, first, that the currently widespread
practice of aligning expressed BCR samples against the full IMGT germline set
results in both large numbers of spurious alleles and inaccurately inferred naive
ancestors. Second, we showed that our method infers significantly more accurate
germline sets than the existing TIgGER and IgDiscover methods in terms of both
inferred gene similarity and naive ancestor inference, but of similar accuracy in
terms of raw number of genes. We also showed that so far as we can determine
using a wide variety of comparisons, our method’s performance on real data is
similar to that on simulation.

While our method has reached a level of maturity such that it provides reliable
general performance, and as such is now run by default in the partis annotation
and clonal family inference procedures, it has a number of weaknesses. First, as
with the rest of partis, it assumes that all corrections for sequencing error have
been performed before input. Second, our piecewise-linear model for the muta-
tion accumulation plots (see Methods) is only an approximation of the real be-
havior. Thus, while we have designed our method with the aim of maximizing
robustness against atypical repertoires, a more complex model that more closely
modeled the repertoire’s nonlinearities would provide better performance. An-
other source for improved performance would be the incorporation of per-base
mutation information, i.e. splitting apart the mutation accumulation plots by A,
C, G, and T. Additionally, because we do not yet set any prior on the number of
germline V genes, our method will underestimate this number on smaller samples

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220285doi: bioRxiv preprint 

https://zenodo.org/record/1037464#.WfISc3BrwUE
https://zenodo.org/record/1037464#.WfISc3BrwUE
https://git.io/vFo2B
https://doi.org/10.1101/220285
http://creativecommons.org/licenses/by-nd/4.0/


11

(roughly a few thousand sequences or less). Also, we have thus far only applied
our method to V region genes, although the extension to D and J should be concep-
tually straightforward. Finally, taking advantage of the fact that rearrangement
occurs only between genes on the same chromosome, as in [8, 33], would likely
provide additional improvement.

A further limitation of our method is that it looks only for new alleles separated
by SNPs from existing alleles, and not for those separated by insertion/deletion
events. While this is not a significant limitation on human samples, the IMGT
germline sets for other species are incomplete enough that, in those species, this
could cause novel alleles to be misinterpreted as SHM indels. This is one respect
in which the clustering-based approach taken by IgDiscover offers a significant
advantage (see Supplement). For this reason we have also implemented a non-
default clustering-based method which can be run in addition to the purely muta-
tion accumulation plot-based method described here (see Manual). While we thus
recommend this clustering-based method for non-human samples, its robustness,
like IgDiscover’s, can suffer on some highly-mutated samples, so we have left it
as a non-default option pending future improvements.

METHODS

Overview. The task of inferring germline genes consists largely of learning to dis-
tinguish between positions that are highly mutated as a result of SHM, and those
whose highly-mutated appearance stems from the occurrence of previously un-
known alleles. A few key observations allow us to extract enough information to
make this distinction. First, in the absence of unknown alleles, the probability of a
mutation at each position in an observed sequence is roughly proportional to the
total number of mutations in that sequence (at least at the low SHM levels relevant
for new-allele inference). In other words, while mutation rates differ dramatically
from position to position according to, for instance, hot and cold spot motifs, each
position is more likely to be mutated in sequences that have been subject to higher
levels of SHM. In the presence of unknown alleles, on the other hand, sequences
stemming from these unknown alleles will be mistakenly assigned to the most
similar known allele, causing this approximate proportionality to be violated. If
there are, say, Nsnp SNPs separating a known and unknown allele, then there will
be very few sequences from this unknown allele that appear to have fewer than
Nsnp mutations. The Nsnp positions at which they differ, on the other hand, will
almost always appear to be mutated in sequences that appear to contain Nsnp or
more total mutations. This differing apparent mutational behavior between se-
quences with fewer than, as compared to more than, Nsnp mutations provides the
basis for our method.

