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Abstract 

To argue for increased sample collection for disorders without significant findings, 
researchers retorted to plotting, for multiple traits, the number of significant findings as a 
function of the sample size. However, for polygenic traits, the prevalence of the disorder 
confounds the relationship between the number of significant findings and the sample size. To 
adjust the number of significant findings for prevalence, we develop a method that uses the 
expected noncentrality of the contrast between liabilities of cases and controls. We empirically 
find that, when compared to the sample size, this measure is a better predictor of number of 
significant findings. Even more, we show that the sample size effect on the number of signals is 
explained by the noncetrality measure. Finally, we provide an R script to estimate the required 
sample size (non-centrality) needed to yield a pre-specified number of significant findings.      
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To illustrate the tractability of complex diseases, researchers intuitively plot/regress1,2 the 
number of significant findings, ns, by the sample size, N, (see Fig.2 in Kim et al1 and Fig. 3 in 
this paper).  Early in the GWAS era such a plot suggested that the number of significant hits is 
approximately linear after the emergence of the first genome wide significant finding (Mark 
Daly PGC presentation). While such analyses are definitely informative, for polygenic traits such 
plots are confounded by the trait prevalences (Fig. 2 in Gratten et all3). For a better 
characterization of trait effect size that is not cryptically influenced by prevalence, we propose an 
approach to adjust traits for their prevalences and provide an empirical relation between such 
normalized variables and the number of significant findings for given sample sizes. 

Let us assume the existence of biologically informative covariates, e.g. gender and 
ancestry principal components, which helps us in recovering the liability to disease (even up to a 
multiplication factor), L, for both cases and controls for a binary trait (BT) of prevalence K.  (It 
should be noted that working on the liability scale, instead of the natural binary case control 
scale, is also supported by the Invariance Principle of statistical mathematics4, which states that 
the inference should not be affected by the scale/transformations one chooses to employ.) For the 
threshold-liability model, let the threshold be τ� � ����1 � 	
, where ��� is the inverse 
cumulative distribution function of the Gaussian distribution.  In a threshold-liability model  
L � τ� for cases and L � � for controls. Thus, for a study consisting of �� cases and �� 
controls, the normalized effect size (δ), i.e. the difference in liability between cases and controls 
after adjusting for its standard error, is: 
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If � is the probability density function for the Gaussian distribution, after substituting the 
expressions for expectation and variance of truncated Gaussian distributions5, relationship (1) 
becomes:  
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 (2). 

However, most often researchers work with the χ� distribution and, on this scale, the non-
centrality parameter of contrasting case and control liabilities is λ���, ��
 � δ����, ��
. In turn, 
detection power is increasing with increased non-centrality parameter. 

While equation (2) is derived for binary traits, it can be extended to quantitative traits 
(QT). For instance, we can use a first order approximation for QT as a case control trait with 
prevalence of 50% (i.e. a contrast above median height vs. below median height). While, in 
practice, such a discretization approach leads to power loss, we stress that the GWAS statistics 
are already obtained using a QT. The above/below median approximation is only used to extend 
the use of equation (2). With this preparatory work, the noncentrality per case and control unit 
(�� � �� � 1), ��1,1
, increases by ~60% with a decrease in prevalence (Fig. 1).  
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To empirically investigate whether � is a better measure than ��, or � � �� � ��, to 
describe observed ns, we analyze the number of significant findings (Table 1) for multiple studies 
for some of the most widely investigated traits. Three phenotypes are chosen from each of the 
four investigated trait classes (see Table 1 for references): anthropometric (all QTs) and 
psychiatric, neurodegenerative and immune diseases (all BT).  Anthropometric traits (denoted as 
Anthro in plot legends) are height (H), body mass index (BMI) and waist-to-hip ratio (WHR). 
Psychiatric (Psych) traits are the main psychiatric disorders: schizophrenia (SCZ), bipolar 
disorder (BD) and major depressive disorder (MDD). As neurodegenerative (Neuro) we chose 
Alzheimer’s disease (ALZ), Parkinson’s disease (PD and multiple sclerosis (MS). Finally, we 
chose as immune (Immune) disorders: Crohn’s disease (CD), rheumatoid arthritis (RA) and type 
2 diabetes (T2D).  

