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Abstract: Background: Gene regulatory sequences play critical roles in ensuring tightly controlled1

RNA expression patterns that are essential in a large variety of biological processes. Specifically,2

enhancer sequences drive expression of their target genes, and the availability of genome-wide3

maps of enhancer-promoter interactions has opened up the possibility to use machine learning4

approaches to extract and interpret features that define these interactions in different biological5

contexts. Methods: Inspired by machine translation models we develop an attention-based neural6

network model, EPIANN, to predict enhancer-promoter interactions based on DNA sequences. Codes7

and data are available at https://github.com/wgmao/EPIANN. Results: Our approach accurately8

predicts enhancer-promoter interactions across six cell lines. In addition, our method generates9

pairwise attention scores at the sequence level, which specify how short regions in the enhancer and10

promoter pair-up to drive the interaction prediction. This allows us to identify over-represented11

transcription factors (TF) binding sites and TF-pair interactions in the context of enhancer function.12

Keywords: Enhancer-Promoter Interactions; Attention-based Neural Networks; DNAse-seq13

Footprints14

1. Introduction15

Tightly controlled gene expression patterns are essential across a wide range of biological processes16

including cell differentiation, maintenance of tissue identity, and embryonic development. While17

the underlying mechanisms are multi-faceted and complex, cis-regulatory sequences (i.e., short,18

predominantly non-protein-coding DNA loci that directly affect the expression of their target genes)19

play critical roles. Specifically, recent research has highlighted the role of enhancer sequences, distal20

cis-regulatory elements with the capability to drive context (e.g., tissue, cell-type) specific transcription21

of their target genes, which are typically hundreds of kilobases away [1,2]. Interest in these regulatory22

elements is also driven by the observation that DNA sequence variation in non-coding regulatory loci23

substantially contributes to the genetic causes of complex disease: most single nucleotide variants24

associated with disease are not in linkage disequilibrium with protein-coding regions, and the majority25

of bases in the human genome that are under negative selection are non-coding [3,4].26

Mechanistic understanding of enhancer function remains incomplete, but current models include27

the (context-specific) physical interaction of an enhancer with its target genes via chromatin loops,28

together with the binding of sequence specific transcription factors and the recruitment of coactivator29

proteins [1]. While uncontentious and direct experimental confirmation of enhancer function remains30

difficult and time-consuming, a wealth of enhancers have been annotated using comparative and31

functional genomics approaches coupled with bioinformatics analyses. However, without annotation32
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of enhancers’ target genes it is difficult to infer their functional role. Fortunately genome-wide33

screening for enhancer-promoter interactions based on paired-end tag sequencing (ChIA-PET) or34

chromatin conformation capture based methods [5–7] is possible, and high-resolution Hi-C data35

linking regulatory sequences to promoters is publicly available for a limited number of cell-types and36

tissues [7].37

These data open up the possibility to statistically analyze enhancer-promoter interactions (EPIs)38

with the goal to (i) build generalizable models that predict enhancer-promoter interaction events39

and to (ii) highlight informative sequences and functional genomics features in order to better40

understand EPI mechanisms. For instance, Whalen at al. [8] designed a method based on ensembles of41

boosted decision trees using functional genomics signals at enhancers, promoters and in intervening42

regions, and they were able to accurately predict enhancer-promoter interaction events. Subsequently,43

Yang et al. [9] proposed a method called PEP, demonstrating that it is possible to achieve similar44

predictive performance relying exclusively on sequence-based features. Here, we propose EPIANN45

(Enhancer-Promoter Interaction Attention-based Neural Network), which is, to the best of our46

knowledge, the first attention-based neural network model to predict enhancer-promoter interactions47

exclusively using sequence features.48

Neural networks have been successfully applied in many pattern recognition tasks [10], and49

deep learning has become a popular tool for building DNA-sequence-based predictive models [10–50

14]. Attention-based network models were initially introduced for machine translation where they51

considerably improve performance[15]. More generally, the attention mechanism is broadly applicable52

to various matching problems, such a image captioning, and text comprehension.53

Extrapolating to enhancer-promoter interaction events, given a certain enhancer segment, the54

attention mechanism will specify a lower level correspondence between subregions of the promoter55

and enhancer sequence.56

In addition to predicting enhancer-promoter interactions, our model learns an attention matrix for57

each enhancer-promoter pair. This information can be used to identify corresponding and important58

sub-regions within the enhancer and promoter, respectively. Our method thereby highlights the parts59

of enhancer and promoter sequence that drive predictions; it allows us to analyze feature importance60

in the original sequence space and provides insights into the mechanism of EPI events.61

