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Abstract

Recent years have seen the emergence of several “third-generation” sequencing platforms,
each of which aims to address shortcomings of standard next-generation short-read sequenc-
ing by producing data that capture long-range information, thereby allowing us to access
regions of the genome that are inaccessible with short-reads alone. These technologies ei-
ther produce physically longer reads typically with higher error rates or instead capture
long-range information at low error rates by virtue of read “barcodes” as in 10x Genomics’
Chromium platform. As with virtually all sequencing data, sequence alignment for third-
generation sequencing data is the foundation on which all downstream analyses are based.
Here we introduce a latent variable model for improving barcoded read alignment, thereby
enabling improved downstream genotyping and phasing. We demonstrate the feasibility of
this approach through developing EMerAld— or EMA for short— and testing it on the bar-
coded short-reads produced by 10x’s sequencing technologies. EMA not only produces more
accurate alignments, but unlike other methods also assigns interpretable probabilities to the
alignments it generates. We show that genotypes called from EMA’s alignments contain
over 30% fewer false positives than those called from Lariat’s (the current 10x alignment
tool), with a fewer number of false negatives, on datasets of NA12878 and NA24385 as com-
pared to NIST GIAB gold standard variant calls. Moreover, we demonstrate that EMA is
able to effectively resolve alignments in regions containing nearby homologous elements—
a particularly challenging problem in read mapping— through the introduction of a novel
statistical binning optimization framework, which allows us to find variants in the pharma-
cogenomically important CYP2D region that go undetected when using Lariat or BWA.
Lastly, we show that EMA’s alignments improve phasing performance compared to Lariat’s
in both NA12878 and NA24385, producing fewer switch/mismatch errors and larger phase
blocks on average.

EMA software and datasets used are available at http://ema.csail.mit.edu.
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1 Introduction

As sequencing technologies have continued to advance beyond the initial introduction of next-
generation sequencing (NGS), we have begun to see the emergence of so-called “third-generation”
sequencing platforms, which seek to improve on the standard short-read sequencing that has thus
far been the heart of most next-generation sequencing technologies [1]. Several organizations
are at the center of this new sequencing revolution, including Pacific Biosciences [2], Oxford
Nanopore [3] and 10x Genomics [4]. While the former two have developed sequencing methods
that produce much longer physical reads (e.g., 10–200kb) at typically higher error rates, 10x
Genomics’ Chromium platform instead generates reads that have long-range information implicit
in a read “barcode,” a 16bp nucleic acid sequence that can be used to determine the source
fragment of a particular read [5]. At a high level, 10x sequencing first organizes long (10–200kb)
DNA fragments into droplets such that few are present in each droplet. These fragments are then
sheared, and a unique barcoded bead is added to each droplet so as to ligate a 16bp barcode to
each sheared piece. These newly-barcoded sheared fragments are then sequenced using standard
short-read sequencing, thereby producing barcoded short-reads [4]. Because they help identify
the original source fragment, these barcodes implicitly carry long-range information, and can
have a significant impact on alignment as well as fundamental downstream analyses such as
structural variation detection and phasing.

Barcoded reads have several advantages over physically long reads. Firstly, and perhaps most
importantly, barcoded short-read sequencing is substantially cheaper than long-read sequencing;
whereas PacBio’s and Oxford Nanopore’s sequencing platforms currently cost anywhere from
$750–$1000 per GB of data, 10x sequencing is a comparatively cheap add-on to standard short-
read sequencing, and therefore bears the same cost (specifically, $30 per GB) plus a $500 overhead
per sample [5]. Secondly, the error profile of barcoded short-reads is very similar to those
of standard short-reads (roughly 0.1% substitution errors), which enables us to augment the
tools and algorithms that have been developed for regular short-reads to handle their barcoded
counterparts. By contrast, long-read sequencing typically produces high rates of erroneous indels
(ranging from 12–13%), which presents a challenge when trying to use preexisting algorithms.