A convenient way to visualize these observations is with a type of plot intro-
duced in [11], which we call a “mutation accumulation” plot. To make a set of
these plots for one germline gene, we first collect every sequence in the sample
that aligns most closely to this single known gene. We then use these sequences to
make one plot for each nucleotide position as follows. The sequences are binned
along the x-axis according to their total number of apparent V mutations. The
y-coordinate of each bin, meanwhile, is the frequency with which that plot’s nu-
cleotide position appears to mutate among the sequences in the bin. For the full
repertoire, we first group sequences based on their closest known germline gene,
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and then follow the procedure above for each such group. We first show exam-
ple plots for three simple, hypothetical repertoires (Fig 14). While these simple
repertoires, by themselves, are gross simplifications of the biological complexity
in a real BCR repertoire, they contain the essential elements from which we can
construct a method that performs well on real data sets.

Models and fitting. In the context of mutation accumulation plots (Fig 14), the
presence of new alleles is signaled by a departure from what would be expected if
all sequences had been assigned to the correct true gene. Namely, to the extent that
mutations at each site accumulate in proportion to the total number of mutations
in the sequence, correct assignment would result in simple linearity. For incorrect
assignment, this linearity is replaced with differing behavior between the regions
below and above Nsnp. Our task, then, amounts to distinguishing between plots
that can be adequately described by a one-piece linear model, and those that re-
quire a model consisting of two pieces separated by a discontinuity.

In order to distinguish these two hypotheses, we construct a model for each.
The one-piece model is simply a linear fit constrained to pass through the origin.
The two-piece model, meanwhile, consists of two separate linear fits, which we
call the “lower” (below Nsnp) and “upper” (above Nsnp) fits. The lower fit is con-
strained to pass through the origin, while the upper fit’s y-intercept must be near
the average of the upper-region mutation frequencies (within 1.5 standard devi-
ations of their mean). The junction between the two pieces must harbor a signif-
icant discontinuity in either bin value (mutation frequency) or bin total (number
of sequences per bin), where significance is defined as a difference of more than
2.5 times the larger uncertainty. This two-piece model describes the presence of
a new allele separated by Nsnp SNPs from the original known gene. To give a
general idea of the implementation, several examples are shown in Fig 15.

We use a ratio of error descriptors to determine whether a plot is adequately
described by the one-piece fit. Define ε to be the sum of squared residuals divided
by degrees of freedom, which in regression analysis is sometimes called the mean
squared error. Good fits are characterized by values of ε around one, while val-
ues much greater than one indicate poor fits. Values significantly less than one
generally indicate poorly-estimated uncertainties. For our purposes, then, we are
interested in positions (which we call “candidate positions”) for which ε is large
for the one-piece fit (greater than 4.5) but around one (less than 1.95) for the two-
piece fit.

For each Nsnp, we construct the most plausible potential new allele by finding
theNsnp positions that have the worst one-piece, but best two-piece, fits. We quan-
tify this using the ratio of the two ε,

(1) r =
ε1-piece

ε2-piece
.

Because cases that would be better described by more complex models will have
larger residuals (poor fits) for both one-piece and two-piece models, which cancel
out in the ratio, this formulation provides robustness to deviations from linearity.
The model for the best potential new allele consists of the Nsnp positions that have
the largest values of r.

In order to strike an appropriate balance between focusing the fit’s attention on
the area of the discontinuity, while taking advantage of the largest possible sample
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size from many surrounding bins, we perform all fits in a window of width 10 bins.
This window begins at zero for small Nsnp, while for larger Nsnp it is symmetric
around Nsnp.

We apply several additional criteria to ensure that the candidate fits make a
compelling case for a new allele. The slope at the discontinuity, i.e. the slope de-
fined by the two points on either side, must be much larger than both the upper
and lower fitted slopes (a fractional difference of more than 2.5 times). For larger
Nsnp (five or more), the slopes before and after the discontinuity must also either
be consistent, or the lower slope must be the smaller of the two.