2. Results62

2.1. EPIANN Accurately Predicts EPI events63

We compared our EPIANN method to other EPI prediction approaches: TargetFinder [8] and PEP64

[9]. TargetFinder uses functional genomic features such as transcription factor and histone ChIPseq,65

while PEP uses only sequence features, like EPIANN.66

We find that our EPIANN method overall achieves comparable performance to TargetFinder67

and PEP, summarized in Tables 1 and 2. EPIANN outperforms the other sequence-based model,68

PEP, in terms of area under the receiver-operator-curve (AUROC, Table 1) though TargetFinder69

outperforms both sequence-only models when utilizing all functional genomics features, enhancer,70

promoter and in the window in-between (E/P/W). However, EPIANN performance is very similar to71

TargetFinder, when only enhancer and promoter features are used (E/P). In terms of area under the72

precision-recall-curve (AUPRC, Table 2), EPIANN performs better than TargetFinder (E/P), but not73

quite as good as PEP or TargetFinder (E/P/W).74

These results show that our method improves the ability to predict EPI events when only using75

the enhancer and promoter sequence. However, among sequence-only models PEP still outperforms76

EPIANN on the AUPR metric. Multiple reasons can explain this discrepancy. PEP uses considerably77

more information than EPIANN (PEP-Motif uses prior knowledge about TF motifs, and PEP-Word78

uses sequence outside the EPI loci to train its word embedding model). EPIANN also uses a smaller79

enhancer input regions than PEP (3 kb vs. 8 kb) which can result in missing some potentially predictive80
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features. Moreover, EPIANN’s EPI quantification is computed as a weighted inner product between81

the enhancer and promoter representations in the embedding space – a relatively simple formulation.82

This however is by design, since we would like to force higher-order complexity to be represented in83

the embedding space of the promoter and enhancer sequences.84

Model GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK
EPIANN 0.919 0.924 0.918 0.945 0.943 0.959
PEP-Word 0.842 0.843 0.845 0.898 0.883 0.917
PEP-Motif 0.866 0.846 0.839 0.872 0.892 0.925
PEP-Integrate 0.863 0.856 0.833 0.921 0.879 0.911
TargetFinder (E/P) 0.930 0.915 0.896 0.903 0.950 0.951
TargetFinder (E/P/W) 0.960 0.969 0.952 0.960 0.985 0.981

Table 1. AUCs (Area under the ROC curve) of different enhancer-promoter interaction prediction
methods for each cell line.

85

Model GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK
EPIANN 0.723 0.702 0.616 0.770 0.673 0.861
PEP-Word 0.807 0.803 0.760 0.868 0.836 0.880
PEP-Motif 0.832 0.820 0.779 0.732 0.816 0.892
PEP-Integrate 0.830 0.851 0.783 0.869 0.849 0.915
TargetFinder (E/P) 0.587 0.554 0.547 0.472 0.624 0.686
TargetFinder (E/P/W) 0.827 0.866 0.823 0.821 0.908 0.908

Table 2. AUPRs (Area under the precision-recall curve) of different enhancer-promoter interaction
prediction methods for each cell line.

86

2.2. Decoding sequence feature importance87

A key motivations for training machine learning models to predict EPIs is to give some insight88

into the mechanisms of these interactions. Both of the previously published models, TargetFinder89

and PEP, provided some mechanistic insight by using feature importance analysis. However, both90

TargetFinder and PEP use only feature occurrence profiles as their input, discarding spatial information.91

In contrast, we designed EPIANN with location-based feature decoding in mind. It directly reports an92

attention-based importance score for each position combination between the enhancer and promoter93

(i.e., an attention matrix) of an analyzed EPI event. This information can be used to compile importance94

scores, delineate important sub-regions, and highlight meaningful sequence annotation features.95

Attention regions highlight sequence annotation features: In order to analyze feature importance96

at the sequence level we label each base in the enhancer and promoter region with its marginal attention97

(row-wise or column-wise maximum of the full attention matrix) to create an attention track. The98

attention track can be visualized in a genome browser giving a detailed view of individual promoter99

and enhancer features. We found that the attention regions generally correlate well with other genome100

annotations such as transcription factor motifs and DNAseq footprinting signal, which is a measure of101

