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Abstract— Reconstructing the genome and transcriptome for
a new or extant species are essential steps in expanding our
understanding of the organism’s active RNA landscape and
gene regulatory dynamics, as well as for developing therapeu-
tic targets to fight disease. The advancement of sequencing
technologies has paved the way to generate high-quality draft
transcriptomes. With many possible approaches available to
accomplish this task, there is a need for a closer investigation
of the factors that influence the quality of the results. We carried
out an extensive survey of variety of elements that are important
in transcriptome assembly. We utilized the human RNA-Seq
data from the Sequencing Quality Control Consortium (SEQC)
as a well-characterized and comprehensive resource with an
available, well-studied human reference genome. Our results
indicate that the quality of the library construction significantly
impacts the quality of the assembly. Higher coverage of the
genome is not as important as the quality of the input RNA-Seq
data. Thus, once a certain coverage is attained, the quality of
the assembly is mainly dependent on the base-calling accuracy
of the input sequencing reads; and it is important to avoid
saturating the assembler with extra coverage.

I. INTRODUCTION

Every living metazoan is a collection of cells with different
functionalities. In order to have a thorough understanding of
molecular level interactions of a given species, knowledge
of the arrangement of its genome (DNA) and transcriptome
(RNA) is key. In the past decades, efforts to uncover the
underlying genetic and transcribed material of organisms has
spanned many species, including Homo sapiens, Mus muscu-
lus, Drosophila melanogaster, Danio rerio, and Arabidopsis
thaliana, which have expanded our awareness and ability to
develop clinical, environmental and economical gene targets.
Ascertaining genome of non-model organisms has been a
rapidly expanding research direction in the light of improved
sequencing technologies.
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Sequencing pertains to determining the sequence of
DNA/RNA fragments using different methods. Ultimately,
leading to gene recognition and making consensus genomes
for non-model species, which need further steps to become
the reference genome. The modern sequencing technologies
pioneered by Sanger sequencing methodology in 1970s [1]
and continued to move forward with the introduction of Next
Generation Sequencing (NGS) techniques [2]. Yet, regardless
of the technology, sequencing methods shear (intentionally or
through manipulation) the input DNA/RNA material, which
causes disjointed pieces representing the original genome,
with the caveat of being much shorter than source material.
The resulting pieces must be connected to each other to
retrieve the original genetic material.

Accodingly, there can be an immense computational de-
mand in generating a such a reference genome or tran-
scriptome. There has been significant improvements in the
algorithms that take the sequencing outputs and generate
a de novo consensus genome. This process is referred to
as genome/transcriptome assembly [3]. In the last decade,
the next generation sequencing technologies dominated the
sequencing field, thus, most of the efforts in the bioinfor-
matics community concentrated on NGS-based tools, e.g.
Trinity [3], SoapDenovo [4], ALLPATHS-LG [5]. Although
assembling the references is important, ensuring the ac-
curacy of the consensus is even more critical. Reporting
genomes with avoidable shortcomings can create many future
issues. This current study aims at reconstructing human
transcriptome and investigating the factors that affect the
quality and accuracy of the reported consensus. To that
end, high quality sequenced RNA, well-annotated reference
genome and highly reliable assemblies are essential. The
US Food and Drug Administration (FDA) has coordinated
the Sequencing Quality Control project (SEQC/MAQC-III)
with the goal of assessing the technical performance of
RNA-Seq experiments comprehensively. The SEQC consor-
tium generated benchmark datasets of well-studied reference
samples, sequenced at multiple sites, and using different
sequencing platforms, with controlled settings. The generated
RNA-Seq data is used in separate studies to measure quality
metrics, spike-in controls, limits of detection, effects of
analytic pipeline and assessments of RNA-Seq accuracy and
reproducibility. Samples were distributed among six indepen-
dent centers in the study: 1- Australian Genome Research
Facility (ILM1), 2- Beijing Genomics Institute (ILM2), 3-
Weill Cornell Medical College (ILM3), 4- City of Hope
(ILM4), 5- Mayo Clinic (ILM5) and 6- Novartis (ILM6). The
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ILM2, ILM3 and ILM5 were selected as the official sites.
The SEQC used the experimental design and commercially
available samples from Microarray Quality Control Consor-
tium MAQC I [6], [7]. Sample A is the well-characterized
Universal Human Reference RNA (UHRR), and sample B
is Human Brain Reference RNA (HBRR). The synthetic
RNA from the External RNA Control Consortium (ERCC)
[8] was spiked in. Samples C and D were generated by
mixing samples A and B in ratios of 3:1 and 1:3, respectively.
Each one of samples A and B had 5 replicates. Replicates
1 to 4 were prepared in each site. The vendor prepared the
fifth replicate. To examine the effect of the instrument on
the RNA-Seq experiments, all the samples were sequenced
using Illumina HiSeq 2000, and for generating longer reads
three sites sequenced samples A and B using the Roche
454 GS FLX platform. The other next generation sequencing
technology, SOLiD, was also used. The SEQC consortium
overall sequenced 108 libraries on a HiSeq 2000, 68 libraries
on SOLiD, and 6 libraries on a Roche 454, generating more
than a 100 billion reads, for samples A to D.