As with virtually all sequencing data, the first step in the analysis pipeline for barcoded
reads is typically alignment. While barcoded reads can in theory be aligned by a standard
short-read aligner (e.g, CORA [6], BWA [7], Bowtie2 [8]), this would fail to take advantage
of the information provided by the barcodes. An alternative approach given by McCoy et
al. is to assemble the reads for each particular barcode, and to treat the result as a single
“synthetic long-read” [9]. While this works well for technologies like Illumina’s TruSeq Synthetic
Long-Read platform (formerly Moleculo)— which is similar to 10x sequencing except that source
fragments are sequenced with a much higher coverage— the fact that 10x sequencing achieves its
coverage not by having high per-droplet coverage, but rather by having many droplets, makes
such assembly impractical for 10x data. On the other hand, the fact that TruSeq sequences
fragments at high coverage inflates their sequencing costs to be on par with PacBio’s and Oxford
Nanopore’s, whereas 10x circumvents this high cost via shallow fragment sequencing [5].

Currently, the state-of-the-art in terms of barcoded read alignment employs “read clouds”—
groups of reads that share the same barcode and map to the same genomic region— to choose
the most likely alignment from a set of candidate alignments for each read [10]. Intuitively, read
clouds represent the possible source fragments from which the barcoded reads are derived. The
read cloud approach to alignment effectively begins with a standard all-mapping to a reference
genome to identify these clouds, followed by an iterative update of reads’ assignments to their
possible alignments, guided by a Markov random field that is used to evaluate the probability of
a given configuration, taking into account the alignment scores, clouds, etc. Moreover, with 10x
technology, as multiple fragments can share the same barcode, it is in general not possible to
infer the source fragment for a read (and thus its correct alignment within a reference genome)
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merely by looking at its barcode. In order to deduce the correct placement of a read (and thus its
unknown source fragment), all possible alignments of that read (and thus its possible fragments)
need to be examined.

Here, we propose a new probabilistic optimization framework for barcoded read alignment
that employs a probabilistic interpretation of clouds: EMerAld, or EMA for short (Figure 1).
Our two main conceptual advances are as follows. Intuitively, rather than assigning each read to
just one of its possible alignments at any given time, we make use of probabilistic assignments
and employ a latent variable model to determine final alignment probabilities and, ultimately,
to select the most likely alignments. During the alignment process, we utilize a disjoint-set
data structure over read clouds to normalize alignment probabilities in a physically sensible
way. Secondly, we propose a statistical binning optimization approach to better handle the
ubiquitous repetitive regions of the genome, compared to the currently-used method of simply
picking the lowest edit distance alignment of a read in a given cloud.

By thinking of clouds not as arbitrary clusters of reads, but rather as distributions, we
are able to produce more accurate alignments, and to assign interpretable probabilities to our
alignments, which greatly improves downstream analyses. We demonstrate EMA’s performance
by evaluating downstream genotyping and phasing accuracy using real 10x data. We found
that genotypes called using EMA’s alignments contained over 30% fewer false positives than
those called using Lariat’s alignments, and contained fewer false negatives as well, when run on
independent 10x datasets of NA12878 and NA24385 using NIST GIAB high-confidence variant
calls as a gold standard. Overall, we found that roughly 20% of all reads in our two datasets
had multiple suitable alignments and were therefore able to be targeted by EMA’s optimization
algorithm. Furthermore, we demonstrate that EMA successfully resolves alignments in the
pharmacogenomically important and highly homologous CYP2D region through its statistical
binning optimization, and was able to detect novel variants therein that remain undetected when
using Lariat or BWA.

In addition to achieving superior accuracy, the EMA pipeline is 50% faster than Lariat—
which translates into days faster for typical 10x datasets— and does not add any memory
overhead to the alignment process. Thus, we expect the algorithms introduced here to be a
fundamental component of read cloud-based methods in the future.

2 Methods

General barcoded read sequencing begins with splitting the source DNA into long fragments (10–
200kb) where each such fragment is assigned some barcode (a short 16bp DNA sequence). These
fragments are sheared and each sheared piece has the assigned barcode ligated to it, whereupon
standard short-read sequencing is applied to the sheared pieces. Each fragment is shallowly
sequenced (i.e. fragment coverage is typically less than 1× in read depth, so each fragment
position is covered by at most one read); an overall high coverage is attained by sequencing many
different fragments covering the same genomic region. As a result of this process, barcoded reads
have the same low error rates as typical Illumina whole-genome sequencing reads. An idealization
of this process is illustrated in Figure 1a.