TF occupancy (see Methods for footprinting details). An illustrative example is shown in Figure 1.102

Attention regions highlight transcription factors contributing to EPI events: Attention regions103

can also be used for statistical feature importance analysis. We can quantify the over-representation of104

TF motifs within top scoring attention regions relative to the entire input sequence. For this analysis,105
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Figure 1. Attention regions can be used to generate a feature importance track that can be inspected
visually and aligned with other genomic information.

we used the top 5 regions of length 45bp (that corresponds to the sum of filter width (15) and the106

maxpool size (30)). Results for the IMR90 cell line are depicted in Figure 2. Consistent with results107

reported based on feature importance analysis form PEP and TargetFinder we observe a role for CTCF108

and EGR family members. However, we also detect new signals. For example, one of our most109

consistent findings is that motifs for the NRF1 transcription factor are strongly over-represented in110

enhancer sequences. NRF1, also known as nuclear respiratory factor-1, is a broadly expressed TF111

that activates genes involved in respiration and mitochondrial biogenesis. IMR90 is a contractile112

muscle-like cell line and NRF1 is particularly important for muscle biology, due to muscle cells’ unique113

energy requirements [16]. Neither TargetFinder nor PEP makes a similar prediction. Whether or114

not NRF1 mediates EPIs must be determined with experimental follow up, however the observation115

highlights an important feature of our method. Since EPIANN feature importance is based on explicitly116

specified attention region coordinates, EPI loci can be analyzed directly. Therefore, any and all TF117

motifs ( or any other sequence based analysis) can be used after training the model to assess feature118

importance.119

In the case of TargetFinder, the feature importance is limited by the input data types and no NRF1120

ChIPseq was available. PEP uses known motifs, which we presume included at least one NRF1, but121

their feature analysis did not deem it important. This difference may arise from the exact motif used,122

as several ones are available.123

Attention regions correlate with transcription factor occupancy: Using attention regions124

visualized as genome tracks we noticed a striking correspondence between DNAase footprinting,125

which measures transcription factor occupancy, and out attention scores. Summarizing the trend126

genome-wide we find that attention regions are highly biased towards occupied sites (see Figure 3A).127

Moreover, intersecting motif positions with occupancy status we find that some motifs show much128

stronger enrichment in attention regions specifically for their occupied sites (though this observation is129

specific for enhancer sequences). This demonstrates that attention scores provide information beyond130

simple motif matches, which are captured in the first convolution layers of the neural network, but131

reflects information from the entire model which can specify higher-order interactions that correlate132

with whether or not a TF consensus site is actually occupied.133

Attention regions suggest transcription factor interactions: So far our analysis has only134

considered individual promoter and enhancer sequences. However, since the attention regions135

correspond to a specific sequence instances matched within each enhancer-promoter pair, we can136

also ask if there are pairs of transcription factors whose motifs contribute together (one in the137

enhancer sequence and one in the promoter sequence) to a positive EPI prediction. We do this by138

comparing the distribution of TF-pairs in the top attention regions of interacting and non-interacting139

promoter-enhancer pairs. The TF-pairs enriched in the attention of interacting promoter-enhancer140

pairs are depicted in an enrichment heatmap (Figure 4).141

We find that most interactions are heterogeneous, involving two different TFs. The enrichment142

map is also highly asymmetric; that is, for many enriched TF-pairs the participating factors have143

motifs in only the enhancer or the promoter sequencing of EPI loci. For example even though EGR2144

and CTCF are some of the strongest single factor enrichments in both promoters and enhancers, the145
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Figure 2. Enrichment of transcription factor motif sites within the attention regions. Enrichment
is quantified as the fraction of all possible sites in the input enhancer or promoter regions that are
captured in the smaller attention region. The dotted line specifies the expected fraction for randomly
selected mock "attention" regions. Comparing the degree of enrichment in attention regions learned
for positive and negative interaction examples we find that the enrichments show similar signals (but
for different TFs), though especially in the case of enhancers some TFs are more enriched when only
positive examples are considered. Transcription factors may appear more than once due to multiple
available motifs.
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Figure 3. (A) Distribution of normalized occupancy scores is centered on top attention regions. The
raw occupancy scores are − log10 p-values reported by pyDNAse[17,18]. In order to compute the
normalized profile we only consider input regions that have a minimum occupancy score of 3, and
among those the profile is normalized so that the maximum is equal to the median maximum among
all regions. This normalization is important since the p-value depends directly on the number of
reads in the region and the normalization ensures that we do not compare the read depth but only
the overall association of attention regions with occupancy status. (B) Comparing fraction of all sites
captured in the attention with the fraction of occupied sites within enhancer regions. Some factors are
more strongly enriched if only occupied sites are considered, demonstrating that attention mechanism
provides feature importance assessment that goes beyond simple motif matching.
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Figure 4. Enrichment of transcription factor motif within the attention regions of interacting
enhancer-promoter pairs. Since multiple motifs are available for each transcription factor we take the
maximum enrichment among all possible motif combinations. Border color indicate the existence of
known first-order (direct) or second-order interactions in BioGRID [19]