The first study that focused on RNA-Seq assessments was
recently published [9], systematically examining the impact
of site-specific bias in detecting differentially expressed
genes, using different RNA-Seq analysis methods. They
showed that none of the tested technologies provided reliable
absolute quantification and relative expression measures that
agreed well across validation platforms: RNA-seq, qPCR and
microarrays. However, the built-in design of the study was
satisfied by the majority of genes. They observed sensitivity
of results to analysis pipeline choice, and provided a sug-
gestion for sequencing depth: An effective sequencing depth
is clearly contingent on the experimental goals, with simple
gene-level expression profiling only requiring 550 million
single-ended reads for an appropriate analysis pipeline [9].
The RNA-Seq mapping and differential expression testing
pipeline such as TopHat2 and CuffDiff [10], Magic [11],
BitSeq [12], Subread [13] and r-make incorporating STAR
[14] were examined and their performance was compared.
In addition, the SEQC reference datasets were an invaluable
resource for a systematic characterization of measurements,
and for making reliable conclusions from large-scale exper-
iments.

The availability of SEQC datasets provides an excellent
opportunity for the scientific community to examine the
RNA-Seq experiments, and to learn more about its variety
of characterizations and applications. The SEQC consortium
has focused on RNA-Seq analysis pipelines for differential
expression detection, splice junction discovery, sample dif-
ferences, etc. However, the performance of different SEQC
RNA-Seq datasets has not been evaluated for transcriptome
assembly (to the best of our knowledge). It is crucial to
understand the performance of transcriptome assemblies to
improve current practices. Understanding the factors that
affect transcriptome assembly is also very important. To
achieve these goals, reliable input data, which were generated
with the highest standards, are necessary. Here, we examine
the SEQC RNA-Seq data for assembling human transcrip-

tome. The comparison of our resulting de-novo assembled
transcriptomes with the well-annotated human transcriptome
provides insights to the pros and cons of the assembly
procedure. The current study aims to generate assemblies,
with fixed parameters, to examine the effects of built-in
settings of SEQC data on the results.

II. METHODS

This study examined the effects of different sequencing
sites, samples and sequencing depths on the assembled
transcriptome, using well-characterized RNA-Seq data from
SEQC. The study encompasses the following three main
aspects:

