
1 
 

Tracking wakefulness as it fades:        1 

micro-measures of Alertness 2 

Sridhar R. Jagannathan1*, Alejandro E. Nassar1, Barbara Jachs1, Olga V. Pustovaya2,3, Corinne A. 3 

Bareham4, Tristan A. Bekinschtein1,3 4 

1 Department of Psychology, University of Cambridge, Cambridge, United Kingdom 5 

2 Department of man and animals physiology, Southern Federal University (SFU), Rostov-on-Don, Russia 6 

3 Cognition and Brain Sciences Unit, Medical Research Council, Cambridge, United Kingdom 7 

4 Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom 8 

*Corresponding author: j.sridharrajan@gmail.com 9 

Present Address: Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 10 
3EB, United Kingdom. 11 

 12 

 13 

 14 

 15 

Abstract 16 

A major problem in psychology and physiology experiments is drowsiness, around a third of 17 

participants show decreased wakefulness despite being instructed to stay alert. In non-visual 18 

experiments participants keep their eyes closed throughout the task, thus promoting the 19 

occurrence of such periods of varying alertness. These wakefulness changes contribute to 20 

systematic noise in data and measures of interest. To account for this omnipresent problem in 21 

data acquisition we defined criteria and code to allow researchers to detect and control for 22 

varying alertness in electroencephalography (EEG) experiments. We first revise a visual-scoring 23 

method developed for detection and characterization of the sleep-onset process, and adapt the 24 

same for detection of alertness levels. Further, we show the major issues preventing the 25 

practical use of this method, and overcome these issues by developing an automated method 26 

based on frequency and sleep graphoelements, which is capable of detecting micro variations in 27 

alertness. The validity of the automated method was verified by training and testing the 28 

algorithm using a dataset where participants are known to fall asleep. Further, we tested 29 

generalizability with independent validation on another dataset. The methods developed 30 

constitute a unique tool to assess micro variations in levels of alertness and control trial-by-trial 31 

retrospectively or prospectively in every experiment performed with EEG in cognitive 32 

neuroscience. 33 
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1. Introduction 36 

Electroencephalography (EEG) has played a pivotal role in the non-invasive study of brain 37 

function (Niedermeyer and Silva, 2004). Typically in an EEG experiment the 38 

electrophysiological activity of the brain is recorded from the scalp of the participant while they 39 

are performing a cognitive task or under task-free conditions (resting state). In several task-40 

based experiments, typically in the auditory or tactile domain, the participant performs the task 41 

in eyes-closed settings. Previous studies have shown that such eyes closed settings can create 42 

periods of momentary lapses of alertness (Barry et al., 2007). These periods are usually 43 

attributed to variable and long inter-trial intervals. The prevalence of this problem can be 44 
attested by studies mining large databases showing that about a third of the participants 45 

momentarily fall asleep in resting state conditions (Tagliazucchi and Laufs, 2014). Further, task 46 

free settings such as mind wandering or simple non-active instructions can also lead to 47 

drowsiness and sleep (Goupil and Bekinschtein, 2012).  48 

The above mentioned variations in alertness can usually be detected using variability in 49 

reaction times (Ogilvie, 2001). However in most of the EEG experiments such lapses are ignored 50 

and data confounded with drowsiness (or low alertness) are used for studying brain functions 51 

like attention and cognition. However, attention and many other cognitive sub-processes are 52 

known to be directly modulated by lack of alertness in normal (Bareham et al., 2014; Chennu 53 

and Bekinschtein, 2012) as well as clinical populations (Dobler et al., 2005). Hence, fluctuations 54 

in alertness need to be measured by the researchers, to include or exclude trials of low/high 55 

alertness to adequately test predefined hypotheses. This argument is illustrated with an 56 

experiment in Figure 1. 57 

Figure 1(B) shows a typical EEG experiment where the participant responds to auditory stimuli 58 

while having their eyes closed. In the beginning of the experiment the participant responds to 59 

the stimuli in a reliable manner (green dots) by less variation in reaction times. As time 60 

progresses the reaction times become more variable and the participant intermittently fails to 61 

respond (red dots). This variation is also captured in the frequency profile of the EEG (occipital 62 

sites) during the pre-trial periods of the task as depicted in Figure 1(A). When the participant 63 

responds reliably, the frequency profile shows clear majority of power in the alpha range (8-12 64 

Hz) and as they become drowsy the power in the alpha disappears and low frequency power in 65 

the theta range (6-8 Hz) starts to increase. Thus the frequency profile preceding the trial often 66 

predicts the variability in the responses. In other words, such spectral changes can be used to 67 

detect the momentary lapses in alertness that causes variability in the reaction times. 68 

The typical techniques that are used to clean or remove the data from such drowsiness 69 

contaminated episodes would be to score the above mentioned pre-trial periods using 70 

traditional sleep scoring techniques (Berry et al., 2012). These scoring techniques depend on 71 

the frequency profiles described earlier. However they face multiple problems. Firstly, sleep 72 

scoring techniques rely on having data at least to the duration of 30 sec (Berry et al., 2012). 73 

However in most cognitive experiments the pre-trial periods last at most 4-5 sec. Secondly, 74 

automated methods (Tagliazucchi et al., 2012) that are validated using such sleep scoring 75 

techniques classify data into wakefulness, N1, N2 etc. But such momentary lapses of alertness 76 

require more fine grained scoring techniques that operate on a smaller time range with 77 

different features capable of capturing micro variations in alertness levels. Finally, some 78 

techniques use the simple variation in reaction times mentioned earlier to capture moments of 79 

low alertness. But this suffers from the problem of longer reaction times being confounded by 80 

other factors such as task difficulty (Bareham et al., 2014). 81 
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 82 