interaction is only enriched when EGR2 is in the enhancer and CTCF is in the promoter (see Figure146

4). We also note a trend of multiple clusters of varying sizes where almost all pair-wise interactions147

appear enriched.148

We speculate that these TF-clusters participate either in direct or higher order interactions that149

drive the formation of an enhancer-promoter interaction complex. We find that the enrichment score150

is indeed predictive of both known first and known second-order protein-protein interactions from151

BioGRID [19]. We find that the 50 most enriched TF pairs have a 0.03 probability of physically152

interacting compared with a baseline of 0.01 among all tested pairs. The corresponding numbers153

for second-order interactions are 0.49 (50 most enriched) and 0.29 (baseline). The enrichment of154

known interactions suggests that our model learns a meaningful biological representation and can155

be used to form hypotheses about new interactions that mediate EPI events–for example, our top156

scoring interaction is between USF1/USF2 and EGR1. While we know of no data supporting a direct157

interaction between these genes, the USF1-EGR1 interaction has been previously suggested based on158

overlapping patterns of ChIPseq signals [20].159

3. Discussion160

The mechanism of enhancer-promoter interactions is of tremendous interest but is currently161

poorly understood. Even though it is clear that EPI events can be predicted from sequence features, it162

is not yet possible to use this to predict new EPIs as all the predictions are highly cell-type specific.163

That is, it is not yet possible to accurately predict EPIs for a tissue/cell-line that is different from the164

one used to train the model. Thus, the models do not replace the need for experimental HiC data.165

However, there is hope that the models can provide mechanistic insight into the nature of the EPI166
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complex via feature importance analysis. Our model is designed with an attention mechanism, which167

provides single and pairwise importance scores for each position in the enhancer and promoter input168

regions making it feasible to analyze feature importance in more detail.169

4. Methods170

4.1. Data Preparation171

We utilize the same EPI data originally collected by TargetFinder, so we can make a direct172

comparison with TargetFinder and PEP. The EPI data contains six cell lines (GM12878, HeLa-S3,173

HUVEC, IMR90, K562 and NHEK), for each cell line it records the genomic coordinates of enhancers174

and promoters with indicators of EPIs. The ratio of positive interaction pairs to negative interaction175

pairs is about one to twenty, which is common for Hi-C data. To overcome this imbalanced training176

problem, we augment the positive data to twenty folds. The preprocessing pipeline for each cell line177

contains the following steps:178

1. Start from the imbalanced data D.179

2. Split D into a training set Dtrain (90% of D) and a test set Dtest (10% of D) by stratified sampling.180

3. Augment Dtrain to get a balanced dataset Daug.181

4. Train the model on Daug.182

5. Evaluate the model on Dtest.183

The inputs for the model are two extended DNA segments which contains the annotated enhancers184

and promoters correspondingly. The length of the extended window is chosen as 3K bp for enhancer185

and 2K bp for promoter, which try to capture all the relevant regions around enhancers and promoters.186

During the augmentation, we slide the extended region around the enhancer or promoter as long as it187

contains most of the functional parts. We fix Dtest and Dtrain for each cell line in order to compare the188

performance with TargetFinder and PEP. The results are reported in Tables 1 and 2.189

4.2. Attention-Based Neural Network Model Architecture190

We propose a neural network structure to predict enhancer-promoter interactions only using191

sequence-based features. The overall network structure is shown in Figure 5 and there are three192

functional blocks of the models which are attention mechanism, interaction quantification and193

multi-task learning.194

4.2.1. Attention Mechanism195

The two extended DNA segments will be transformed into one-hot encoding with four channels
(A, C, G and T). After embedding, enhancer and promoter sequences SE and SP are passed through
separate convolutional layers which share the same k filters with outputs denoted as hE ∈ RlE×k and
hP ∈ RlP×k. Convolutional kernels are equivalent as position specific scoring matrice[21], by which
local sequence patterns are encoded in hE and hP. The next layers rE and rP are computed as weighted
sums of hE and hP correspondingly.