• Aspect I: Site effect examinations
• Aspect II: Coverage/Sequencing depth effect examina-

tions
• Aspect III: Library effect examinations
Aspect I pooled four site-prepared replicates by six Illu-

mina centers (samples A and B separately) and proceeded
to the transcriptome assembly. Since the fifth replicate was
prepared by the vendor, it was excluded from this aspect.
Including only the replicate prepared by each site enabled us
to examine the effect of library preparation and sequencing
in each individual center. The other objective of this aspect
was studying the impact of the coverage. Aspect II evaluated
the effect of sequencing depth on the transcriptome quality.
All the replicates for sample A (and B) from all the sites
were pooled, and then assemblies were constructed using
25%, 50%, 75% and 100% of the data. The assemblies of
Aspect II demanded tremendous computational power due
to their very high genome coverage. In Aspect III, three
official Illumina sites participated. The goal was to compare
the vendor-prepared and site-prepared samples. For each
site, we compared a random sample of the pooled library
with the vendor-prepared library assigned to that center by
sampling the same number of reads as in the latter to achieve
comparable coverages. In addition to three main aspects
mentioned above, we re-examined Aspect I and Aspect II
with selected input data. The objective of these aspects was to
determine the influence of in-silico normalization option on
the assembly quality. We will refer to these two assemblies
as Aspect I-Norm and Aspect II-Norm.

In order to examine all three main objectives of the study
(and additional two aspects), we designed a multi-step work-
flow, depicted in Figure 1. There are three major components:
1- pre-processing, 2- assembling the transcriptome, 3- post-
processing.

The pre-processing phase started by discarding any reads
with attached adapter sequences. For adapter trimming we
used Cutadapt [15]. In order to remove poly A/T tails we
used Flexbar [16]. The RNA-Seq tends to include sequenced
fragments (reads) with ribosomal RNA (rRNA) and the
mitochondrial chromosome. We eliminated the rRNA and
mitochondrial reads that mapped to their respective refer-
ences. As for sequencing errors, SEECER [17] is a powerful
tool that corrects errors RNA-seq data. In the last step of
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•  Poly	A/T	Trimming,	and	Removing	mtRNA,	rRNA	(custom	script)	
•  Error	CorrecDon	for	RAN-Seq	reads	(SEECER)	

StaDsDcal	comparison	of	all	assemblies	(StaDsDcal	TesDng	for	populaDon	of	Assemblies)	
•  Novel	Score:		HiMMe	

Passed	QC?		

Transcriptome	Assemblies,	Input:	Trimmed	Sequencing	Reads	FASTQ	Files	
•  Assembling	Samples	A	and	B	for	six	centers,	using	different	replicate-	combinaDons	(Trinity	so+ware)	

Genome	Coverage	–	SNP	DetecDon	for	FASTQ	Trimmed	Input	Reads	
• Mapping	Input	Reads	to	the	Reference	Genome	(TopHat	so+ware)	

•  SNP	detecDon	(GATK	so+ware):	Output	Called	SNP_Reads	
•  Genome	Coverage,	using	Mapped	Reads	(featureCounts	–	R	

Bioconductor	Package)	

Quality	Control	(QC),	Input:	Assembled	ConDgs	Files	(FASTA	Format)	
•  DETONATE	(DETONATE	so+ware,	using	human	reference	genome)	

•  BUSCO	(BUSCO	so+ware)	
•  Assemblies	staDsDcal	outputs	(provided	by	Trinity	for	each	assembly)	

• Mapping	reads	back	to	the	conDgs	(TopHat	so+ware)	

Discard	
the	

Assembly	

No	

Genome	Coverage	–	SNP	DetecDon	for	FASTA	Assembled	ConDgs	
• Mapping	assembled	conDgs	to	the	Reference	Genome	(GMAP	

so+ware)	
•  SNP	detecDon	(GATK	so+ware):	Output	Called	SNP_ConOgs	
•  Genome	Coverage,	using	Mapped	ConDgs	(featureCounts	–	R	

Bioconductor	Package)	

Fig. 1: Study plan. This workflow flowchart shows the steps and tools that are used for the current study.

our pre-processing we employed SEECER on the remaining
reads.