The unfortunate profusion of constant values in the preceding paragraphs de-
serves some examination. In general, for the sake of simplicity and interpretability,
we have wherever possible minimized the number of such constants. However,
practical constraints make it difficult to reduce their number further. In theory, it
would be possible to construct a more complicated model that faithfully recreated
all the details of the real system, which would enable a collection of simple like-
lihood ratio tests. However, in practice this approach is unlikely to be computa-
tionally feasible, and would likely require a much lengthier development process.
Instead, we have adopted the approach of comprehensively validating a simpler
model which, nevertheless, provides an adequate description of the system’s real
biological complexity. This method’s robust performance across a wide variety of
data and simulation samples during this validation (only a small fraction of which
appear in this paper) gives us great confidence in its general applicability.

Comparing multiple hypotheses. The previous section outlines a procedure for
identifying a single potential new allele for each individual Nsnp. In realistic sam-
ples, however, we must treat the general case where there may be several new
alleles, either with the same Nsnp, or spread among several Nsnp.

To do this, we first sort every candidate position within eachNsnp by decreasing
r. In order to better adjudicate between ties in the first sort, we then sort again
either by decreasing y-intercept (if Nsnp less than three) or decreasing two-piece fit
ε. The firstNsnp elements of this sorted list of candidate positions are then taken as
a candidate allele, the next Nsnp positions are taken as a second candidate allele,
and so on, until fewer than Nsnp remain. The second sorting step serves to group
together positions with similar fit properties, and that are thus most likely to come
from the same new allele. These fit properties are affected by several aspects of the
new alleles, most notably their prevalence. In cases with two new alleles with the
same prevalence, for example, this is not an effective means of determining which
positions go with which allele; however, in real data such cases are very rare.

For each of these candidate alleles, both the smallest r among their positions,
and the mean, must be greater than 2.75. The discontinuities for every pair of
positions must also be compatible, defined as the difference in bin totals (number
of sequences) on either side of Nsnp, which must be closer than three times the
maximum of their two uncertainties.

This procedure is repeated for each Nsnp, resulting in a list of candidate alleles
from each; these lists are then merged into a final list that is sorted by decreasing
Nsnp. We then go through this list and discard alleles that share any positions with
an allele earlier in the list. This last sorting is due to the fact that it is easier for a
high-Nsnp allele to mimic a low-Nsnp allele than the reverse.
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Approximations and pre-filters. The procedure described above would work well
in principle, but would require a computationally prohibitive number of fits. As
a rough estimate, taking 50 initial, known alleles in a sample, each with 300 posi-
tions, looking up through Nsnp equals eight, and with both the one-piece and two-
piece fits, we would need 360,000 individual linear fits. To be useful, however,
it must run as part of the overall partis annotation, which takes only minutes on
samples with tens of thousands of sequences. Luckily, the overwhelming majority
of these fits can be avoided by ignoring uninteresting positions using a number
of approximation procedures. The cumulative effect of the following approxima-
tions and filters is that a typical run requires of order 100 fits, with no appreciable
decrease in precision or sensitivity. This results in a method that does not add
significant run time to an existing partis run.

The first step is to ignore positions for which there would not be enough sta-
tistical power to have any sensitivity to new alleles. We thus skip positions with
fewer than 150 total observed sequences, summed over bins. Positions with fewer
than 30 observed mutations, also summed over bins, are similarly skipped.

For each Nsnp, we also ignore positions that do not have at least eight observed
mutations in the Nsnp

th bin. This bin is of primary importance, because it is the
means by which we determine that this Nsnp is the correct one, rather than those
slightly larger or smaller. If this bin is truly signaling a new allele, then it must
contain a significant number of mutated sequences.