rE
j· = ∑

k
aPE

kj · h
E
k·

rP
i· = ∑

k
aEP

ik · h
P
k·

(1)

The weight aPE
kj and aEP

ik are computed by

aPE
ij =

exp(sPE
ij )

∑k exp(sPE
ik )

aEP
ij =

exp(sEP
ij )

∑k exp(sEP
kj )

(2)
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Figure 5. Schematic overview of EPI. For visualization, the parameters are shrunk accordingly. The
length of extended enhancer SE is set to be 9 and the length of extended promoter SP is set to be 6. After
passing SE and SP through the convolution layer with k = 3 kernels and the max pooling layer, the
corresponding dimension of hE becomes RlE×k, where lE = 6. Similarly the dimension of hP becomes
RlP×k, where lP = 3.

where
sPE

ij = tanh(hE
i· ·UPE + hP

j· ·WPE) ·VPE

sEP
ij = tanh(hE

i· ·UEP + hP
j· ·WEP) ·VEP

(3)

sEP
ij shows how well hE around position i align with hP at position j. UPE, WPE, UEP, WEP ∈ Rk×d

196

and VPE, VEP ∈ Rd×1 are all hidden variables, and d represents the hidden dimension which is a197

hyperparameter in the model. The probability aPE
ij reflects the importance of hP

j· with respect to all198

possible hP
k· given hE

i· . Similarly the probability aEP
ij represents the importance of hE

i· regarding all199

possible hE
k· given hP

j·. This formulation of alignment is called soft attention[15,22]. We denote these200

two weight/attention matrices as APE and AEP, and scoring matrices as SPE and SEP. They all come201

with the same dimension RlE×lP .202

4.2.2. Interaction Quantification203

After enhancers and promoters are projected into the same embedding space as rE and rP, we204

would like to calculate the weighted inner product between corresponding embeddings, which is a205

similarity measure of embedding vectors. In this way, we interpret the probability of interaction event206

at sequence level to be the similarity level of embeddings after projection. If the paired embedding207

are aligned really well, it means these pairs of interactions can lead to the interaction at sequence208

level. Similar ideas have been use to model the interactions between semantic segment pairs[23],209

correspondences between images and captions [24,25], etc. W ∈ Rk×k represents the weight matrix210

which is a free parameter in the model. We define the similarity matrix as P ∈ RlP×lE .211

P = rE ·W · (rP)T (4)
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Then we pass P through top K-pooling layer, a fully connected layer with ReLU activation and a212

fully connected layer with Sigmoid activation. The final output is y′ which is a probability indicating213

the chance that two sequences will interact. We define binary cross-entropy loss on y′.214

Lentropy = −y ln y′ − (1− y) ln(1− y′) (5)

where y represents the true label which is 0 or 1.215

4.2.3. Multi-task Learning216

Multi-task learning idea has been incorporated into a large number of deep learning frameworks217

[26]. Multi-task learning can force the model to learn more generalizable features regarding multiple218

related tasks at the same time and it can be regarded as an implicit regularization on the model. The219

input sequences SE and SP to this model are not exactly the enhancer and promoter sequences but220

a larger windows which contains the enhancer and promoter regions. Other than the interaction221

prediction task, we can also introduce one additional task which is to infer the enhancer and promoter222

regions from the extended segments. We call this task coordinate prediction. This idea is mainly inspired223

by the objection detection work in the computer vision field. R-CNN[27], Fast R-CNN [28] and Faster224

R-CNN [29] are proposed to localize and label the boundaries for detected object in the images.225

We formulate coordinate prediction task by asking the model to predict internal coordinates of226

functional regions for SE and SP. After passing rE and rP through separate fully connected layers with227

ReLU activations, we will get regression results of internal enhancer coordinates x′E, y′E and internal228

promoter coordinates x′P, y′P. We define l2 loss Lcoor on x′E, y′E, x′P and y′P.229

Lcoor =
1
4

 ∑
k∈{E,P}

(xk − x′k)
2 + ∑

k∈{E,P}
(yk − y′k)