To assist in predicting ns as a function of �,  we also need to determine what 
transformation should we use for ns and �/��to make the relationship between ns and � stronger. 
As mentioned in the introduction, the intuitive idea is to use the identity scale, i.e. no 
transformation. However, given that ns can be viewed as a sum of Bernoulli variables (0- non-
significant and 1 significant) , Chernoff inequality4 suggests that a log transformation of ns is 
likely much more desirable. For effect sizes � (and likely, as its transformation, �), the plotting 
of the log probability of a significant signal (� � 5�10��) as a function of noncentrality, �, and 
its log transformation, also show a much better fit (Fig. 2) for the log transformation (R2 of 
99.4% vs 91%).  Given that the probability of a significant find is proportional to the number of 
significant findings, this suggests that the log transformation is also suitable for �.  

Thus to establish the relationship between regressing log[ns] and log(�) (also 
log ��, log �) we use a gls model (in nlme R package) assuming an autoregressive of order 1 
(AR1) correlation structure for observations within the same trait (due to earlier studies being 
included in all subsequent meta-analysis of this disease). We used the model to test whether the 
effects of � and �� on ns are mediated only via log( �
 , i.e. we regressed log[ns] on log(�), 
log[N], log(��), N  and ��. In this model, only log(�) was significant (p-value of 0.025) and all 
the others were not (p-values of 0.58 and 0.73). Even more, stepwise elimination on non-
significant variables left only log(�) as significant with log[N] being the last to be eliminated 
with a p-values of 0.65. This result strongly suggests that the effect of N and �� on ns is wholly 
mediated by � and thus non-centrality is a better predictor than sample size. The gls model was 
also used to vividly illustrate the better performance of our theoretically chosen transformations:  
when using the natural sample size scale for both ns and � (Fig. 3), the fit (R2=0.42) is much 
poorer than using log scale for both (Fig. 4) (R2=0.71). (The similar in spirit square root 
transformation of � performed only moderately worse than log.)  

We stress again that the above results suggest that our proposed measure on log scale 
better predicts the (log) number of significant findings for traits of various prevalences. Thus, � 
from relationship (1) is a desirable effect size measure that is not confounded by prevalence. 
Based on the gls regression of log[ns] on log(�), the best prediction for the number of significant 
findings is:  
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However, most of the time the researchers want to estimate the number of cases, ��, 
needed to obtain a certain number of significant findings, n�. To this end let �� � ' ��, where 
generally ' ( 1 is largely known. Then equality (3) can be solved for ��, as follows: 
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researchers in sizing their studies, we present in the Appendix the R implementation of equalities 
(3) and (4). 
 

 

Appendix  

# R function for estimating the noncentrality and # cases 

## K- prevalence, Nca - # cases ; Nco - # controls 

get.nonc<-function(K=K, Nca=Nca, Nco=Nco){ 

 tau.K<-qnorm(K, low=F) 

 ncp<-(dnorm(tau.K)*(1/K+1/(1-K)))^2/((1+tau.K*dnorm(tau.K)/K-
(dnorm(tau.K)/K)^2)/Nca+(1-tau.K*dnorm(tau.K)/(1-K)-(dnorm(tau.K)/(1-K))^2)/Nco) 

 ncp 

} 

 

# R function for estimating the required # cases yielding # of signals using our formula (4) 

## K- prevalence, ns - # desired significant findings & q=ratio of controls to cases (often q>1) 

get.n.cases<-function(K=K, ns=1, q=1){ 

 tau.K<-qnorm(K, low=F) 

 N1<-4519*ns^1.124*((1+tau.K*dnorm(tau.K)/K-(dnorm(tau.K)/K)^2)+(1-
tau.K*dnorm(tau.K)/(1-K)-(dnorm(tau.K)/(1-K))^2)/q)/(dnorm(tau.K)*(1/K+1/(1-K)))^2 

 N1 

}  
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Figure 1. Noncentrality parameter for various traits 
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Figure 2. The probability of a significant signal (log scale) as a function of noncentrality on log scale (above) and identity scale 

(below). 
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Figure 3. Number of significant findings vs. sample size (without type 2 diabetes-T2D). 
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Figure 4. Number of significant findings vs noncentrality parameter (without T2D). Both axes are log scale. 
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Table 1. Table of Studies 