For several of the subsequent steps, we use an approximate fitting procedure to
arrive at a slope, intercept, and associated uncertainties. While less accurate, and
more heuristic, than the least-squares fits that are used elsewhere, it is also much
faster. We begin by calculating the two-point slope between each pair of adjacent
points. If there are only two points in total, this is supplemented by a “synthetic”
slope between the first point shifted up, and the second shifted down, by their
respective uncertainties. The approximate slope is then calculated as the mean of
these pairwise slopes, with its uncertainty the associated standard error. We arrive
at the approximate y-intercept with a similar procedure, except that the pairwise
slope is replaced by the pairwise y-intercept, which uses the previously-calculated
pairwise slope.

For smaller Nsnp (three or less), we also require that the approximate upper-
region y-intercept fit bounds do not include zero. If they do include zero, there
will not be a significant difference between the one- and two-piece fits. As an addi-
tional, and more stringent, test that the upper-region y-intercept for these smaller
Nsnp is well above zero, we require that the approximate fit’s y-intercept is also
greater than zero.

For Nsnp equals two, we also require that the bin immediately before the Nsnp
th

bin be outside of the upper-region y-intercept fit bounds.
And finally, for larger Nsnp (five or greater), the approximate lower fit’s slope

must be less than that of the approximate upper fit, in cases in which they are
inconsistent.

Excluded bases on 5’ and 3’ ends. We are typically analyzing only partial V se-
quences, which leads to additional complications. On the 5’ end, the method must
account for samples in which the read does not extend through the entire V gene.
On the 3’ end, meanwhile, VDJ rearrangement itself deletes some number of bases.
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The presence of incomplete V sequences clearly reduces our sensitivity to new al-
leles simple by reducing the sample size for positions at each end. A more serious
problem, however, is that differing lengths cause sequences to be assigned to in-
correct bins, since their apparent number of mutations is different than their true
number. In order to avoid this problem, we ensure that all analyzed sequences be-
gin and end at the same aligned germline bases. To accomplish this, for each end
(5’ and 3’), we find the deletion length such that only a small fraction (f , by de-
fault 0.01) of sequences have a longer deletion length. We then exclude the fraction
f of sequences that have longer deletions. Among the remaining sequences, we
then exclude from the analysis the positions that fall within these deletion lengths.
For example, if 99% of sequences have 3’ deletions of four or fewer bases, then
we would discard sequences with more than four 3’-deleted bases, and would not
use that gene’s four most-3’ positions in the fitting procedure. Note that on the
3’ side of V, this exclusion procedure is especially important because the final few
germline-aligned positions next to any non-templated insertion always have very
poorly-measured mutation frequencies.

Collapsing clones. Our method requires that we consider only independent mu-
tation events, excluding any mutations that share a common ancestry. In order
to satisfy this requirement we attempt to select from each clone the largest possi-
ble set of sequences without shared mutations. In doing this, we give preference
to relatively unmutated sequences, since most new alleles are separated by only
a few SNPs from known alleles. Specifically, we sort the sequences from each
clonal family in order of increasing apparent V mutation. We then traverse this
list, selecting each sequence that does not share any mutations with a previously-
selected sequence. As shown in [40] it would be straightforward to use the full
partis method to separate the sequences into clonal families. However, for the pur-
poses of ensuring independent mutations, there is little benefit to having precisely
accurate clusters, since a slightly inaccurate clustering only results in slightly in-
accurate uncertainties in the fits, and uncertainties on uncertainties are in practice
never large enough to impact the analysis. For the sake of speed, then, we simply
cluster using inferred naive sequences, i.e. every sequence that is inferred to have
the same naive sequence is clustered together. This has the additional benefit of
becoming more conservative as the sample size becomes large – in other words it
tends to over-cluster more as the space of potential naive rearrangements fills up,
and nearby rearrangement events have very similar naive sequences. This has the
effect of sacrificing some sensitivity in order to ensure that mutations are actually
independent.

Initial removal of less-likely alleles. Some care is necessary when constructing
each sample’s initial set of known genes. We find the performance of our new-
allele inference to be robust enough that the best approach is to first choose a min-
imal number of genes whose presence in the sample is supported by very strong
evidence. We then apply the new-allele inference framework in order to reinstate
alleles for which the evidence was less overwhelming, along with any novel alle-
les.