2.1 Standard data preprocessing

The first stage in the alignment process is to preprocess the data, for which we largely follow
the same practices used by 10x Genomics’ WGS software suite, Long Ranger [11]. The purpose
of this preprocessing is to:

• extract the barcode from the read sequence,

• error-correct the barcode based on quality scores and a list of known barcode sequences,
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Figure 1: Overview of EMA pipeline. (a) Idealized model of barcoded short-read sequencing,
wherein some number of unknown source fragments in a single droplet are sheared, barcoded and
sequenced to produce barcoded reads. (b) EMA’s “read clouds” are constructed by grouping
nearby-mapping reads sharing the same barcode; these clouds represent possible source frag-
ments. EMA then partitions the clouds into a disjoint-set induced by the alignments, where two
clouds are connected if there is a read aligning to both; connected components in this disjoint-set
(enclosed by dashed boxes) correspond to alternate possibilities for the same unknown source
fragment. EMA’s latent variable model optimization is subsequently applied to each of these
connected components individually. (c) EMA applies a novel statistical binning optimization
algorithm to clouds containing multiple alignments of the same read to pick out the most likely
alignment, by optimizing a combination of alignment edit distances and read densities within
the cloud. In the figure, the green regions of the genome are homologous, thereby resulting in
multi-mappings within a single cloud. (d) While the statistical binning optimization operates
within a single cloud, EMA’s latent variable model optimization determines the best alignment
of a given read between different clouds, and produces not only the final alignment for each read,
but also interpretable alignment probabilities (see Figure 2).
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Variable Description
C set of all clouds in connected component (Figure 1b)
R set of all reads mapping to some cloud in C

θ = (θc1 , . . . , θcn) vector of cloud weights
Ki number of reads generated by cloud ci

Γr,ci event that read r truly aligns to cloud ci
γr,ci Pr(Γrci |θ)
γ
(0)
r,ci Pr(Γrci) (prior based on edit distance, mate, etc.)

θ Ki

Γr,ci

γ
(0)
r,ci

|R|

n = |C|

θ = (θc1 , . . . , θcn ) ∼ Dir(1)

Ki | θ ∼ Cloud(θci )

Γr,ci
∼ Ber(γ(0)r,ci

)

Γr,ci
| θ ∼ Ber(γr,ci )

Figure 2: Graphical representation of EMA’s latent variable model involved in barcoded read
alignment. θ denotes the vector of cloud weights; Ki denotes the number of reads generated by
cloud ci ∈ C; Γr,ci denotes whether read r ∈ R maps to cloud ci, and γ

(0)
r,ci is a prior on this event

based on barcode-oblivious information like edit distance, mate alignment, etc.

• and group reads by barcode into “barcode buckets” to enable parallelism during alignment.

In summary, in the barcode extraction stage, we remove the 16bp barcode from the first mate
of each read pair, and trim an additional 7bp to account for potential ligation artifacts resulting
from the barcode ligation process during sequencing (the second mate shares the same barcode
as the first mate). Subsequently, we compare each barcode to a list B of known barcodes to
produce a per-barcode count, and compute a prior probability for each known barcode based on
these counts. Note that this list is designed such that no two barcodes are Hamming-neighbors
of one another. Now for each barcode b not appearing in B, we examine each of its Hamming-1
neighbors b′ and, if b′ appears in B, compute the probability that b′ was the true barcode based
on its prior and the quality score of the changed base. Similarly, for each b appearing in B, we
consider each Hamming-2 neighbor b′ and compute the probability that b′ was the true barcode
in an analogous way. Lastly, we employ a probability cutoff on the barcodes, and thereby omit
the barcodes of reads that do not meet this cutoff. Any read not carrying a barcode after this
stage is aligned with a standard WGS mapper such as CORA [6] or BWA [7].

While in standard read alignment parallelism can be achieved at the read-level, for barcoded
read alignment we can only achieve parallelism at the barcode-level. Therefore, the last pre-
processing step is to group reads by barcode into some number of buckets. Each such bucket
contains some range of barcodes from B, which are all grouped together within the bucket.
This enables us to align the reads from each bucket in parallel, and to merge the outputs in a
post-processing step.

2.2 Latent variable model for aligning barcoded reads to clouds

Here we employ a latent variable model for determining the optimal assignment of reads to
their possible clouds. A “cloud” is defined to be a group of nearby alignments of reads with
a common barcode, thereby representing a possible source fragment [10]. We consider all the
reads for an individual barcode simultaneously, all-mapping and grouping them to produce a
set of clouds for that barcode (Figure 1b). The clouds are deduced from the all-mappings by
grouping any two alignments that are on the same chromosome and within 50kb of one another
into the same cloud, which is the same approach employed by Lariat. While this heuristic works
well in the majority of cases, it can evidently run into issues if, for example, a single read aligns
multiple times to the same cloud. We address such cases below in Section 2.3, but assume in
the subsequent analysis that clouds consist of at most one alignment of a given read. (Overall,
we found that roughly 20% of all reads mapped to multiple clouds and were thus able to be
optimized by EMA.)