The most computationally intensive part of our workflow
was the transcriptome assembly. All the fragments that
successfully passed the pre-processing stage were used to
construct the respective transcriptome assembly. To that end,
we used Trinity [3], a state-of-the-art de novo assembly
algorithm developed specifically for reconstructing transcrip-
tomes based on de Bruijn graphs. Transcriptome assembly is
challenging mainly because RNA-Seq data coverage levels
are not evenly distributed. Furthermore, alternative splicing
complicates assembly from individual genes. The goal of
Trinity is to deliver one graph per expressed gene. This
assembly tool consists of three parts: 1) Inchworm, 2)
Chrysalis, and 3) Butterfly. During these three steps, Trinity
makes linear contigs from RNA-Seq reads, generates and

expands de Bruijn graphs, and finally outputs the transcripts
and isoforms. There are many transcriptome assembly tool
available, however, the intention of this study was not to
compare assembly algorithms, but rather to generate tran-
scriptomes with a reliable pipeline that would highlight the
effects of Aspects I-III.

The SEQC data was generated at multiple sites and
included well-studied samples. Samples A and B differ
since sample A (UHRR) consists of ten pooled cancer cell
lines, and sample B (HBRR) is from multiple brain regions
of 23 donors. Our objective was to examine the effects
of different sites, samples and sequencing depths on the
assembled transcriptome. We utilized samples sequenced by
the Illumina platform. We selected samples A and B (sample-
type effect), across all six sequencing site (site effect),
and assemblies were done for different number of pooled
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replicates (sequencing depth effect). There are four replicates
available for samples A and B, sequenced in each center. The
fifth replicate is prepared by the vendor and sequenced in
each site. The examination of all transcriptome assemblies
provided insights on successful RNA-Seq experiments and
transcriptome assemblies.

In the post-processing stage, each assembly went through
a comprehensive pipeline of quality measurement tools. The
statistics of assemblies were used to assign a ranking to the
result, e.g. between similar assemblies, the one with larger
N50 will receive higher ranking. Additionally, mapping re-
sults using GMAP [18], and SNP detection process using
GATK [19] are important for ranking the assemblies. The
common assembly statistics, such as maximum contig length
and N50 were used to determine the quality of the results,
and to compare the assemblies using different parameters.
However, as other studies noted [20], [21], in our recent pa-
per [22] we showed that using additional measures for quality
control and comparison of assemblies is important. Relying
only on the assembly statistics can be misleading and result
in overstating the power of the assemblers. Therefore, we
included the following steps in our validation/assembly com-
parison pipeline: examining the statistics of each assembly
and ranking assemblies accordingly, comparing completeness
of the assemblies with Benchmarking Universal Single-
Copy Orthologs (BUSCO) [23], and assigning scores to
the assemblies using DETONATE (DE novo TranscriptOme
rNa-seq Assembly with or without the Truth Evaluation)
[24]. The latter uses both the reference genome as well
as the input RNA-seq reads, to compute multiple metrics
and probabilities to assess how well supported the assembly
is in light of the previous knowledge. Employing all these
quality control (QC) metrics and comparison/ranking tools
ensures the quality of the outputs, and will assist us to
find the differences between assemblies based on samples A
and B sequenced in different sites with different coverage.
Furthermore, we applied our recently developed algorithm
HiMMe [25] that uses the genetic content of assemblies as
a proxy for assembly reliability. This novel method is based
on hidden Markov model (HMM) theory, and computes
an individual score for each contig by looking at the k-
mer transitions observed, as well as a global score for the
assembly. The HiMMe algorithm is trained using previous
knowledge about the samples. In this study, the reference
transcriptome and a SNP database were used to learn the
model [25].

III. RESULTS

This section presents the most relevant findings related to
our three aspects, and the remaining material can be accessed
in the supplemental document.

The transcriptome assemblies generated by Trinity were
examined with multiple quality control measures. The as-
sembly statistics, provided by assembly software, is an
important starting control. The N50 defines the contiguity
of the resulting contigs by having at least half of the contigs
longer than its value. Figure 2 depicts the N50 values for all

objectives of this study for sample A. The corresponding plot
for sample B shows similar trends (supplemental document).