Fig 1: Differing alertness levels indicated by frequency profile changes and reaction time 83 

variability during an auditory experiment in a sample participant. (A) Depicts the changes in the 84 

power level in different frequency bands in the Occipital electrodes in the pre-trial period of an 85 

auditory experiment at different time points. (B) Reaction times at trials presented along the 86 

different time points in the same experiment. The variability in the reaction times (B) and thus 87 

reduction in alertness levels closely follows the change in the frequency profile (A) from alpha (8-88 

12 Hz) to theta (6-8 Hz) 89 

Thus the above mentioned problem of fluctuations in alertness requires a unique solution. Our 90 

proposal is to tackle the problem in the following manner. Firstly, we identify these alertness 91 

contaminated episodes, through the use of Hori scale (Tanaka et al., 1996) that captures the 92 

micro variations in alertness. Though the prime purpose of the Hori system is to identify and 93 

characterise the sleep onset process, it contains features that enable us to identify variations in 94 

levels of alertness in more fine grained durations (4 sec) compared to traditional sleep scoring 95 

using wakefulness, N1 and N2. Secondly, we used human scorers to identify different levels of 96 

alertness using the Hori scale on a dataset where the participants are allowed to fall asleep 97 

while performing the task. Thirdly, we show that despite the clarity of the Hori scale, it is 98 

impractical to perform, time consuming and difficult to learn, as elucidated by the low degree of 99 

agreement among human scorers. Fourthly, we produced a practical solution to this problem 100 

using an automated technique (involving SVM and individual element detectors) and computed 101 

performance measures by training and testing the algorithm on a dataset labelled by gold 102 

standard Hori (converging ratings from multiple scorers). Finally, to estimate the reliability and 103 

generalisability of our method, we tested the same in another independent dataset to show its 104 

utility. 105 

This paper is organized as follows. In the first section, we describe the method of using the Hori 106 

scale using human scorers and provide an overview of the automated method. In the second 107 

section, we evaluate and scrutinise the results of the human scorers with agreement measures 108 

and motivate the use of automated algorithm using validation measures. In the final section, we 109 
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discuss the developments made in this paper and produce concluding remarks on the 110 

usefulness of the method developed here.  111 

2. Materials and methods 112 

2.1. Participants and datasets 113 

The first dataset (herein Dataset#1) consisted of 20 native English speakers performing a 114 

semantic categorization task while falling asleep (Kouider et al., 2014). The task consisted of 115 

listening to words that belong to a particular semantic category (e.g. animals or objects) and 116 

classifying them accordingly using a left or right button press. Each trial consisted of an auditory 117 

stimulus (spoken word: animal or object) presented binaurally with an intertrial interval of 6-9 118 

sec. 119 

The second dataset (herein Dataset#2) consisted of 31 participants performing an auditory 120 

masking task while falling asleep (Noreika et al., 2017a). The task consisted of listening to a 121 

target sound (e.g. beep) that was randomly masked by different durations of noise. Participants 122 

reported if they heard the target or not using a button press. Each trial consisted of an auditory 123 

stimulus (target) sometimes masked by noise, presented binaurally. The next trial was 124 

presented after a pause of 8-12 sec after the response or 13-17 sec (in case of no response). 125 

In both the experiments subjects were seated on a reclining chair in a dark room and were 126 

permitted to fall asleep during the task. The participants were also evaluated on the basis of 127 

Epworth Sleepiness scale (Johns, 1991) and only easy sleepers were recruited. 128 

2.2. EEG acquisition 129 

Dataset#1: EEG was recorded using 64 Ag/AgCl electrodes (NeuroScan labs) with Cz as 130 

reference. The electrode impedances were kept below the recommended levels of the 131 

manufacturer. The signal was acquired at a sampling rate of 500 Hz. 132 

Dataset#2: EEG was recorded using 129 Ag/AgCl electrodes (Electrical Geodesics Inc) with Cz 133 

as reference. The electrode impedances were kept below 100 KΩ. The signal was acquired at a 134 

sampling rate of 500 Hz. 135 

2.3. Pre-processing 136 

EEG data was pre-processed with custom made scripts in MATLAB (MathWorks Inc. Natick, MA, 137 

USA) using EEGLAB toolbox (Delorme and Makeig, 2004). The data was filtered between 1 and 138 

30 Hz and was then resampled to 250 Hz. Further it was epoched from 4000ms to 0ms to the 139 

onset of the stimuli. Bad channels were then detected if the activity in spectrum of the channel 140 

exceeds ±4 standard deviation of overall activity in all channels. The detected bad channels 141 

were then interpolated using spherical interpolation. After which trials that exceed the 142 

amplitude threshold of ±250uV were removed in a semi automatic fashion. The amplitude 143 

threshold was liberal as K-complexes usually exceed ±150uV. 144 

Before proceeding to use the above datasets for scoring using the Hori scale it would be 145 

pertinent for us to first introduce the Hori system of scoring and inform the readers about the 146 

augmentations made in the system to suit the current purpose of measuring changes in levels of 147 

alertness. 148 
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2.4. Hori Scale 149 

Hori and colleagues subdivided sleep onset process into 9 different substages (Tanaka et al., 150 