As notation, we will denote by c the set of alignments contained in a given cloud. We
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restrict our analysis to a single set of clouds C = {c1, c2, . . . , cn} that corresponds to a connected
component in the disjoint-set over clouds induced by alignments, as shown in Figure 1b (i.e. two
clouds ci and cj will be connected if there is a read that has an alignment to both ci and cj).
Conceptually, the clouds in C can be thought of as alternate possibilities for the same latent
source fragment. By definition, for any given read aligning to some cloud in C, we will have to
consider only the clouds in C when determining the best alignment for that read, so we focus on
each such set of clouds separately.

For C = {c1, . . . , cn}, let Ci denote the event that cloud ci represents the true source fragment.
Since the clouds c1, . . . , cn are different possibilities for the same source fragment, we have
Pr(Ci∩Cj) = 0 (i 6= j) and

∑n
i=1 1(Ci) = 1 (where 1(·) ∈ {0, 1} is an indicator for the specified

event). We assume uniform priors on the clouds so that Pr(Ci) = 1
n (while it is possible to devise

a prior that takes into account features such as cloud length, we observed a large variance between
clouds in our datasets that renders this unhelpful). Now, a cloud ci can be conceptualized as
an entity that generates some number of reads Ki, parameterized by some weight θci , so that
we can say Ki ∼ Cloud(θci) for some unknown “cloud” distribution over generated reads. We
make the key assumption that, in expectation, Pr(Ci | θci) ∝ Ki ∝ θci for all ci ∈ C. In other
words, if a cloud is expected to have generated a large number of reads, then the probability
that the cloud represents a true source fragment is high. Let θ = (θc1 , . . . , θcn) be the vector
of cloud weights. We assume the cloud weights are normalized so that Pr(Ci | θci) = θci , and
that they are drawn from a uniform Dirichlet distribution so that θ ∼ Dir(1). Consider now
the probability γr,ci that a read r aligns to cloud ci (denoted as an event by Γr,ci) given the
cloud parameters θ (i.e. Γr,ci | θ ∼ Ber(γr,ci), where Ber(p) is the Bernoulli distribution with
parameter p). By Bayes’ rule, we can say:

γr,ci = Pr(Γr,ci | θ) =
1

ZC
Pr(θ | Γr,ci) Pr(Γr,ci),

where ZCs (and variants thereof) are normalization constants that are the same for each c ∈ C.
Since Γr,ci occurs if and only if Ci occurs, we have

γr,ci =
1

ZC
Pr(θ | Ci) Pr(Γr,ci).

Applying Bayes’ rule again to Pr(θ | Ci) and using the fact that both Pr(θ) and Pr(Ci) are
uniform, we obtain

γr,ci =
1

ZC

Pr(θ) Pr(Ci | θ)

Pr(Ci)
Pr(Γr,ci) =

1

Z ′C
Pr(Ci | θ) Pr(Γr,ci) =

θci
Z ′C

Pr(Γr,ci),

where Z ′C = [Pr(Ci)/Pr(θ)]ZC . Note that Pr(Γr,ci) is a prior on the probability that r aligns to
ci that is not dependent on the barcode, but rather only on edit distance, mate alignment, and
mapping quality as in standard short-read alignment. Henceforth, we refer to Pr(Γr,ci) as γ(0)r,ci ,
so that Γr,ci ∼ Ber(γ(0)r,ci).

Now we can form a prior θ(0) = (θ
(0)
c1 , . . . , θ

(0)
cn ) which is intuitively the initial vector of

cloud weights. If we are given a set of alignment probabilities and a “current” θ estimate
θ(t) = (θ

(t)
c1 , . . . , θ

(t)
cn ) (initially t = 0), we can iteratively compute a better estimate θ(t+1) using

the fact that θci ∝ Ki in expectation:

θ(t+1)
ci =

1

|R|
E(Ki) =

1

|R|
E

(∑
r∈R

1(Γr,ci)
∣∣∣ θ(t))

=
1

|R|
∑
r∈R

Pr(Γr,ci | θ(t))

=
1

|R|
∑
r∈R

γ(t)r,ci ,
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where R is the set of reads mapping to any cloud in C, and the 1
|R| factor ensures that

∑
c∈C θc =

1. This latent variable model formulation naturally leads to an expectation-maximization
algorithm— one of the two main ways of maximizing likelihood in such models— for determining
the cloud weights and, thereby, the final alignment probabilities γ?r,ci . An implementation of this
algorithm is given in the Appendix.