We also considered the effect of the input read volume for
each assembly. The number of input reads was lower than the
original in SEQC data since during the pre-processing step
reads with adapter or ploy A/T tails, as well as reads mapping
mitochondrial DNA, were eliminated. The genome coverage
is computed by dividing the input reads number with the
human genome size. The transcriptome size is more variable
than genome size due to expression of genes in different
times, difficulty in narrowing down coding regions, tissue
specification, etc. Thus, this paper uses genome coverage,
unless otherwise stated.

Aspect I aims at comparing Illumina sequencing sites with
respect to library preparation and the input volume generated,
by pooling and then assembling four replicates generated in
each site. As Figure 2 shows all sites generated N50 values
higher than 1200, except ILM3. Looking at the FastQC [26]
plots for different sites, it is apparent that the quality of
the libraries in ILM3 site were shifted in GC-content and
insert size relative to the rest of the sites. The FastQC plots
for SEQC data is provided in the supplemental document.
Other studies also noted similar shifts in data QC metrics,
with higher per-base error rates generated in ILM3 [27].
Thus, less contiguity measure should be expected and it is
visible in our results. The genome coverage ranged from 5x
to 35x among 6 sites, including all replicates. Looking at the
individual libraries for each replicates, which was sequenced
in 8 lanes of a flowcell, the libraries generated varying reads
from 1M up to 10M. The high genome coverage for each
replicate is achieved by numerous libraries for each replicate.
ILM2 and ILM4 had 17x and 19x coverage and generated
highest N50 values. ILM6 had the highest 35x coverage and
its N50 is moderate, whereas ILM3 with minimum N50
had 9x coverage. These results stress the importance of
having quality sequencing reads for producing high quality
assemblies.

In Aspect II, we pooled all the replicates for sample A
and then randomly picked 25%, 50%, and 75% of the data
for assemblies. We utilized the entire pooled data set in the
last assembly. The sequencing depth ranged from 40x to
160x from 25% to 100% assemblies with approximately 40x
increase in each step. These Trinity assemblies were among
the largest ever done at Pittsburgh Supercomputing Center
(PSC). Looking at the resulting N50 values for this aspect,
increasing the volume of input data negatively influenced
the contiguity of the results. The N50 value was highest
for 25% run and declined as coverage increased, indicating
that overwhelming assembler with too much data will not
necessarily improve the quality of contigs. It should be noted
that aspect II provides a significant suggestion for assembly
with claiming that moderate coverage and high quality data
suffices in generating reliable transcriptome assemblies.

Aspect III utilizes replicate 5 prepared by vendor and
sequenced in three official sites. As Figure 2 shows, all
assemblies with this higher quality library performed well.
The sequencing depth for this replicate is 2.7x to 4.6X
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Fig. 2: N50 values for the five studied aspects.

Aspect Center/Coverage Complete (C) Duplicated (D) Fragmented (F) Missing (M)

Aspect I

ILM1 87% 42% 4.80% 7.60%
ILM2 86% 43% 5.20% 8.70%
ILM3 82% 37% 8.00% 9.50%
ILM4 86% 41% 4.50% 8.40%
ILM5 86% 42% 5.20% 7.70%
ILM6 86% 41% 5.90% 7.80%

Aspect II

25% 87% 41% 5.30% 7.50%
50% 88% 43% 4.40% 7.20%
75% 88% 43% 4.30% 6.90%

100% 88% 44% 4.80% 6.20%

Aspect III - R5
ILM2 84% 42% 4.70% 10.00%
ILM3 82% 39% 5.50% 11.00%
ILM5 81% 39% 6.10% 12.00%

Aspect III - R1 to R4
ILM2 84% 43% 4.80% 10.00%
ILM3 76% 35% 10.00% 13.00%
ILM5 82% 39% 5.40% 12.00%

TABLE I: The output of BUSCO quality control tool for three primary aspects of the study.

and still generated the higher N50 values compared with
Aspects I and II. In another part of Aspect III, we pooled
replicates 1 through 4 prepared at each sequencing center and
randomly selected the number of reads to be equal to that
of replicate 5. Interestingly, site ILM3, the one with lower
quality data, performed poorly, clearly emphasizing on the
library preparation effect on assembly quality.