Trait  Abbrev. K N  
cases 

N  
controls 

Ns First author and reference 

   6,800 6,800 20 Weedon6 
Height H 0.5 90,000 90,000 180 Lango7 
   125,000 125,000 423 Wood8 
   2,500 2,500 1 Scuteri9 
   16,000 16,000 8 Willer10 
Body Mass Index BMI 0.5 16,500 16,500 11 Thorleifsson11  
   125,000 125,000 32 Speliotes12 
   170,000 170,000 97 Locke13 
   20,000 20,000 1 Lindgren14 
Waist to Hip Ratio WHR 0.5 40,000 40,000 14 Heid15 
   110,000 110,000 49 Shungin16 
   17,500 33,500 7 PGC117 
Schizophrenia SCZ 0.0118 20,000 37,000 22 PGC1.519 
   37,000 113,000 108 PGC220 
   2,000 3,000 1 WTCCC21 
Bipolar Disorder BD 0.0222 7,500 9,250 2 PGC123 
   10,000 15,000 5 Muhleisen (personal communication) 
Major Depressive 
Disorder 

MDD 0.1524 9,000 9,500 0 PGC MDD25 

(Recurrent MDD)  (0.05)26 6,000 6,000 2 CONVERGE26 
   131,000 330,000 45 PGC2 MDD (online presentation) 
   8,300 7,300 3 Naj27 
Alzheimer’s Disease ALZ 0.1327 17,000 37,000 15 Lambert28 
   25,000 48,000 20 Lambert28 
   1,700 4,000 2 Simon-Sanchez29 
Parkinson’s Disease PD 0.0230 3,500 30,000 8 Do31 
   13,700 95,000 26 Nalls30 
   1,000 900 1 Baranzini32 
Multiple Sclerosis MS 0.00232 4,800 9,300 6 De Jager33 
   9,800 17,400 23 IMSGC34 
   1,000 2,345 12 McGovern35 
Crohn’s Disease CD35 0.002 3,250 4,800 33 Barrett36 
   6,350 15,050 71 Franke37 
   2,100 2,500 4 Jiang38 
Rheumatoid Arthritis RA 0.0138 5,500 20200 10 Stahl39 
   20,000 620,00 57 Okada40 
   661 614 5 Sladek41 
Type 2 Diabetes T2D 0.141 1,464 1,467 5 Diabetes at BROAD42 
   5,500 14,500 20 Kooner43 
   26,500 84,000 26 DIAGRAM44 

 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/219733doi: bioRxiv preprint 

https://doi.org/10.1101/219733
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Kim, Y., Zerwas, S., Trace, S.E. & Sullivan, P.F. Schizophrenia genetics: where next? 

Schizophr Bull 37, 456-63 (2011). 

2. Visscher, P.M., Brown, M.A., McCarthy, M.I. & Yang, J. Five years of GWAS discovery. 

Am. J Hum. Genet 90, 7-24 (2012). 

3. Gratten, J., Wray, N.R., Keller, M.C. & Visscher, P.M. Large-scale genomics unveils the 

genetic architecture of psychiatric disorders. Nat Neurosci 17, 782-90 (2014). 

4. Casella, G. & Berger, R.L. Statistical Inference, (Brooks/Cole Publishing Company, 1990). 

5. Johnson, N.L., Kotz, S. & Balakrishnan, N. Continuous univariate distributions, (Wiley, 

New York, 1994). 

6. Weedon, M.N. et al. Genome-wide association analysis identifies 20 loci that influence 

adult height. Nat Genet 40, 575-83 (2008). 

7. Lango, A.H. et al. Hundreds of variants clustered in genomic loci and biological pathways 

affect human height. Nature 467, 832-838 (2010). 

8. Wood, A.R. et al. Defining the role of common variation in the genomic and biological 

architecture of adult human height. Nat Genet 46, 1173-86 (2014). 

9. Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene 

are associated with obesity-related traits. PLoS Genet 3, e115 (2007). 

10. Willer, C.J. et al. Six new loci associated with body mass index highlight a neuronal 

influence on body weight regulation. Nat. Genet 41, 25-34 (2009). 

11. Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven 

loci that associate with measures of obesity. Nat Genet 41, 18-24 (2009). 

12. Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci 

associated with body mass index. Nat. Genet 42, 937-948 (2010). 

13. Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity 

biology. Nature 518, 197-206 (2015). 

14. Lindgren, C.M. et al. Genome-wide association scan meta-analysis identifies three Loci 

influencing adiposity and fat distribution. PLoS Genet 5, e1000508 (2009). 

15. Heid, I.M. et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and 

reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42, 949-60 

(2010). 

16. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat 

distribution. Nature 518, 187-96 (2015). 

17. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for 

schizophrenia. Nat Genet 45, 1150-1159 (2013). 

18. Saha, S., Chant, D., Welham, J. & McGrath, J. A systematic review of the prevalence of 

schizophrenia. PLoS Med 2, e141 (2005). 

19. Ripke, S. et al. Genome-wide association study identifies five new schizophrenia loci. 

Nat. Genet 43, 969-976 (2011). 