Each of the described variables and their interactions with one another is summarized in Fig-
ure 2. Once we determine the final alignment probabilities through this method (as in Figure 1d),
we use them to compute mapping qualities (“MAPQs”), which are a standard per-alignment met-
ric reported by all aligners and are frequently used by downstream analysis pipelines. Specifi-
cally, we take the MAPQ to be the minimum of the alignment probability, the barcode-oblivious
alignment score and the MAPQ reported by BWA-MEM’s API (which is used in EMA’s current
implementation to find candidate alignments). Importantly, we also report the actual alignment
probabilities determined by EMA via a special standard-compliant SAM tag, so that they are
available to downstream applications.

2.3 Statistical binning enables handling of multi-mappings in a single cloud

While the 50kb-heuristic described above is typically effective at determining the clouds, it does
not take into account the fact that a single read may align multiple times to the same cloud
(which can occur if a cloud spans two or more homologous regions). In such cases, rather
than simply picking the alignment with lowest edit distance within the cloud, as is the current
practice, we propose a novel alternative approach that takes into account not only edit distance
but also read density. We take advantage of the insight that there is typically only a single read
pair per 1kb bin in each cloud; the exact distribution of read counts per 1kb bin is shown in
Figure 6 (Appendix). Now consider the case where one of our source fragments spans two highly
similar (homologous) regions, and thereby produces a cloud with multi-mappings, as depicted in
Figure 1c. If we pick alignments solely by edit distance, we may observe an improbable increase
in read density (as shown in the figure). Consequently, we select alignments for the reads so as
to minimize a combination of edit distance and abnormal density deviations.

Specifically, consider any cloud with multi-mappings consisting of a set of reads R = {r1, . . . ,
rn}, and denote by Ar the set of alignments for read r ∈ R in the cloud. Additionally, let ar ∈ Ar
denote the currently “selected” alignment for r. We will initially partition the cloud, spanning
the region from its leftmost to its rightmost alignment, into the set of bins B = {b1, . . . , bn} of
equal width w, where each bin bi covers the alignments whose starting positions are located in
the interval [i ·w, (i+ 1) ·w), as shown in Figure 1c. In practice, we set w to 1kb. Denote by Cbi
the random variable representing the number of reads in bin bi, where Cbi is drawn from the bin
density distribution CloudBin(i). Lastly, let γar denote the prior probability that alignment ar
is the true alignment of the read r based on edit distance and mate alignments alone. Our goal
is to maximize the objective:[∏

r∈R
γar

]
·

∏
bi∈B

Pr

(
Cbi =

∑
r∈R

1(ar ∈ bi)

)α ,
where α is a parameter that dictates the relative importance of the density probabilities com-
pared to the alignment probabilities. We determine the distribution CloudBin(i) of each Cbi
beforehand by examining uniquely-mapping clouds that we are confident represent the true
source fragment. Taking the logarithm, this objective becomes:

J(ar1 , . . . , arn) =
∑
r∈R

log γar + α
∑
bi∈B

log Pr

(
Cbi =

∑
r∈R

1(ar ∈ bi)

)
.
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We optimize J through simulated annealing by repeatedly proposing random changes to ar
and accepting them probabilistically based on the change in our objective (the corresponding
algorithm is described in the Appendix).

We apply the preceding latent variable optimization algorithm to deduce optimal alignments
between clouds and, if necessary, use this statistical binning algorithm to find the best alignments
within a given cloud.

3 Results

We compared the performance of EMA with Lariat [11] (10x’s own aligner and a component of
the Long Ranger software suite) and BWA-MEM [7] (which does not take advantage of barcoded
10x data, and was therefore used as a baseline for what can be achieved with standard short-
reads). In order to benchmark the quality of the aligners, we examined downstream genotyping
accuracy, alignments in highly homologous regions, and downstream phasing accuracy.