In addition to the three main aspects of the study, we re-
evaluated the performance of Aspects I and II using the In
silico normalization of RNA-Seq fragments of Trinity [3].
Trinity normalization targets a specified coverage and dis-

cards reads that are less useful in assembly. Most transcripts
can be saturated with lower coverage and adding more input
data only increases the computational cost and may ad-
versely influence the results. The normalization significantly
increased the N50 values for Aspects I and II, emphasizing
more on the importance of high-quality data and appropriate
sequence depth.

The quality of the assemblies was further assessed by the
BUSCO tool. As table I shows in aspect I the six Illumina
centers performed equally well in recovering BUSCO or-
thologs. However, ILM3 center had the minimum C measure.
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(c) Genome coverage of assembled contigs vs reads- Aspect III

Fig. 2: Comparing genome coverage of samples A and B in 6 Illumina sites in Aspects I to III. The value A vs A shows the
coverage for sample A in ILMX versus ILMY site. Values A vs B, B vs A and B vs B correspond to the ratios of overages
for samples A and B among sites.

In Aspect II the performance is very similar, implying that all
runs preserved the appropriate gene information, regardless
of their contiguity measurements. The first part of Aspect
III, where R5 is used for assembly shows high completeness
for the three official site, but the coverage of the second
part of the aspect reveals that ILM3 has the lowest BUSCO
measurements. The same pattern is observed in other QC
steps emphasizing on the less satisfactory results when
libraries prepared by ILM3 are used.

Furthermore, we used DETONATE [24] to study the k-mer
proportions present in the transcriptome compared to that in
the reference. As Table II shows the sites with lower library
quality have worse scores, confirming the library preparation
quality observations with previous QC measures.

The transcriptome reconstruction for the non-model or-

ganisms is based on de novo procedures and solely relies on
the input sequenced reads. Thus it is difficult to compare the
coverage of the resulting transcripts with a reference genome
and compare it with the corresponding read coverage. The
SEQC homo sapiens samples used here have well annotated
reference genome and, in turn, this enabled us with well-
annotated reference genome, which enabled us to compare
the genome coverage for reads and assembled contigs. Figure
2 shows the relative genome and read coverage for this study.
In order to compare the genome coverage, we provided the
relative coverage of sample A and B among sites. As the
figure shows the contigs and input reads provided similar
genome coverage patterns. The consistent trends show the
higher coverage of ILM1 among centers and higher relative
values for sample B versus sample A. We also observed
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(a) Aspect I.

(b) Aspect II.

(c) Aspect III.

Fig. 3: Score distributions for Aspect I, Aspect II, and Aspect III, computed by HiMMe. The scores have been binned, by
looking at contig length, in four bins of length ranging between 0-100 nucleotides; 101-1,000 nucleotides; 1,001-10,000
nucleotides; and 10,001-100,000 nucleotides.
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Aspect Center/Coverage Number of contigs DETONATE score

Aspect I

ILM1 542,091 -30,562,340,585
ILM2 375,745 -18,347,313,246
ILM3 604,390 -22,478,407,936
ILM4 403,209 -20,043,442,894
ILM5 483,867 -25,860,133,373
ILM6 535,758 -35,688,527,059

Aspect II

25% 542,321 -40,252,604,757
50% 890,995 -79,325,290,744
75% 1050484 -118,717,758,792

100% 1,091,728 -157,161,169,416

Aspect III - R5
ILM2 215,811 -4,838,389,288.10
ILM3 185,289 -4,416,597,242.54
ILM5 161,700 -3,244,238,513.70

Aspect III - R1 to R4
ILM2 196,240 -5,052,617,512.70
ILM3 220,790 -4,861,137,388.42
ILM5 157,248 -3,208,148,228.65

TABLE II: The output of DETONATE for three primary aspects of the study (Sample A).

a lower contig coverage for ILM3 when using replicates 1
through 4.