20. Consortium, S.W.G.o.t.P.G. Biological insights from 108 schizophrenia-associated 

genetic loci. Nature 511, 421-427 (2014). 

21. Consortium, W.T.C.C. Genome-wide association study of 14,000 cases of seven common 

diseases and 3,000 shared controls. Nature 447, 661-678 (2007). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/219733doi: bioRxiv preprint 

https://doi.org/10.1101/219733
http://creativecommons.org/licenses/by-nc-nd/4.0/


22. Grant, B.F. et al. Prevalence, correlates, and comorbidity of bipolar I disorder and axis I 

and II disorders: results from the National Epidemiologic Survey on Alcohol and Related 

Conditions. J Clin Psychiatry 66, 1205-15 (2005). 

23. Sklar, P. et al. Large-scale genome-wide association analysis of bipolar disorder identifies 

a new susceptibility locus near ODZ4. Nat. Genet 43, 977-983 (2011). 

24. Blazer, D.G., Kessler, R.C., McGonagle, K.A. & Swartz, M.S. The prevalence and 

distribution of major depression in a national community sample: the National 

Comorbidity Survey. Am J Psychiatry 151, 979-86 (1994). 

25. Major Depressive Disorder Working Group of the Psychiatric, G.C. et al. A mega-analysis 

of genome-wide association studies for major depressive disorder. Mol Psychiatry 18, 

497-511 (2013). 

26. Consortium, C. Sparse whole-genome sequencing identifies two loci for major 

depressive disorder. Nature 523, 588-591 (2015). 

27. Naj, A.C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are 

associated with late-onset Alzheimer's disease. Nat Genet 43, 436-41 (2011). 

28. Lambert, J.C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility 

loci for Alzheimer's disease. Nat Genet 45, 1452-8 (2013). 

29. Simon-Sanchez, J. et al. Genome-wide association study reveals genetic risk underlying 

Parkinson's disease. Nat Genet 41, 1308-12 (2009). 

30. Nalls, M.A. et al. Large-scale meta-analysis of genome-wide association data identifies 

six new risk loci for Parkinson's disease. Nat Genet 46, 989-93 (2014). 

31. Do, C.B. et al. Web-based genome-wide association study identifies two novel loci and a 

substantial genetic component for Parkinson's disease. PLoS Genet 7, e1002141 (2011). 

32. Baranzini, S.E. et al. Genome-wide association analysis of susceptibility and clinical 

phenotype in multiple sclerosis. Hum Mol Genet 18, 767-78 (2009). 

33. De Jager, P.L. et al. Meta-analysis of genome scans and replication identify CD6, IRF8 

and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 41, 776-82 (2009). 

34. International Multiple Sclerosis Genetics, C. Network-based multiple sclerosis pathway 

analysis with GWAS data from 15,000 cases and 30,000 controls. Am J Hum Genet 92, 

854-65 (2013). 

35. McGovern, D.P. et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with 

Crohn's disease. Hum Mol Genet 19, 3468-76 (2010). 

36. Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility 

loci for Crohn's disease. Nat Genet 40, 955-62 (2008). 

37. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed 

Crohn's disease susceptibility loci. Nat Genet 42, 1118-25 (2010). 

38. Jiang, L. et al. Novel risk loci for rheumatoid arthritis in Han Chinese and congruence 

with risk variants in Europeans. Arthritis Rheumatol 66, 1121-32 (2014). 

39. Stahl, E.A. et al. Genome-wide association study meta-analysis identifies seven new 

rheumatoid arthritis risk loci. Nat Genet 42, 508-14 (2010). 

40. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug 

discovery. Nature 506, 376-81 (2014). 

41. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 

diabetes. Nature 445, 881-885 (2007). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/219733doi: bioRxiv preprint 

https://doi.org/10.1101/219733
http://creativecommons.org/licenses/by-nc-nd/4.0/


42. Diabetes Genetics Initiative of Broad Institute of, H. et al. Genome-wide association 

analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331-6 

(2007). 

43. Kooner, J.S. et al. Genome-wide association study in individuals of South Asian ancestry 

identifies six new type 2 diabetes susceptibility loci. Nat Genet 43, 984-9 (2011). 

44. Replication, D.I.G. et al. Genome-wide trans-ancestry meta-analysis provides insight into 

the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46, 234-44 (2014). 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/219733doi: bioRxiv preprint 

https://doi.org/10.1101/219733
http://creativecommons.org/licenses/by-nc-nd/4.0/