In order to construct each sample’s minimal initial gene set, we first partition
the complete set of IMGT [1] genes into groups within which SHM can easily cause
confusion, and then retain only the most common gene in each group. Note that
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this partitioning cannot be accomplished using only the IMGT names – there are
many cases of allelic variants that differ by so many SNPs that confusion is very
unlikely, as well as alleles of separate genes that differ by only a single SNP. We
construct these groups by single-linkage clustering such that genes with the same
conserved cysteine position, and separated by fewer than eight SNPs, are grouped
together. In order to ensure that we can re-infer all of the genes within each group,
this number corresponds to the maximum number of SNPs for new-allele infer-
ence.

We also discard alleles that appear to occur at extremely low frequencies, by
default less than one part in 2000.

Template allele removal. The procedure outlined thus far can yield a confident
judgment on whether there exists a previously-unknown allele separated from
some known, “template” allele. We must also, however, distinguish between cases
where this template allele is also present in the sample, and cases where it is not
(and was simply the closest known allele). In order to do this we observe that in
the plots in Fig 15 the y-intercept of the upper (post-Nsnp) fit is determined largely
by the prevalence of the new allele. For Nsnp near one, the y-value is very close to
the actual allele prevalence, while for largerNsnp the relationship is more complex.
When the new allele’s prevalence is 1, i.e. the template allele is not present in the
sample, however, the fitted post-Nsnp y-value is also very close to 1. The only de-
viation is a slight decreasing slope from reversion to germline at higher mutation
levels. We thus remove template genes from the germline set when the upper fits
for each position have y-intercept 1.1± 0.12 and slope −0.01± 0.015.

Adding a new allele. Once we have decided that there is sufficient evidence for
a new allele separated by Nsnp SNPs from an existing allele, there remain several
additional considerations.

First, we must determine its original germline sequence. We begin by restricting
ourselves to sequences assigned to the Nsnp

th bin, i.e. which contain Nsnp apparent
mutations. This restriction is important, because unmutated sequences stemming
from the new allele are assigned to this bin. It thus minimizes the confusion caused
by mutated sequences derived from the existing allele, as well as from any addi-
tional new alleles. For each of the Nsnp positions where this allele differs from the
template allele, we then choose as the new allele’s germline nucleotide the most
commonly-observed non-template nucleotide at that position.

If the newly-identified allele was present in the original, full germline set, then
we add it with its original name; otherwise we add it with a provisional name
derived from the template gene. Because of the unavoidable ambiguity created by
3’ exonuclease deletion (and short reads), in order to be considered equivalent we
require only that two alleles are identical after applying the 5’ and 3’ exclusions
described above. If, for instance, we infer a new allele that differs by several SNPs
from some template gene, and there is an existing allele in the original set that is
identical to this new allele except for an extra base to the 3’ of the cysteine, we
assume that the newly-inferred and existing alleles are in fact the same. More
generally, we note that any new-allele inference framework that uses expressed
data will suffer from a large uncertainty as to the precise number and identity of a
V gene’s most-3’ few germline bases. In order to resolve this uncertainty we must
perform germline sequencing.
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Simulation details. The simulated samples used for validation were made with
the same basic framework described in [4]. In addition to the details described
there, we have added options to control various aspects of a sample’s germline
set. All simulation options are described in detail in the manual (https://git.
io/vFKok).

Most basically, we have added the ability to insert into a germline set new alleles
that are separated from existing alleles by both point and insertion/deletion mu-
tations. The number of each type of mutation, and their properties, are specified
with command line options. Each mutation occurs either at a specified position
in the allele’s sequence, or at a random position within specified bounds (for in-
stance, within vs outside of the CDR3). These options allowed the creation of the
simplified sparse gene repertoire samples in the Results.

These sparse repertoires are built around a single known germline gene. We
then add either one or two novel alleles, separated by SNPs at uniformly-selected
random positions, from this existing germline gene.