We ran each tool on two 10x H.sapiens datasets for NA12878 and NA24385, and used the
corresponding latest NIST GIAB [12, 13] high-confidence variant calls as a gold standard for
each (version 3.3.2). For both EMA and BWA, we performed duplicate marking after alignment
using Picard’s MarkDuplicates tool [14] (with barcode-aware mode enabled in the case of EMA);
Long Ranger performs duplicate marking automatically. Genotypes were called by GATK’s
HaplotypeCaller [15, 16] with default settings, while phasing was done by HapCUT2 [17] in
barcode-aware mode. Genotyping accuracies were computed using RTG Tools [18].

Overall, we found that 20% of reads from our NA12878 dataset and 18% from our NA24385
dataset had multiple suitable alignments and were therefore able to be targeted by EMA’s
optimization algorithm.

3.1 EMA improves downstream genotyping accuracy

Figure 3 shows genotyping accuracies for each aligner. For NA12878, EMA attains an F1 score
of 0.944 compared to Lariat’s F1 of 0.925. For NA24385, EMA attains an F1 of 0.924 compared
to Lariat’s 0.899. We found that for both datasets, EMA produced over 30% fewer false positive
variant calls compared to Lariat, and produced fewer false negative calls as well. Interestingly,
BWA-MEM (which does not take barcodes into account) performed marginally better than
Lariat here, especially on the NA24385 dataset. Nevertheless, EMA also outperforms BWA-
MEM, attaining the fewest false positive and false negative variant calls between the three
aligners on both datasets.

3.2 EMA improves alignments in highly homologous regions

Among the principal promises of barcoded read sequencing is better structural variation detec-
tion, which invariably requires resolving alignments in homologous regions. One of the most
important such regions is the CYP2D region in chromosome 22, which hosts CYP2D6— a gene
of great pharmacogenomic importance [19]— and the two related and highly homologous regions
CYP2D7 and CYP2D8. The high homology between CYP2D6 and CYP2D7 makes copy num-
ber and variant calling in this region particularly challenging. The majority of aligners misalign
reads in this region. This is especially evident in NA12878 which, in addition to the two copies
of both CYP2D6 and CYP2D7, contains an additional copy which is a fusion between these two
genes [20], as well as CYP2D7 mutations which introduce even higher homology with the cor-
responding CYP2D6 region. Especially problematic is exon/intron 8 of CYP2D6, where many
reads originating from CYP2D7 end up mapping erroneously (see Figure 4 for a visualization).
Even the naïve use of barcoded reads is not sufficient: both homologous regions in CYP2D are
typically covered by a single cloud. For example, Lariat performs no better than BWA in this
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Figure 3: Genotyping accuracy for each aligner. The top row shows true positives as a function
of false positives for alignments produced by EMA (green), Lariat (blue) and BWA-MEM (red)
on the two well-studied samples NA12878 (left) and NA24385 (right). Genotype confidences are
determined by the GQ (“genotype quality”) annotations generated by GATK’s HaplotypeCaller.
The bottom row is a cumulative histogram of false positives (left) and false negatives (right)
throughout chromosome 1 for NA12878. EMA achieves more than a 30% average improvement
over the other methods.

region (Figure 4). For these reasons, we chose to evaluate EMA in CYP2D to benchmark its
accuracy in such highly homologous regions.

As can be seen in Figure 4, EMA’s statistical binning strategy significantly smooths out the
two problematic peaks in CYP2D6 and CYP2D7. This technique enabled us to detect three novel
mutations in CYP2D7 (Figure 4) which exhibit high homology with the corresponding region in
CYP2D6. Thus all reads originating from these loci get misaligned to CYP2D6, especially if one
only considers edit distance during the alignment (as Lariat and BWA do). Such misalignments
are evident in the “peaks” and “holes” shown in Figure 4. We cross-validated this region with
the consensus sequence obtained from available NA12878 assemblies [21, 22, 23], and confirmed
the presence of novel mutations.

As an aside, the copy number derived from EMA’s alignments in this problematic region
(spanning from exon 7 to exon 9 in CYP2D6 and CYP2D7 ) was closer to the “expected” copy
number by 25% compared to the copy number derived from Lariat’s alignments (additional
details are in the Appendix). Finally, statistical binning did not adversely impact phasing per-
formance in this region, as we were able to correctly phase CYP2D6*4A alleles in our NA12878
sample from EMA’s alignments.