1996). The first two Hori stages (1,2) correspond to wakefulness. The next six Hori stages (3-8) 151 

correspond to the sleep stage N1. The last stage of Hori (9) corresponds to the beginning of N2 152 

sleep (Iber et al., 2007).  153 

Here we decided to augment classical Hori stages with another stage (10) that would 154 
correspond to the appearance of K-complexes. The rationale behind this addition is the 155 

appearance of K-complexes definitively mark the entrance to N2 sleep. While spindles can still 156 

serve this purpose, their variability in duration and disagreement among human raters (Warby 157 

et al., 2014) motivates the use of K-complex. The following is a brief description of the elements 158 

in the hori scale based on (Ogilvie, 2001) and are shown in Figure 2. 159 

2.4.1. Alert elements 160 

Alpha waves:           161 

Alpha waves are elements that occur in the range of 8-12 Hz during relaxed wakefulness. They 162 

are more pronounced in the eyes closed condition, when the participant is transitioning from 163 

alert to relaxed wakefulness (Hori 1-2). Alpha elements are usually more pronounced in EEG 164 

from occipital regions. 165 

Hori 1:  Epoch is composed of only alpha wave trains (at least 20uV).    166 

Hori 2: Alpha wave trains occupy more than 50% (but less than 100%) of the activity in the 167 

epoch. 168 

2.4.2. Drowsy elements 169 

Alpha waves:           170 

Alpha activity usually decreases when the participant transitions from relaxed wakefulness to 171 

drowsy (Hori 3).  172 

Theta waves:           173 

Theta waves are elements that occur in the range of 3-8 Hz. They have relatively higher 174 

amplitudes than the alpha elements and characterise the transition to N1. Theta activity is 175 

usually pronounced in the central and temporal regions (Hori 5). 176 

Hori 3: Alpha wave trains occupy less than 50% of the activity in the epoch. 177 

Hori 4: Activity flattening without any clear element (amplitude < 20 uV). 178 

Hori 5: Low voltage theta waves (ripples) with amplitude between 20 uV-50 uV. 179 

2.4.3. Grapho elements 180 

Vertex sharp waves:           181 

Vertex waves are grapho elements that occur in the beginning of the transition to sleep (Hori 6-182 

8). Appearance of them indicates an altered state of responsiveness in the cerebral cortex 183 

(Rodenbeck et al., 2006). The vertex waves can be either monophasic or biphasic. In both cases 184 

there is usually a sharp negative discharge followed by a positive one. In case of biphasic waves, 185 

the amplitude of the positive components should be at least 50% of the negative component and 186 

at most equal to the level of the negative component.  187 
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Hori 6: Epoch containing only one well defined vertex sharp wave. 188 

Hori 7: Epoch containing more than one vertex sharp wave. 189 

Spindles:             190 

Spindles are grapho elements that occur in the beginning of the transition to stage N2 of sleep 191 

(Hori 9). They are regarded as transient patterns of EEG activity with a frequency of 12-16 Hz 192 

with a minimum duration of 0.5 sec. Spindles in general should be distinguishable from the 193 

background activity. The typical waxing and waning of spindle shape is vital to distinguish the 194 

pattern from high alpha activity. 195 

Hori 8: Contains at least one vertex wave and an incomplete spindle (<0.5 sec). 196 

Hori 9: Contains one well defined spindle (>0.5 sec). 197 

K-complexes:           198 

K-complexes are grapho elements that occur in the stage N2 of sleep (modified Hori 10). It 199 

starts with a sharp positive wave followed by a large negative wave. The duration of the initial 200 

negative wave should be smaller than the positive wave. The overall duration of the K-complex 201 

must be at least 0.5 sec. 202 

Hori 10: Contains at least one well defined K-complex. 203 
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 204 

Fig 2: (A) Modified Hori scale for detecting differing alertness levels using EEG. The grey waves 205 

indicate background activity and coloured regions indicate characteristic elements for respective 206 

Hori stages. AASM based sleep stage classification is also represented for compatibility to classical 207 

sleep scoring. Grapho-elements of Hori scale in detail: (B) Vertex sharp waves: Biphasic consists of 208 

a sharp negative deflection followed by a positive one, whereas Monophasic consists of only a 209 

sharp negative deflection. (C) Spindles: transient patterns with frequency (12-16 Hz) and 210 

minimum duration of 0.5 sec. (D) K-complex elements: sharp positive deflection followed by a 211 
larger negative one with a duration of at least 0.5 sec. 212 
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 213 

Fig 3: (A) Electrode sites used for manual Hori scoring based on 21 channels of the locations 214 

mainly derived from 10-20 electrode sites. (B) Electrodes used for automatic algorithmic method 215 

based on sampling from locations in Occipital, Central, Temporal, Parietal, Frontal regions. (C) 216 

Step by step technique to manually score each trial using the Hori scale. The preliminary step 217 

involves identifying presence of grapho-elements followed by specific identification of k-complexes, 218 

spindles and vertex waves. In the absence of grapho-elements, the trials are scored with 219 

identification of alpha rhythms. (D) Brief flow chart of the automatic algorithm. The preliminary 220 

step involves computation of the predictor variance and coherence features, followed by 221 

identification of alert and drowsy trials using SVM. Further, drowsy trials are identified into 222 

specific grapho-elements using detectors of elements like vertex, k-complex, spindles. 223 
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2.5. Manual Hori-scoring 224 

For the purpose of manually scoring each epoch according to the Hori scale, the EEG data was 225 

further low pass filtered below 20 Hz and only 21 channels (Fig. 3(A)) derived using the 226 

standard 10-20 system were evaluated. The details of manual scoring is as follows: 227 

Dataset#1: Each pre trial epoch (-4000 to 0ms) was rated independently by 3 raters. Of which 228 

one was an experienced electrophysiologist (rater C) and 2 of the other raters (A, B) had learnt 229 
the technique immediately prior to scoring them independently.  All participants were scored 230 

by the 3 raters, except for one participant that was scored only by raters A and B. As data from 231 

all participants was used based on consensus rule developed in section 2.6.1 this did not affect 232 

the results in anyway. 233 

Dataset#2: Each pre trial epoch (-4000 to 0ms) was rated independently by 1 rater and was 234 

further verified with another experienced rater. One participant was ignored from further 235 

analysis as the original trial order could not be recovered from the raw EEG data. 236 

The raters in dataset#1 scored each trial based on a manual algorithm depicted in Fig 3(C). The 237 

rater in dataset#2 scored each trial based on the description provided in (Ogilvie, 2001). 238 