In order to generate a germline set for the full repertoire samples, for each re-
gion we first choose some number of genes from the IMGT set, and then some
number of alleles for each of these genes. The mean number of alleles per gene
is specified on the command line, then for each gene we choose a number of alle-
les from {1, 2} with weights such as to (on average) arrive at the specified mean
over all genes. For both the “low-SHM” and “high-SHM” full-repertoire samples,
this procedure was followed with 42, 22, and 6 genes (V, D, and J regions), with
a mean alleles per gene of 1.33, 1.1, and 1 (V, D, and J). This is concordant with
the references in Results above, in particular [7], which reported a mean over 12
individuals of 40.2 homozygous, 8.6 two-allele heterozygous, and 1.1 three-allele
heterozygous V genes, for an overall mean alleles per gene of 1.2. Six novel alleles
were then added, separated by 1, 1, 2, 3, 5, and 6 point mutations (at uniformly-
selected random positions) from an existing allele.

We choose each gene’s relative prevalence counts from a uniform random dis-
tribution with bounds [1, 1/fmin], where fmin is the minimum desired prevalence
ratio between any pair of genes in the repertoire. This ensures that the preva-
lence ratio for every pair of genes in the repertoire is in [fmin, 1], for fmin equals
0.15 (“low-SHM” samples) or 0.05 (“high-SHM” samples). While this is roughly
compatible with the variation in expression levels typically reported in real data,
we emphasize that most previous studies (including our own [4]) have aligned
against the full IMGT set, and as such their reported expression levels for less-
common genes are probably meaningless (Table 1, Fig 4).

The SHM distributions in the full-repertoire samples were chosen to be rep-
resentative of typical IgM-specific data (“low-SHM”, mean value 0.02) or typi-
cal unsorted samples (“high-SHM”, mean value 0.06) (compare to mean values in
Fig S1).

Finally, we must decide on the clonal family structure of each sample. Real
repertoires vary widely in both their clonality and lineage structure. However, we
have shown in Figs 1 and 2 that our clonal family collapse is an effective-enough
approximation that changes in clonality and lineage structure are equivalent to
changes in sample size, and thus only affect sensitivity. In order to maximize the
variety of interesting variables over which we can perform validation, we thus
simulate the full repertoire samples with singleton clonal families.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220285doi: bioRxiv preprint 

https://git.io/vFKok
https://git.io/vFKok
https://doi.org/10.1101/220285
http://creativecommons.org/licenses/by-nd/4.0/


18

Phylogenetic comparison plots. In order to make the phylogenetic gene set com-
parison plots (Figs 4, 5, 6, 7 8, 9, 10, S2, S3 11, 12, 13) we begin by aligning all the
genes that we want to compare using MUSCLE [41] (v3.8.31 with default param-
eters). We then use RAxML [42] (v8.2.10, with the GTR model) to create a tree for
these genes. In order to allow easy visual comparison of the entire germline gene
set in one plot, while also allowing comparison within each gene family (IMGT
definition, e.g. IGHV3), we then collapse to length zero each branch that joins
two different gene families. If the reader would like to compare combinations
of germline sets that are not shown in this paper, all true and inferred germline
sets, for simulation and data, are available at https://zenodo.org/record/
1037464#.WfISc3BrwUE, and the command line script used to make these plots
is available at https://git.io/vFo2B.
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FIGURE 4. Full-repertoire germline set accuracy for the cur-
rently widespread method of aligning every sequence to its
closest match in the full IMGT V gene set. The phylogenetic tree
is constructed with a leaf for each germline gene in either the true
or inferred germline sets (see Methods). Branch lengths connect-
ing different V gene families are set to zero. Leaves are colored
according to the similarity of the true and inferred germline sets,
with shared genes in green and unshared in red, the latter bro-
ken into missing (light red) and spurious (dark red). Novel alleles
(not in the IMGT database, whether from the true simulated set
or spuriously inferred) are highlighted in gold. Shown on the first
three replicates (0-2) of both the low-SHM (left), and high-SHM
(right) full-repertoire simulation samples (see text).
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FIGURE 5. Full-repertoire germline set accuracy for IgDiscover
(explanation in Fig 4). Shown on the first three replicates (0-2) of
the low-SHM full-repertoire simulation samples. The high-SHM
samples are not shown, since IgDiscover is designed only for low-
SHM IgM samples (see text).
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FIGURE 6. Full-repertoire germline set accuracy for TIgGER
(explanation in Fig 4).