Additionally, we employed our novel HiMMe method
to evaluate all transcriptome assemblies generated. When
looking at the score distributions for Aspect I (see Figure
3a), we do not observe major differences between sites in
general. However, we do see a significant lower median
score for site ILM3 for contigs of length between 10,000-
100,000 nucleotides. Thus, we conjecture that the quality of
the libraries might have a bigger impact when assembling
longer transcripts. When looking at the score distributions
for Aspect II (see Figure 3b), we do not observe any trend
suggesting that more data improves the output as long as a
critical coverage is reached, consistent with previous results.
As for the assemblies that belong to Aspect III (see Figure
3c), we do observe a general trend suggesting that the quality
of the input data does have an impact on the assembled tran-
scriptome. Transcriptomes assembled using vendor prepared
libraries (R5) have a slightly higher median score compared
to that of assemblies constructed with pooled reads from R1
through R4, which in turn were prepared by the sequencing
sites. As suggested above, this difference becomes larger
with longer transcripts. The largest difference is observed
in the last bin, where ILM3-R5 performs significantly better
than ILM3. These results further the point that the quality
of the input reads, once a minimum coverage is secured,
is the most determinant factor for reliable transcriptome
assemblies.

For future assessment, we compared the number of called
Single Copy Polymorphisms (SNP) that are called by input
reads and the assembly results. One should expect con-
siderable differences between the SNPs called by the two
sources. Reads are shorter and may have duplication and
their alignment to the reference genome capture many more
SNPs. In all the three aspects of the study contigs have
very close SNP call patterns, and raw reads are clustered
nicely. The figure showing these findings can be accessed at

supplemental document.

Furthermore, we assessed the quality of each transcrip-
tome by calculating the contig coverage of gene bodies and
also calculated the fraction of assembled exons based on
current annotations. To calculate the contig coverage of each
gene we used the RSeQC control package with the RefGene
database for hg19. The RefGene database includes known
human genes (both protein-coding and non-coding) from the
NCBI RNA reference sequences collection (RefSeq). We
calculated the fraction of exons assembled by using bedmap
from the bedops toolkit. For more details on the steps of the
process refer to the supplemental document.

We compared these two measures of transcriptome qual-
ity on assemblies created without in silico normalization,
Aspects I and II, and with in silico normalization Aspects
I-Norm and II-Norm (Aspects 4 and 5 interchangeably).
We saw a significant improvement in the coverage of Re-
fGene gene bodies for assemblies created without in silico
normalization (Figures 4a). For Aspect III, there was lit-
tle difference in the coverage of RefGene gene bodies in
any of the assemblies (Figure 4b). We observed a slight
improvement of the fraction of Gencode exons assembled
when comparing in silico normalization for Aspect I vs.
Aspect I-Norm (Figure 5a and Table III). However, we
observed a significant improvement of Gencode exons as-
sembled (except at a downsampling of reads at 25% for
Sample A) when comparing Aspect II vs. Aspect II-Norm
(Figure 5a and Table III). For Aspect II vs. Aspect II-Norm
Sample B, we observed a decreasing trend in p-value as the
number of downsampled reads increased (Table III). For
Aspect III, the largest differences in the assembly of Gencode
exons was observed between the location of sequencing
centers (Figure 5b). We compared the differences between
assemblies performed from the SeQC dataset and a non-
normalized assembly using >5.7 billion RNA-Seq reads
from the Genotype-Tissue Expression (GTEx) Consortium.
We found that the highest quality transcriptome assemblies
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Comparison Sample W p-value

Aspect I vs. Aspect I- Norm

ILM2 Sample B 4729 0.1859
ILM4 Sample B 5370 0.7421
ILM3 Sample B 5474.5 0.8163
ILM2 Sample A 4491.5 0.07149
ILM1 Sample A 5504 0.8346
ILM5 Sample B 5051 0.4531
ILM5 Sample A 5414 0.7751
ILM6 Sample A 5247 0.6383
ILM6 Sample B 5228.5 0.6215
ILM1 Sample B 5741 0.9386
ILM3 Sample A 5012.5 0.4166
ILM4 Sample A 4917.5 0.8412

Aspect II vs. Aspect II-Norm

Sample A 25% 3493.5 0.9999
Sample A 50% 5860 0.03384
Sample A 75% 5879 0.03055

Sample A 100% 5614 0.1082
Sample B 25% 6030 0.01266
Sample B 50% 6038 0.01205
Sample B 75% 6119 0.007131
Sample B 100% 6543 0.000259

TABLE III: Mann-Whitney comparisons for all pairs of samples from Aspect I vs. Aspect I-Norm and Aspect II vs. Aspect
II-Norm.

were created from increasing the number of reads without
normalization (Figure 6).