2.6. Automatic method 239 

The automatic algorithm was first developed and tested using Dataset#1 and then 240 

independently validated using Dataset#2. 241 

2.6.1. Group consensus rule: creation of gold standard dataset  242 

Before training and testing the algorithm, we decided to create labels in our input data 243 

(Dataset#1) that can be used by our algorithm for supervised learning. In our case, we decided 244 

to create a gold standard label for each trial that is based on a group consensus rule. For this 245 

purpose, we first subdivided the Hori ratings of each epoch per rater into Alert (Hori: 1,2), 246 

Drowsy-mild(Hori: 3,4,5), Drowsy-severe(Hori: 6,7,8,9,10). The gold standard label was 247 

computed using a simple majority among the raters. If there was no consensus, then the 248 

corresponding trials were ignored from further analysis. This group consensus rule was used in 249 

Dataset#1 and each trial was labelled into Alert, Drowsy (mild), Drowsy (severe). The creation 250 

of this gold standard dataset ensured that the algorithm was trained and tested with trials that 251 

were unambiguous and non-spurious. 252 

2.6.2. Electrode Choices 253 

The electrodes depicted in Fig 3(B) were chosen for computing the various features used in 254 

different steps of the algorithm. The electrodes were chosen in such a way that we sample the 255 

Occipital, Frontal, Central, Parietal, Temporal regions. Furthermore, the choices were motivated 256 

for maximising the signal to noise ratio for the given reference electrode (Cz). 257 

Dataset#1: Occipital: Oz, O1, O2; Frontal = F7, F8, Fz; Central = C3, C4;                 258 

Parietal = Pz; Temporal =  T7, T8, TP8, FT10, TP10; 259 

Dataset#2: Occipital: E75, E70, E83; Frontal = E27, E123, E11; Central = E35,          260 

E110; Parietal = E90; Temporal =  E109, E101, E115, E100; 261 

A brief flow chart of the automatic algorithm is shown in Fig 3(D). 262 
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2.6.3. Support Vector Machines 263 

The first step in our algorithm involves computing features that are capable of distinguishing 264 

the various levels of alertness in the data.  After which the features are used to devise a classifier 265 

capable of separating the Alert (Hori:1-2) from Drowsy (Hori: 3-10). We decided to use Support 266 

vector machines for this part of the classification as the classification problem is guaranteed to 267 

converge to an optimal solution (Platt, 1998; Tagliazucchi et al., 2012). 268 

Support vector machines (SVM) are a class of supervised learning models. Formally, SVM 269 

consists of building a hyperplane or a set of hyperplanes in a high dimensional space with the 270 

criteria to maximise the distance of separation between the closest data (train-data) point of 271 

any class (functional margin) (Cortes and Vapnik, 1995). The choice of such a functional  margin 272 

would lower the generalization error for new data points (test-data). The motivation to map the 273 

data onto higher dimensional space is driven by the fact that most often the classes are 274 

inseparable in the lower dimensional space (Boser et al., 1992). The mapping to higher 275 

dimensional space is achieved by the use of a kernel function 𝑘(𝑥, 𝑦). 276 

The kernel function avoids the need to compute individual data points in the transformed data 277 

space (computationally expensive) by using the euclidean inner product (kernel trick). In our 278 

paper, we used the MATLAB interface of the open source machine learning library (LIBSVM)  279 

(Chang and Lin, 2011) that supports use of kernel SVMs for nonlinear mappings. We used the 280 

Radial Basis Function (RBF) as our kernel 𝑘(𝑥, 𝑦) = 𝑒
(−γ||𝑥−𝑦||

2
)
 . 281 

For training the classifier to produce optimal performance (accuracy) we need to select the 282 

optimal value of (γ, C).  γ  controls the curvature of the hyperplane and C  represents the penalty 283 

parameter for the soft-margin. Parameter selection is achieved by performing a grid search in 284 

(γ, C) in the space 2−1, . . , 2225 . We could not perform a leave one participant out cross 285 

validation, as this would produce an overfitting of parameters as different people fell asleep in 286 

different ways (proportion of alert, drowsy(mild), drowsy(severe) trials). Hence the data from 287 

all participants was collated and then divided into 5-folds (Tagliazucchi et al., 2012). Each of the 288 

5-folds was made using stratified sampling such that the overall representation of sub-classes 289 

remained similar in each fold. This will avoid the problems of over-representation prevalent 290 

while using random-sampling. The first four folds were used to train the classifier to choose the 291 

parameters (γ, C) and the last fold was used to test the same. In order to measure the 292 

performance of the classifier we decided to use sensitivity, specificity, f1- score. 293 

The definition of the performance measures used are as follows: 294 

Accuracy: This is defined as the number of correctly classified data points divided by the overall 295 

number of classifications made. 296 

Sensitivity: This refers to the ability of a classifier to correctly detect the true class among the 297 

classifications made. It is obtained by the (TP/TP+FN). It is also known as recall. TP: True 298 

Positives, FN: False Negatives. 299 

Specificity: This refers to the ability of a classifier to correctly ignore the class that don’t belong 300 

to the true condition. It is obtained by (TN/TN+FP).  TN: True Negatives, FP: False Positives. 301 

F1-score: This is the harmonic mean between precision and recall. Precision refers to measure 302 

of exactness of classifier. It is obtained by (TP/TP+FP). TN: True Positives, FP: False Positives. 303 

Recall refers to the sensitivity of the classifier. 304 

As the input data contains different kinds of features, it was scaled using the minimum value 305 

and range before applying the SVM.  306 
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2.6.4. Feature Computation 307 