FIGURE 7. Full-repertoire germline set accuracy for partis (ex-
planation in Fig 4).
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FIGURE 8. Comparison of all three inference methods on the
healthy donor samples from [34] (other subjects shown in Figs S2
and S3). The phylogenetic tree is constructed with a leaf for
each germline gene that was inferred by any of the methods.
Branch lengths connecting different V gene families are set to zero.
Leaves are colored according to how many methods inferred the
corresponding gene: one (green, red, blue), two (grey), or all three
(white).

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220285doi: bioRxiv preprint 

https://doi.org/10.1101/220285
http://creativecommons.org/licenses/by-nd/4.0/


25

FIGURE 9. Comparison of germline sets inferred by partis and
TIgGER for subjects FV, GMC, and IB from [35], with all ten
time points merged for each subject. The phylogenetic tree is con-
structed with a leaf for each germline gene that was inferred by
either of the two methods. Branch lengths connecting different V
gene families are set to zero. Leaves are colored according to how
many methods inferred the corresponding gene: either one (red,
blue) or both (white). Since this data is not IgM specific, IgDis-
cover is not shown. Includes the three time points in Fig 11, plus
seven more, for each subject.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220285doi: bioRxiv preprint 

https://doi.org/10.1101/220285
http://creativecommons.org/licenses/by-nd/4.0/


26

FIGURE 10. Comparison of the three methods on IgM data from
subjects lp08248 (left) and lp23810 (right) from [36]. The phyloge-
netic tree is constructed with a leaf for each germline gene that
was inferred by any of the methods. Branch lengths connecting
different V gene families are set to zero. Leaves are colored ac-
cording to how many methods inferred the corresponding gene:
one (green, red, blue), two (grey), or all three (white). See Fig 13
for other results for these subjects.
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FIGURE 11. Comparison of inferred germline sets for samples
taken at different time points for subjects FV, GMC, and IB
from [35]. Shown for three (of ten total) time points surround-
ing influenza vaccination: two days before, three days after, and
seven days after; for partis (top) and TIgGER (bottom). The phy-
logenetic tree is constructed with a leaf for each germline gene
that was inferred at any of the three time points. Branch lengths
connecting different V gene families are set to zero. Leaves are
colored according to the number of time points at which the cor-
responding gene was inferred: one (dark grey), two (light grey),
or all three (white). Since this data is not IgM specific, IgDiscover
is not shown. See Fig 9 for other results for these subjects.
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FIGURE 12. Comparison of inferred germline sets for samples
taken at two time points from the same subject for IGH (left),
IGK (middle), and IGL (right) for partis (top) and TIgGER (bot-
tom). Time points are three years apart in the HIV-superinfected
subject QB850 from [37]. The phylogenetic tree is constructed
with a leaf for each germline gene that was inferred at either of
the two time points. Branch lengths connecting different V gene
families are set to zero. Leaves are colored according to the num-
ber of time points at which the corresponding gene was inferred:
either one (grey) or both (white). Since this data is not IgM spe-
cific, IgDiscover is not shown.
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FIGURE 13. Comparison of inferred germline sets for IgM vs
IgG data from subjects lp08248 and lp23810 from [36] for partis
(left) and TIgGER (right). The phylogenetic tree is constructed
with a leaf for each germline gene that was inferred for either of
the two isotypes. Branch lengths connecting different V gene
families are set to zero. Leaves are colored according to the num-
ber of isotype-specific samples for which the corresponding gene
was inferred: either one (grey) or both (white). See Fig 10 for other
results for these subjects.
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FIGURE 14. Mutation accumulation plots showing the relation-
ship between the mutation probability at position 55 across all se-
quences aligning closest to IGHV4-38*06 (y-axis), and the num-
ber of mutations in the entire observed V sequence (x-axis) for
three simple, hypothetical BCR repertoires. In the top row are
two repertoires that consist of a single allele: where this allele is
known (left), and where it is unknown, but separated by seven
SNPs from a known allele (right). In a more typical case, given
the relative completeness of the standard germline sets, we would
observe a mixture of sequences from the known and unknown al-
leles (bottom). This is equivalent to the (shifted) superposition of
the two plots in the top row.
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FIGURE 15. Example one-piece (green) and two-piece (red) fits
for positions without (top row) and with (bottom row) evidence
for new alleles. The left and right plots in the top row show the
difference between positions with low and high mutability (cold
and hot spots). The bottom row shows a position with evidence
for a new allele with Nsnp equal to two (left) and a similar plot for
Nsnp equals five (right). Note that both one-piece and two-piece
models fit well in the top row, whereas in the bottom row only the
two-piece model provides an adequate fit.
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SUPPLEMENTARY INFORMATION