IV. DISCUSSION

This study utilized reliable RNA-Seq data from the Se-
quencing Quality Control Consortium to examine the effects
of library preparation, sequencing site and coverage on the
transcriptome assembly. Our multi-step workflow consisted
of pre-processing data to remove unnecessary attachments to
the reads and to correct for the possible sequencing errors.
The data was categorized into three aspects and assembled
by Trinity tool. The resulting assembled transcriptomes went
through a comprehensive quality control procedure to ensure
the quality is satisfactory and also for comparing the assem-
blies.

The structural design and high volume RNA-Seq from
SEQC study was instrumental in looking into the influence
of sample handling on the output assembly. We verified
the importance of the library preparation by showing that
the high quality input data will generate more dependable
transcriptome. The replicates from the sites that generated
more reliable data performed equally well in transcriptome
assembly as the vendor-prepared replicate. Our results also
suggest that an aberrant coverage might be counterproductive
in terms of assembly contiguity, but can improve gene body
fraction. Therefore, if the resources are not a concern for
data analysis, one might use more input data to have higher
gene coverage. In summary, high quality library-preparation
and appropriate genome coverage were the most important
factors affecting the transcriptome assembly.

To emphasize the computational demands of the project,
one should note that we successfully finished 52 assemblies
through Aspects I, II, II, I-Norm and II-Norm for samples

A and B, based on human RNA-Seq data. As Tables in
the supplemental document shows the assembly runs range
from 3X to 160X coverage of the human reference
genome. As mentioned earlier, we computed the input read
coverage based on reference genome for more accuracy and
clarity. The proposed workflow comprises of three major
components and the preprocessing steps were done once
for each input dataset. This study was completed on the
Blacklight, Greenfield and Bridges system at Pittsburgh
Supercomputing Center (PSC). The computational aspects
of runs on Blacklight and Greenfield system are provided at
[28].

The size of the assembly jobs in this study exceeded many
of the previous studies. The supercomputers at PSC enabled
us to execute such large jobs. As an example of our very
large runs, the Sample A 100 and Sample B 75 were two of
highly resource demanding jobs, which were some of largest
jobs ever completed on PSC. Both jobs ran simultaneously
on a single 12 TB node on Bridges with 288 cores (HPE
Integrity Superdome X with 16 Intel Xeon E7-8880 v3 CPUs
18 cores/CPU). Each job used half of the node, with access
to up to 6 TB of RAM and 144 cores. Although Trinity does
not generally scale to many cores (and can sometimes get
slower with more threads), 4-6 TB of RAM was needed to
complete these jobs. Tables II in the supplemental material
shows the computational resources for these two long jobs.

Our experiments highlight the importance of the input data
quality prior to sequencing. The sample libraries, prepared
by laboratory personnel, highly impacts the accuracy of
the transcriptome reconstruction, while sequencing with the
same sequencing platform. Nonetheless, based on the differ-
ent QC measures, the 3-5X coverage of reference genome
should be sufficient for generating high quality transcrip-
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Fig. 5: Fraction of Gencode exons assembled
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Fig. 6: Fraction of Gencode exons assembled for comparing GTEx assembly vs. Assemblies from Aspect II and 5.

tome. The in-silico selection of high quality input (reads) also
favorably benefits the outcome. Finally, we verified that de
novo transcriptome assembly is reproducible among different
sequencing sites, with the device causing minimal variability,
compared to the profound human-related effects.
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