2

 (6)

where xE, yE, xP and yP are the true internal coordinates we generate when augmenting the data.
Thus the overall loss function is defined as

L = Lcoor + λLentropy (7)

where λ is a hyperparameter. All hyperparameters are tuned by cross validation on Dtrain. For230

training, we used adam optimizer [30] as the stochastic gradient descent optimizer with a learning rate231

of 1e− 3 and it takes 90 epochs. Early stopping [31] and dropout [32] are incorporated into the neural232

network structure and the optimization process.233

4.3. Motif analysis234

We scanned the genome for putative TF binding sites using position weight matricies from235

Transfac [33] and the genome scanning tool provided by Homer [34].236

4.4. DNAseq footprintg237

Footprinting is a standard analysis of DNase signal that goes beyond calling open regions to find238

smaller regions that are depleted for DNase cuts due to their occlusion by a DNA binding factor. We239

used the pyDNAse implementation [17,18], to quantify the extent to which specific sites in the genome240

are occupied by DNA binding proteins.241
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The following abbreviations are used in this manuscript:246

247

EPI Enhancer-Promoter Interaction
TF Transcription Factor
CHIA-PET Chromatin Interaction Analysis by Paired-End Tag Sequencing
DNase Deoxyribonuclease
BP Base Pair

248
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Appendix A F1 scores249

250

MODEL GM12878 HELA-S3 HUVEC IMR90 K562 NHEK
EPIANN 0.699 0.639 0.590 0.711 0.626 0.797
PEP-WORD 0.784 0.782 0.749 0.854 0.826 0.874
PEP-MOTIF 0.816 0.796 0.762 0.725 0.810 0.887
PEP-INTEGRATE 0.813 0.824 0.761 0.865 0.836 0.902
TARGETFINDER (E/P) 0.489 0.496 0.448 0.391 0.486 0.675
TARGETFINDER (E/P/W) 0.773 0.787 0.748 0.683 0.795 0.872

Table A1. F1 scores of different enhancer-promoter interaction prediction methods for each cell line.

251

Appendix B Cross-Validation Performance252

A more comprehensive way to compare different models it to report the cross-validation253

performance. But it is not feasible to do that with any neural network model due to the computational254

cost. Thus we fix Dtrain and Dtest and only report performance based on these two randomly selected255

sets for each cell line. In order to show the reported performance is not biased regarding the choice of256

Dtrain and Dtest, we list the cross-validation performance of all submodels of PEP and TargetFinder.257

Model GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK
PEP-Motif 0.846 0.820 0.728 0.809 0.797 0.837
PEP-Word 0.837 0.809 0.722 0.820 0.780 0.834
PEP-Integrate 0.851 0.821 0.743 0.834 0.795 0.847
TargetFinder (E/P) 0.516(0.048) 0.541(0.023) 0.405(0.027) 0.413(0.032) 0.536(0.042) 0.540(0.034)
TargetFinder (EE/P) 0.835(0.014) 0.817(0.015) 0.671(0.017) 0.808(0.029) 0.798(0.019) 0.819(0.016)
TargetFinder (E/P/W) 0.763(0.033) 0.853(0.022) 0.712(0.024) 0.731(0.039) 0.821(0.024) 0.864(0.022)

Table A2. The mean F1 scores of different enhancer-promoter interaction prediction methods for
each cell line regarding 10-fold cross validation. The values in the parentheses are the corresponding
standard deviations.

258

Model GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK
PEP-Motif 0.963 0.967 0.941 0.951 0.956 0.966
PEP-Word 0.966 0.966 0.945 0.958 0.958 0.973
PEP-Integrate 0.967 0.972 0.947 0.961 0.960 0.975
TargetFinder (E/P) 0.926 (0.014) 0.935(0.012) 0.896(0.005) 0.906(0.015) 0.929(0.012) 0.941(0.008)
TargetFinder (EE/P) 0.971(0.008) 0.967(0.008) 0.939(0.007) 0.966(0.013) 0.965(0.007) 0.971(0.010)
TargetFinder (E/P/W) 0.964(0.010) 0.975(0.009) 0.957(0.008) 0.964 (0.010) 0.964(0.013) 0.983(0.009)

Table A3. The mean AUCs (Area under the ROC curve) of different enhancer-promoter interaction
prediction methods for each cell line regarding 10-fold cross validation. The values in the parentheses
are the corresponding standard deviations.