3.3 EMA improves downstream phasing

We applied HapCUT2 [17], which supports barcoded reads, to phase the variants called by
GATK for both EMA’s and Lariat’s alignments. We evaluated our results with the phasing
metrics defined in the HapCUT2 manuscript (Table 1). EMA provides more accurate phasings
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vs

Novel mutations: 
42537127 SNP.GA 
42537120 INS.A 
42537115 SNP.CT

Figure 4: Positive effect of EMA’s statistical binning in the CYP2D region. The top image
shows the read coverage for the region around exon/intron 8 within CYP2D6 (top row) and
CYP2D7 (bottom row). Spurious coverage peaks (i.e. increases in observed coverage likely to
be false) in CYP2D6 are shaded black. EMA is clearly able to remove the problematic peaks and
correctly assign them to CYP2D7. The bottom portion shows the newly assigned mappings to
CYP2D7 : EMA’s alignments agree with the assembly consensus sequence (observe the insertion
and two neighboring SNPs detected by EMA). By contrast, both Lariat and BWA-MEM aligned
virtually no reads to this region, and were thus unable to call these mutations.

with respect to any metric in comparison to Lariat.

Sample Tool Switch errors Mismatch errors Flat errors N50
NA12878 EMA 12,796 14,163 538,169 111,392,359

Lariat 13,001 14,705 609,858 92,447,569
NA24385 EMA 10,240 14,110 377,957 115,423,711

Lariat 10,472 14,655 429,896 115,423,711

Table 1: Phasing results for EMA and Lariat on NA12878 and NA24385. Bold type indicates
best results. Error metrics indicate the number of “incorrect” phasings compared to the GIAB
gold standard; N50 metrics are based on the length of the phase blocks (bp).

3.4 EMA is computationally more efficient

Runtimes and memory usage for each aligner are given in Table 2 (for the NA12878 dataset).
These times include alignment, duplicate marking and any other data post-processing (e.g. BAM
sorting/merging). The reported memory usages are per each instance of the given mapper. In
general, we found the full EMA pipeline to be about 1.5× faster than Lariat.
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Tool Time (hh:mm) Memory (GB)
EMA 14:58 (10:40) 5.4
Lariat 21:49 (12:45) 7.0
BWA-MEM 14:49 (9:52) 5.5

Table 2: Runtime and memory usage of each alignment tool on NA12878 dataset. Numbers
in parenthesis indicate the performance of the aligner alone (i.e. without sorting, merging or
duplicate marking). Each mapper was allocated 40 threads on an Intel Xeon E5-2650 CPUs @
2.30GHz.

4 Conclusion

EMA applies a latent variable model to the barcoded read alignment problem, and in so doing
outperforms the state-of-the-art in virtually every metric. By thinking of clouds not as arbitrary
clusters of reads, but rather as distributions, we are able to not only produce more accurate
alignments, but also to assign interpretable probabilities to our alignments. This ability has
several benefits, the most immediate of which is that it enables us to set a meaningful confidence
threshold on alignments. Beyond this, these alignment probabilities can be incorporated into
downstream applications like genotyping, phasing and SV detection. We demonstrate this here
by computing mapping qualities based on these probabilities, which are then used in genotyping
and phasing; yet specialized algorithms centered around these probabilities are also conceivable.

Moreover, EMA is able to effectively discern between multiple alignments of a read in a
single cloud through its statistical binning optimization algorithm. This addresses one of the
weaknesses of barcoded read sequencing as compared to long-read sequencing; namely, only a
relatively small subset of the original source fragment is observed— and more specifically, that
the order of reads within the fragment is not known— making it difficult to produce accurate
alignments if the fragment spans homologous elements. By exploiting the insight that read
densities within a fragment follow a particular distribution, EMA more effectively aligns the
reads produced by such fragments, which can overlap regions of phenotypic or pharmacogenomic
importance, like CYP2D as demonstrated above.

As we usher in the new wave of next-generation sequencing technologies, barcoded short-
read sequencing will undoubtedly play a central role, and fast and accurate methods for aligning
barcoded reads such as those presented here will ultimately prove invaluable.
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A Appendix