To use the above mentioned SVM for classification we need to compute the following features 308 

that can allow the classifier to distinguish between different classes.  309 

Predictor Variance:                     310 

The EEG data in occipital region was first decomposed into time-frequency for each spatial 311 

sample (electrode) per epoch (-4000 to 0ms pre-trial). Predictors for each epoch were then 312 

generated based on the variations in the spectral power of the frequency bins A:[2-4 Hz],B:[8-10 313 

Hz],C:[10-12 Hz],D:[2-6 Hz] per epoch. The predictors were then fit to the data per electrode-314 

epoch and the variance explained is computed per electrode-epoch.  315 

The first step is to transform the data 𝑥[𝑛] into time-frequency representation (predictors) 316 

using the below formula, where 𝑛  represents time domain with  1 ≤ 𝑘 ≤ 𝑁 317 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒
−𝑗2𝜋(𝑘−1)(𝑛−1)

𝑁

𝑁

𝑛=1

 318 

The next step is to compute the power in the transformed representation 319 

𝑃𝑜𝑤𝑒𝑟 = 𝑋(𝑘). 𝑋∗(𝑘)   320 

Followed by computing the predictor variance 321 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖 = 100 − 100 ∗ 
𝑉𝑎𝑟(𝑃𝑜𝑤𝑒𝑟−𝑋(𝑘𝑖))

𝑉𝑎𝑟(𝑋(𝑘𝑖))
   322 

Where 𝑖 represents the frequency band index (A,B,C,D) and 𝑉𝑎𝑟 represents the residual 323 

variance. Intuitively the predictor variance tries to capture the variance in the signal explained 324 

by different frequency bands and the SVM later on uses this feature for classification. 325 

Coherence:          326 

Coherence was computed per trial in the electrodes in the occipital, frontal, central, temporal 327 
regions in the frequency bins: Delta:[1-4 Hz], Theta:[4-7 Hz], Alpha:[7-12 Hz], Sigma:[12-16 Hz], 328 

Gamma:[16-30 Hz] 329 

𝐶(𝑡, 𝑓) =
|𝑆𝑖𝑗 (𝑡, 𝑓)|2

𝑆𝑖𝑖 (𝑡, 𝑓). 𝑆𝑗𝑗 (𝑡, 𝑓)
 330 

Where 𝐶(𝑡, 𝑓) represents the coherence value at trial 𝑡 and frequency band 𝑓 331 

 𝑆𝑖𝑗  represents cross power spectral density between signal 𝑖  and 𝑗  332 

 𝑆𝑖𝑖 , 𝑆𝑗𝑗    represents auto power spectral density. 333 

After the detection of the drowsy trials using the above mentioned features, the following 334 

detectors are used to further subclassify them into drowsy (mild) and drowsy (severe). 335 

 336 

 337 

 338 
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2.6.5. Grapho element detectors 339 

2.6.5.1. Vertex-wave-detectors 340 

Both monophasic and biphasic waves were detected using the parietal electrodes. The signal 341 

was first resampled to 100 Hz and then filtered from 0.25 -6 Hz. After which the signal in each 342 

trial was further scaled with respect to its minima. Peaks that are above a specific threshold are 343 

then detected and  the negative peaks are used to classify the elements as mono or biphasic 344 

(algorithmic, parametric details described in supplementary methods) 345 

2.6.5.2. Spindle detectors 346 

Spindles were detected using the temporal electrodes. The signal was first resampled to 100 Hz 347 

and then a continuous wavelet transform using morlet function as the mother wavelet was 348 

applied. The coefficients of this transform are then normalized and then further provided a rank 349 

according to the magnitude. Each rank is further normalized to compute the probability of the 350 

spindle occurrence at each time point. Further spindle locations are pruned using a snapshot of 351 

the detected location (algorithmic, parametric details described in supplementary material). 352 

2.6.5.3. K-complex detectors 353 

K-complexes were detected using all the electrode sites in Fig 3(B). The signal was first 354 

resampled to 100 Hz and then filtered from 0.25-6 Hz. After which the signal in each trial was 355 

further scaled with respect to its maxima. Peaks that are separated by at least 1.5 sec and below 356 

a specific threshold are then detected. Further to which peaks above a specific threshold in the 357 

next 1.5 sec are detected. The positive peak should be at least half of the magnitude of the 358 

negative (algorithmic, parametric details described in supplementary material).  359 

In summary a total of 32 features (12 from predictor variance; 20 from coherence) are used in 360 

the first stage detection of alert trials from drowsy trials. After the drowsy trials are parsed by 361 

the element detectors, the spindle elements are pruned again by a separate SVM using the same 362 

32 features as above (depicted in Figure 3(D)). 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 
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3. Results 374 

3.1. Manual Hori-scoring 375 

In order to measure the reliability of scores given by the 3 different raters on different subjects 376 

in Dataset#1 we used two different measures of inter-rater agreement (Fig 4).  377 

Firstly, we used Krippendorff’s alpha to compute the agreement between the 3 raters (A, B, C) 378 

per subject of Dataset#1.  In general alpha scores of above 0.8 are reliable and those between 379 

0.8 and 0.667 can only be used to draw tentative conclusions (Giannantonio, 2010). We can 380 

observe from Fig 4(A) at least 9 subjects are below 0.667 (with mean being 0.65) indicating the 381 

unreliable nature of scoring each subject among raters. Secondly, we used Cohen’s kappa score 382 

(weighted) to measure the degree of inter-rater agreement between pairs of raters (AB, AC, BC) 383 

of Dataset#1. In general kappa values of above 0.8 are considered strong, between 0.8 and 0.4 as 384 

strong to weak, below 0.4 as poor (McHugh, 2012). We can observe from Fig 4(B) at least 12 385 

subjects are below 0.4 in the various scorer pairs indicating the unreliable nature of scoring per 386 

subject among raters. 387 

In particular the degree of disagreement was high for subjects that didn’t have a dominant 388 

alpha, thereby affecting the ability to rate the Hori scores as (1,2,3). For other subjects the 389 

degree of disagreement mainly rose due to the mislabelling of graphical elements. Examples of 390 

such typical cases of grapho elements are shown in Fig 4(C, D, E). 391 

3.2. Automatic method 392 

3.2.1. External Validation: Spindle, K-complex detectors  393 

The Spindle, K-complex detectors were validated externally using the DREAMS database along 394 

with other state of the art algorithms (Devuyst et al., 2011, 2010; Tsanas and Clifford, 2015) 395 