FIGURE S1. V region mutation frequency distributions from
the low (left), typical (middle), and high (right) mutation samples
used to make the top left panels of Figures 1 and 2. In the context
of these distributions, the full-repertoire samples (Figs 4, 5, 6, 7)
correspond to a mean value of 0.02 (“low-SHM” samples) and
0.06 (“high-SHM” samples).

FIGURE S2. Comparison of all three inference methods on the
AR-type Myasthenia Gravis samples from [34] (explanation in
Figure 8).
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FIGURE S3. Comparison of all three inference methods on the
MK-type Myasthenia Gravis samples from [34] (explanation in
Figure 8).

Comparison between methods. While a comprehensive comparison of the de-
tails of all three methods (TIgGER, IgDiscover, and partis) is beyond the scope of
this paper, we highlight some instructive details. First, the default partis method
and TIgGER are more similar to each other than either is to IgDiscover. Both use
a fitting procedure on mutation accumulation plots to look for new alleles. How-
ever, as described above, our approach to extracting information from these plots
is very different, using hypothesis comparison rather than sharp cutoffs, for in-
stance on the y-intercept.

IgDiscover, on the other hand, takes a quite different approach, clustering to-
gether sequences by distance and taking the consensus sequence of each cluster
to be a germline gene. The main advantage of this approach is that it enables
detection of new genes which are separated by either point mutations or inser-
tions/deletions from existing alleles. The purely mutation accumulation plot-
based approaches employed by TIgGER and default partis, in contrast, can only
detect new alleles separated by point mutations. The tradeoff is that the fitting-
based methods are able to use more detailed position-based information which
allows them to function well in repertoires with higher SHM. As noted by the
IgDiscover authors, distance-based clustering methods, in general, suffer from the
fact that once SHM is high enough that clusters from distinct V genes start bleed
together, the heuristic thresholds used to separate clusters create significant inac-
curacies.
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On human repertoires, since the IMGT set is already fairly complete, the ability
to detect new alleles separated by insertion/deletion mutations is not particularly
important. The germlines of most other species, however, are much less well char-
acterized. It is thus quite common in these species to encounter novel alleles that
are not simply allelic variants of well-known genes.

The obvious course of action, then, is to combine the mutation accumulation
plot-based and clustering-based methods in order to allow accurate inference on
non-naive repertoires of all species. We have, in fact, implemented this as a non-
default option in partis (see Manual, at https://git.io/vF12k), which we
recommend for non-human samples. However, after extensive validation of this
combined method, we believe that a somewhat modified clustering approach will
be required to achieve better performance on highly mutated samples from all
species, and thus leave its description to a future paper.
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