259
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Model GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK
PEP-Motif 0.881 0.873 0.780 0.842 0.841 0.875
PEP-Word 0.878 0.868 0.779 0.863 0.839 0.893
PEP-Integrate 0.889 0.879 0.795 0.873 0.848 0.902
TargetFinder (E/P) 0.607 (0.037) 0.633 (0.018) 0.499 (0.029) 0.509 (0.042) 0.642(0.031) 0.622 (0.036)
TargetFinder (EE/P) 0.881 (0.014) 0.867 (0.018) 0.759(0.022) 0.867(0.028) 0.855(0.017) 0.875(0.019)
TargetFinder (E/P/W) 0.836(0.027) 0.909(0.018) 0.806(0.024) 0.822(0.036) 0.877(0.024) 0.927(0.017)

Table A4. The mean AUPRs (Area under the precision-recall curve) of different enhancer-promoter
interaction prediction methods for each cell line regarding 10-fold cross validation. The values in the
parentheses are the corresponding standard deviations.

260

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 14, 2017. ; https://doi.org/10.1101/219667doi: bioRxiv preprint 

https://doi.org/10.1101/219667
http://creativecommons.org/licenses/by-nc-nd/4.0/


Version November 9, 2017 submitted to Cells 13 of 14

References261

1. Long, H.K.; Prescott, S.L.; Wysocka, J. Ever-changing landscapes: transcriptional enhancers in development262

and evolution. Cell 2016, 167, 1170–1187.263

2. Spitz, F. Gene regulation at a distance: from remote enhancers to 3D regulatory ensembles. Seminars in264

cell & developmental biology. Elsevier, 2016, Vol. 57, pp. 57–67.265

3. Albert, F.W.; Kruglyak, L. The role of regulatory variation in complex traits and disease. Nature Reviews266

Genetics 2015, 16, 197–212.267

4. Huang, Y.F.; Gulko, B.; Siepel, A. Fast, scalable prediction of deleterious noncoding variants from functional268

and population genomic data. Nature genetics 2017, 49, 618–624.269

5. Fullwood, M.J.; Liu, M.H.; Pan, Y.F.; Liu, J.; Xu, H.; Mohamed, Y.B.; Orlov, Y.L.; Velkov, S.; Ho, A.; Mei, P.H.;270

others. An oestrogen-receptor-α-bound human chromatin interactome. Nature 2009, 462, 58–64.271

6. Dostie, J.; Richmond, T.A.; Arnaout, R.A.; Selzer, R.R.; Lee, W.L.; Honan, T.A.; Rubio, E.D.; Krumm, A.;272

Lamb, J.; Nusbaum, C.; others. Chromosome Conformation Capture Carbon Copy (5C): a massively273

parallel solution for mapping interactions between genomic elements. Genome research 2006, 16, 1299–1309.274

7. Rao, S.S.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.;275

Machol, I.; Omer, A.D.; Lander, E.S.; others. A 3D map of the human genome at kilobase resolution reveals276

principles of chromatin looping. Cell 2014, 159, 1665–1680.277

8. Whalen, S.; Truty, R.M.; Pollard, K.S. Enhancer-promoter interactions are encoded by complex genomic278

signatures on looping chromatin. Nature genetics 2016, 48, 488.279

9. Yang, Y.; Zhang, R.; Singh, S.; Ma, J. Exploiting sequence-based features for predicting enhancer-promoter280

interactions 2017.281

10. Min, S.; Lee, B.; Yoon, S. Deep learning in bioinformatics. Briefings in bioinformatics 2016, p. bbw068.282

11. Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow,283

P.M.; Xie, W.; Rosen, G.L.; others. Opportunities And Obstacles For Deep Learning In Biology And284

Medicine. bioRxiv 2017, p. 142760.285

12. Alipanahi, B.; Delong, A.; Weirauch, M.T.; Frey, B.J. Predicting the sequence specificities of DNA-and286

RNA-binding proteins by deep learning. Nature biotechnology 2015, 33, 831–838.287

13. Zhou, J.; Troyanskaya, O.G. Predicting effects of noncoding variants with deep learning–based sequence288

model. Nature methods 2015, 12, 931.289

14. Poplin, R.; Newburger, D.; Dijamco, J.; Nguyen, N.; Loy, D.; Gross, S.S.; McLean, C.Y.; DePristo, M.A.290

Creating a universal SNP and small indel variant caller with deep neural networks. bioRxiv 2016, p. 092890.291

15. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.292

arXiv preprint arXiv:1409.0473 2014.293

16. Ramachandran, B.; Yu, G.; Gulick, T. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A294

transcription to provide a mechanism for coordinate expression of respiratory chain subunits. Journal of295

Biological Chemistry 2008, 283, 11935–11946.296

17. Piper, J.; Elze, M.C.; Cauchy, P.; Cockerill, P.N.; Bonifer, C.; Ott, S. Wellington: a novel method for the297

accurate identification of digital genomic footprints from DNase-seq data. Nucleic acids research 2013,298

41, e201–e201.299

18. Piper, J.; Assi, S.A.; Cauchy, P.; Ladroue, C.; Cockerill, P.N.; Bonifer, C.; Ott, S. Wellington-bootstrap:300

Differential DNase-seq footprinting identifies cell-type determining transcription factors. BMC genomics301

2015, 16, 1000.302

19. Chatr-aryamontri, A.; Oughtred, R.; Boucher, L.; Rust, J.; Chang, C.; Kolas, N.K.; O’Donnell, L.; Oster, S.;303

Theesfeld, C.; Sellam, A.; others. The BioGRID interaction database: 2017 update. Nucleic acids research304

2017, 45, D369–D379.305

20. Giannopoulou, E.G.; Elemento, O. Inferring chromatin-bound protein complexes from genome-wide306

binding assays. Genome research 2013, 23, 1295–1306.307

21. Stormo, G.D.; Schneider, T.D.; Gold, L.; Ehrenfeucht, A. Use of the ‘Perceptron’algorithm to distinguish308

translational initiation sites in E. coli. Nucleic acids research 1982, 10, 2997–3011.309

22. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell:310

Neural image caption generation with visual attention. International Conference on Machine Learning,311

2015, pp. 2048–2057.312

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 14, 2017. ; https://doi.org/10.1101/219667doi: bioRxiv preprint 

https://doi.org/10.1101/219667
http://creativecommons.org/licenses/by-nc-nd/4.0/


Version November 9, 2017 submitted to Cells 14 of 14

23. Liu, P.; Qiu, X.; Huang, X. Modelling Interaction of Sentence Pair with coupled-LSTMs. arXiv preprint313

arXiv:1605.05573 2016.314

24. Karpathy, A.; Joulin, A.; Li, F.F.F. Deep fragment embeddings for bidirectional image sentence mapping.315

Advances in neural information processing systems, 2014, pp. 1889–1897.316

25. Karpathy, A.; Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. Proceedings317

of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3128–3137.318

26. Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv preprint arXiv:1706.05098319

2017.320

27. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and321

semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition,322

2014, pp. 580–587.323

28. Girshick, R. Fast r-cnn. Proceedings of the IEEE international conference on computer vision, 2015, pp.324

1440–1448.325

29. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal326

networks. Advances in neural information processing systems, 2015, pp. 91–99.327

30. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 2014.328

31. Prechelt, L. Early stopping-but when? Neural Networks: Tricks of the trade 1998, pp. 553–553.329

32. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a simple way to330

prevent neural networks from overfitting. Journal of Machine Learning Research 2014, 15, 1929–1958.331

33. Matys, V.; Kel-Margoulis, O.V.; Fricke, E.; Liebich, I.; Land, S.; Barre-Dirrie, A.; Reuter, I.; Chekmenev, D.;332

Krull, M.; Hornischer, K.; others. TRANSFAC R© and its module TRANSCompel R©: transcriptional gene333

regulation in eukaryotes. Nucleic acids research 2006, 34, D108–D110.334

34. Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass,335

C.K. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements336

required for macrophage and B cell identities. Molecular cell 2010, 38, 576–589.337

c© 2017 by the authors. Submitted to Cells for possible open access publication under the terms and conditions338

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).339

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 14, 2017. ; https://doi.org/10.1101/219667doi: bioRxiv preprint 

http://creativecommons.org/licenses/by/4.0/.
https://doi.org/10.1101/219667
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	EPIANN Accurately Predicts EPI events
	Decoding sequence feature importance

	Discussion
	Methods
	Data Preparation
	Attention-Based Neural Network Model Architecture
	Attention Mechanism
	Interaction Quantification
	Multi-task Learning

	Motif analysis
	DNAseq footprintg

	F1 scores
	Cross-Validation Performance
	References