(detailed validation method in supplementary material). The validation results are shown in Fig 396 

5. This validation ensured the element detectors perform on par with the state of the art 397 

methods. The parameters used in spindle, k-complex detectors (like spindle duration, k-398 

complex amplitude etc.) were fixed with respect to the external databases and the same 399 

parameters were used in the validation of both Dataset #1, #2. 400 

3.2.2. Validation: Dataset#1   401 

After the group consensus rule (sec 2.6.1) was applied on Dataset#1, the number of trials in the 402 

gold standard dataset in each class were: Alert:475, Drowsy(mild):1104, Drowsy(severe):281. 403 

Around 1306 trials (40%) did not have a consensus rating and hence were ignored from further 404 

analyses. This shows that about 40% of the overall trials didn’t have any consensus among the 3 405 

different raters, further adding evidence to the disagreement among scorers mentioned in 406 

section 3.1. 407 

Trials from all participants in Dataset#1 were first collated and then partitioned into 5 folds. 408 

The partition was made using stratified sampling such that the overall representation of sub-409 

classes remained similar in each fold.  The training set further constituted of the first 4 folds and 410 

the test set consisted of the 5th fold.  This procedure was repeated for 5 times as described in 411 

Fig 6(A). For each iteration the performance measures like sensitivity, specificity, f-1 scores 412 

were generated and the results are shown in   Fig 7(A, B, C). 413 
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3.2.3. Independent validation: Dataset#2   414 

We decided to validate the algorithm (trained using dataset#1) on an independent dataset#2 to 415 

test its generalisability. This would mean that the hyper parameters (γ, C), support vectors 416 

trained using dataset#1 were directly applied on the dataset #2 without retraining.  The 417 

number of trials in dataset#2 in each class were: Alert: 6049, Drowsy(mild): 7200, 418 

Drowsy(severe): 475. The dataset was divided into 5 folds using stratified sampling as before. 419 

The set#1 consisted of the first 4 folds and the set#2 consisted of the 5th fold. Thus set#1 420 

contained atleast 4 times the number of trials in set#2 and hence similar in composition to the 421 

train and test sets in dataset #1 where train had at least 4 times the number of trials in test set. 422 

The same procedure was repeated for 5 times as described in Fig 6(B). For each iteration the 423 

performance measures like sensitivity, specificity, f-1 scores were generated and the results are 424 

shown in Fig 7(D, E, F). 425 

The above mentioned methods in Dataset#2 tend to validate the automatic method against the 426 

human scorer. However, to claim that the automatic method out performs the human scorer in 427 

Dataset#2, we decided to further validate the same against an independent measure of 428 

drowsiness. Coefficient of variation (CoV) in reaction times has been used previously to 429 

measure drowsiness and is independent of both the observer and the algorithm’s pre-trial 430 

information (Bareham et al., 2014). We separated the trials among different classes of 431 

drowsiness using both the automatic and manual method. Further, CoVs were computed per 432 

participant for all classes (generated both by automatic and manual method) that contained at 433 

least 10 trials. Repeated measures ANOVAs on classes from automatic method yielded a main 434 

effect of drowsiness on CoV with F(2,22) = 9.25, p< 0.01. Post-hoc tests (multiple comparisons 435 

corrected with bonferroni) yielded differences between mild and severe drowsiness (Cohen’s d: 436 

-0.95, p< 0.05), alert and severe drowsiness (Cohen’s d: -0.91, p< 0.05). However, the manual 437 

method failed to produce any main effect of drowsiness on CoV with F(2,8) = 1.2 with p> 0.05. 438 

These measures shown in Fig 7(G), clearly indicate the utility of the automatic method over 439 

manual scoring. 440 
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 441 

Fig 4: Inter-rater agreement among different scorers (A,B,C). (A) depicts agreement measured 442 

using Krippendorff’s alpha. Each data point refers to score from a single subject. (B) depicts 443 

agreement measured using Cohen’s kappa. Each data point refers to kappa scores from a single 444 

subject based on a pair of two different scorers. Inter-rater disagreement is typically caused due to 445 

misclassification of Grapho elements: (C) depicts typical Vertex wave agreement/disagreement 446 

among scorers highlighted in red. (D) depicts typical Spindle element agreement/disagreement 447 

among scorers highlighted in magenta. (E) depicts typical K-complex agreement/disagreement 448 

among scorers highlighted in cyan. Full agreement refers to cases where all 3 raters agree, Partial 449 

agreement refers to cases where 2 of them agree, and false positives refer to cases where at least 450 

one of the rater misclassifies an element. 451 
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 452 

Fig 5: Performance validation of grapho-element detectors with online database (DREAMS). The 453 

spindle detector was validated with state of the art algorithms from (Devuyst et al., 2011; Tsanas 454 

and Clifford, 2015). The rank* algorithm developed in this paper performs comparable to the 455 

above mentioned algorithms. The K-complex detector was validated with state of the art 456 

algorithms from (Devuyst et al., 2010). The peak* algorithm developed in this paper performs 457 

comparable to the above mentioned algorithms. 458 

 459 

 460 

Fig 6: Curation of test and train datasets. (A) depicts creation of test and train dataset using 461 