A.1 Algorithms

Algorithm 1 Barcoded read alignment via expectation-maximization
Require: R, C
Ensure: γ?r,c for each r ∈ R, c ∈ C
γ
(0)
r,c ← Pr(r ∈ c), ∀ r ∈ R, c ∈ C
θ
(0)
c ← 1

|C| , ∀ c ∈ C
for t ∈ {0, 1, . . . , T − 1} do
E step: γ(t+1)

r,c ← Pr(r ∈ ci | θ(t)c ) ∀ r ∈ R, c ∈ C
M step: θ(t+1)

c ← 1
|R|
∑

r∈R γ
(t)
r,c ∀ r ∈ R

end for
γ?r,c ← γ

(T )
r,c ∀ r ∈ R, c ∈ C

Algorithm 2 Read density optimization via simulated annealing
Require: R;Ar ∀r ∈ R
Ensure: a?r ∀ r ∈ R
ar ← random(Ar) ∀ r ∈ R
z ← J(ar1 , . . . , arn)
for k ∈ {1, . . . ,K} do
r′ ← random({r ∈ R : |Ar| > 1})
a′r ← random(Ar \ {ar})
z′ ← J(ar1 , . . . , ar′ , . . . , arn)

if z′ > z or exp
(
− z−z′
τ(k)

)
> random([0, 1)) then

ar ← a′r
z ← z′

end if
end for
a?r ← ar ∀ r ∈ R

In Algorithm 2, K is the number of simulated annealing iterations, and τ(·) defines the annealing
schedule (which can be taken to be an exponentially decreasing function). Other variables are
described in detail in the main text.

A.2 EMA implementation and parameters

A visualization of the EMA pipeline is given in Figure 5. The following parameters for EMA
were used in the various experiments:

Parameter Description Value
T number of EM iterations 5
α density probability weight 0.05

in statistical binning

EMA uses BWA-MEM’s C API to find candidate alignments just as Lariat does. EMA’s full
code is available at http://ema.csail.mit.edu.
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Figure 5: EMA pipeline. Raw FASTQs are split into buckets by barcode during preprocess-
ing, then each bucket is processed by a separate instance of EMA in parallel. A special bucket
containing non-barcoded reads is processed with BWA-MEM. The resulting BAM files are sub-
sequently marked for duplicates and merged to produce a single, final BAM file as output.

A.3 Extended results

The following genotyping accuracy results were outputted by RTG Tools’ “vcfeval” utility after
genotyping with GATK’s HaplotypeCaller (best results in each category are in bold):

NA12878
Tool True pos. baseline True pos. call False pos. False neg. Prec. Sens. F1

EMA 3,614,882 3,614,969 354,829 76,274 0.911 0.979 0.944
Lariat 3,613,361 3,613,447 507,666 77,795 0.877 0.979 0.925
BWA-MEM 3,613,352 3,613,443 489,605 77,804 0.881 0.979 0.927

NA24385
Tool True pos. baseline True pos. call False pos. False neg. Prec. Sens. F1

EMA 3,375,423 3,375,593 416,442 137,178 0.890 0.961 0.924
Lariat 3,374,059 3,374,236 624,103 138,542 0.844 0.961 0.899
BWA-MEM 3,374,670 3,374,845 539,915 137,931 0.862 0.961 0.909

A.4 CloudBin distribution

The distribution of read counts in 1kb windows within the clouds is given in Figure 6.

A.5 CYP2D analysis

The copy number of each intron and exon in the CYP2D region was obtained by running Aldy
(http://cb.csail.mit.edu/cb/aldy/) on both Lariat’s and EMA’s alignments. We calculated
the absolute difference from the estimated copy number for exon 7, intron 7, exon 8 and intron 8
(in both CYP2D6 and CYP2D7 ), and the expected coverage (obtained from [20]: 2 for CYP2D6
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Figure 6: Distribution of the number of reads in a 1kb window within a cloud (based on
NA12878 10x data). The box plots correspond to different bin offsets within the cloud.

and 3 for CYP2D7 regions). This difference is 7.51 for EMA’s alignments, and 10.22 for Lariat’s,
implying an improvement of 25% if one uses EMA.

Furthermore, phased data from both Lariat’s and EMA’s alignments correctly linked CYP2D6*4A
mutations together (i.e. chr22:42,524,947 C>T, chr22:42,525,811 T>C, chr22:42,525,821 G>T
and chr22:42,526,694 G>A).

A.6 Versions and parameters for other tools

Tool Version Parameters
Long Ranger 2.1.6 default
BWA 0.7.15 default
GATK HaplotypeCaller 3.8.0 default
HapCUT2 eb3b64b barcoded read mode
Picard MarkDuplicates 2.9.2 READ_ONE_BARCODE_TAG=BX

READ_TWO_BARCODE_TAG=BX
Samtools 1.3.1 n/a
RTG Tools 3.8.4 n/a
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