Dataset #1 by five-fold stratified partition and this procedure is repeated for 5 times to produce 462 

validation measures. (B) depicts creation of Set #1, Set#2 using Dataset #2 by five-fold stratified 463 

partition and Set#1 is created by merging the first four sets and fifth set is constituted as Set #2 464 

and this procedure is repeated for 5 times to produce validation measures. 465 
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 466 

Fig 7: Validation measures of automatic algorithm. Validated with Dataset#1 using steps 467 

described in Fig 6(A). Results are depicted in the figure (A,B,C). The automatic algorithm was 468 

validated in an independent manner using Dataset#2 using steps described in Fig 6(B). Results are 469 

depicted in the figure (D,E,F). Validation with an independent measure (Coefficient of variation in 470 

reaction times) shows the algorithm reliably detecting differences (using repeated measures 471 

ANOVA) better than the manual scoring in figure G. ns: denotes p>0.05, * denotes p<0.01 472 

(bonferroni corrected) 473 
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4. Discussions and Conclusions  474 

In this paper, we have first described the pervasive problem of varying levels of alertness during 475 

cognitive experiments, particularly during eyes closed experiments. Such a scenario is further 476 

exacerbated in resting state EEG recordings. In many cases data from such experiments are used 477 

to compute measures like connectivity etc. that may further be contaminated by participants 478 

falling asleep (Tagliazucchi et al., 2012). This situation potentially contributes to wider 479 

problems faced by the scientific community such as the replication crisis. 480 

In the past the problem of extreme relaxation and drowsiness has been ignored sometimes by 481 

cognitive scientists, and only taking into account by looking at reaction times and removing the 482 

sections where the participant was not responding or was too slow. Apart from visible changes 483 

in reaction times, there are changes in important processes like attention and perception as the 484 

participant drifts across varying levels of alertness (Goupil and Bekinschtein, 2012). Hence it is 485 

of paramount importance to control for varying levels of alertness. We have tried to solve this 486 

problem in an objective manner as follows.  We first described the use of Hori scale that has 487 

been validated previously to detect the levels of alertness during sleep onset process. However 488 

the Hori scoring with 4 sec epochs is impractical to perform as it is highly subjective and time 489 

consuming (Ogilvie, 2001). Using 3 independent raters on Dataset#1 we further quantified the 490 

inter-rater agreement using Krippendorff’s alpha and Cohen’s kappa metrics to show low levels 491 

of agreement among the raters. This motivated us to develop an algorithmic solution that can be 492 

used to measure the level of alertness in a reliable manner. 493 

There have been attempts in the past to detect varying level of alertness using algorithms. 494 

However, they suffer from several disadvantages. Firstly, such rule based algorithms (Olbrich et 495 

al., 2009) have validated their system using physiological measures like heart-rate variability 496 

etc. This further adds a layer of confound as measures of alertness needs to be related again 497 

with physiological measures. Secondly, other set of algorithms (Crisler et al., 2008; 498 

Gudmundsson et al., 2005; Tagliazucchi et al., 2012) have been developed using traditional 499 

sleep stage based scoring. Such systems suffer from lack of resolution as they are validated with 500 

sleep scoring techniques that use 30 sec epochs. Thus they are unsuitable to match the micro 501 

dynamics in alertness observed during cognitive tasks. To our knowledge this is the first time an 502 

algorithmic solution has been attempted to measure the varying level of alertness and 503 

simultaneously verifying the same using a previously well validated system like Hori. 504 

In the current work we have shown that predictor variance, coherence and grapho element 505 

detectors allow us to micro measure the level of alertness. We have constructed a classifier 506 

based on SVM and individual element detectors and have achieved sensitivity, specificity, f1-507 

score of more than 0.8 in all subclasses (alert, drowsy(mild), drowsy(severe)) with respect to 508 

manual Hori scoring (gold standard from different raters). We have also validated our algorithm 509 

with a second independent dataset using different task conditions and recording electrode sites 510 

(using the same hyper parameters and support vectors trained using the first dataset). This 511 

produced a sensitivity, specificity, f1-score of more than 0.7 in all subclasses. The main reason 512 

the performance reduces for drowsy(severe) subclass in dataset#2 is due to lack of gold 513 

standard comparison and fewer number of trials in this category. As the dataset#2 is scored 514 

only by one person it is prone to error (in a fashion similar to dataset#1 as depicted by varying 515 

levels of interrater agreement in Fig 4). This motivated us to show that our algorithm 516 

outperforms the manual scorer. Hence we employed a previously established independent 517 

behavioural measure of drowsiness using Coefficient of variation in reaction times. We further 518 

showed that the automatic algorithm captures the variations in CoV better than the manual 519 
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scorer in Fig 7(G). This stands testament to the generalisability of our method in detecting 520 

alertness levels across new datasets. 521 

However the usage of Hori scale as validator has some disadvantages. Firstly, it is difficult to 522 

detect Hori stages (1-3) on participants who lack prominent alpha waves (Ogilvie, 2001). This 523 

would make these participants difficult to score manually, thereby explaining the lower 524 

sensitivity of the algorithm in Drowsy (mild) subclass compared to the other classes. However, 525 

this is a problem for the human scorer, as the automatic algorithm is relatively immune to this 526 

problem. As it operates on relative variances across different bands rather than raw amplitude. 527 

Secondly, it has also been reported that the Hori stage (4) also doesn’t last long and hence is 528 

difficult to score (Ogilvie, 2001). Such samples would have had a high level of disagreement 529 

among scorers and hence would have been ignored while computing the gold standard dataset. 530 

Consequently, the difficult trials would not have been used for training the algorithm and hence 531 

it may not be able to detect any such trials in a new dataset. Thirdly, one of the main reasons for 532 

validating the algorithm with 3 subclasses is mainly due to lack of consensus in individual 533 

grapho elements. In order to truly validate the grapho elements we would need a dataset rich in 534 

those elements and also scorers who are able to consistently detect the grapho elements in a 535 

correct fashion.  536 

The automatic algorithm devised here could be improved in several ways. Firstly, the current 537 

algorithm uses SVM with RBF kernels, other kernels choices like polynomial functions could be 538 

evaluated for making the optimal choice. Secondly, we performed only basic preprocessing of 539 

the pre trial data. However it is well known that artifacts like eye movement, sweating, muscle 540 

artifacts can contribute to noise in the data.  Hence the performance of the algorithm would 541 

improve if noise reduction measures are employed. However, we didn’t employ such measures 542 

as they are not standardized and we wanted to establish that the performance of algorithm is 543 

robust under all conditions and hence performing specific pre-processing steps should not be an 544 

impediment for users of our method.  Thirdly, we could also try to reduce the duration of epochs 545 

considered for labeling for e.g. we can check the classification accuracies of signal durations of 1, 546 

2, 3 secs etc. However, validating the same would be difficult as we also need to redo the human 547 

scoring with the corresponding reduced length of epochs. Fourthly, the automatic algorithm has 548 

been developed only for eyes closed condition. But many cognitive experiments have eyes open 549 

conditions and participants are also known to fall asleep under such active paradigms. The 550 

algorithm could be adapted for such paradigms; however detailed validation needs to be 551 

performed with other parallel measures of drowsiness like eye-tracking (as the Hori scale has 552 

not been validated for such purposes). Fifthly, the algorithm could further be refined to produce 553 

stages analogous to individual Hori stages. This would be helpful for researchers studying the 554 

sleep onset process in an objective manner as many complex non-linear changes in behaviour 555 

are known to occur in individual Hori stages (Noreika et al., 2017b). Finally, for quick paced 556 

experiments (short pre-trial periods), the parameters for detecting certain graphoelements 557 

(vertexes, k-complexes) are flexible to account for the shorter duration of the signal. 558 

The applications of the algorithm include the following. Firstly, pre-trial data can  be computed 559 

from task data (cognitive experiments) and the non-alert trials can  be removed thus controlling 560 

for the effects of change in alertness levels. Secondly, we can  detect and remove non-alert 561 

periods of data from resting state EEG experiments in a reliable manner. Thirdly, we can 562 

measure alertness as an independent variable and measure its effect on measures of interest. 563 

Fourthly, the method circumvents the subjective nature of the manual Hori scoring and thus 564 

enables to study the transition to sleep in an objective way. One of the most interesting aspects 565 

is the generalisability of the SVM classifier and other element detectors to the independent 566 

dataset#2, showing the high degree of transferability of this method, without having to retrain 567 
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the classifier. Fifthly, when combined with online stimulus delivery techniques, the ability of our 568 

method to detect grapho elements (vertex, spindles, k-complexes) also allows us to investigate 569 

the effects of these elements on the cognitive processes, for example by modulating the stimulus 570 

delivery according to the occurrence of these elements. Finally, sleep researchers can use this 571 

method for detecting N1 periods in the beginning of the night as well as awakenings and N1 572 

periods during the full night period; further, they can also validate the detection of N2 periods 573 

by using the appearance of specific graphoelements (spindles, k-complexes).  574 

All of the above mentioned facets make our method a unique solution that can be used to micro 575 

measure the varying alertness levels and thereby providing a valuable contribution to the study 576 

of both cognitive and resting state EEG experiments at large. 577 
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6.  Supplementary methods 694 

6.1. Vertex wave detectors 695 

The two kinds of vertex waves depicted in Fig 2(B) are detected using the algorithm in Fig 8(A). 696 

As there was no online database available for vertex sharp waves it was not validated 697 

independently. 698 

6.2. Spindle detectors 699 

The spindles are detected using the algorithm in Fig 8(B). The algorithm was validated against 700 

an online database (DREAMS) (Devuyst et al., 2011) The data in the .edf format was first 701 

converted into EEGLAB format and was filtered from 0.5 - 20 Hz. The data was further 702 

resampled to 100 Hz and further epoched for each 4 sec. The gold standard dataset was created 703 

by merging the annotations from two experts for all the eight excerpts in the database. Our 704 

spindle detection algorithm was then validated against this gold standard along with state of the 705 

art methods that have already been validated against the same database (Devuyst et al., 2011; 706 

Tsanas and Clifford, 2015) 707 

6.3. K-complex detectors 708 

The Kcomplexes are detected using the algorithm in Fig 8(C). The approach developed here is 709 

similar (in terms of minima detection) to detectors developed elsewhere (Lajnef et al., 2015). 710 

The algorithm was validated against an online database (DREAMS) (Devuyst et al., 2010). The 711 

data in the .edf format was first converted into EEGLAB format and was filtered from 0.5 - 20 Hz. 712 

The data was further resampled to 100 Hz and further epoched for each 4 sec. The gold 713 

standard dataset was created by merging the annotations from two experts for the five excerpts 714 

in the database. Our kcomplex detection algorithm was then validated against this gold standard 715 

along with state of the art methods that have already been validated against the same database 716 

(Devuyst et al., 2010) 717 
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 718 

Fig 8: (A) Vertex wave detector algorithm. The preliminary step involves resampling, filtering and 719 

scaling of the signal to identify the peaks in the signal. Further the specific characteristics of the 720 

peaks are used to identify mono and biphasic vertex waves. (B) Spindle detector algorithm. The 721 

preliminary step involves resampling and using wavelet transform to identify the regions with high 722 

probability of occurrence of spindle waves. Further the specific characteristics of the waves are 723 

used to prune them. (C) K-complex detector algorithm. The preliminary step involves resampling, 724 

filtering and scaling of the signal to identify the peaks in the signal. Further the specific 725 

characteristics of the peaks are used to identify k-complex waves. 726 
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