
 1 

Cross-species systems analysis of evolutionary toolkits of neurogenomic 

response to social challenge 

Michael C. Saul1, Charles Blatti1,2, Wei Yang1,2, Syed Abbas Bukhari1,3, Hagai Y. Shpigler1,4, 
Joseph M. Troy1,3, Christopher H. Seward1,5, Laura Sloofman1,6, Sriram Chandrasekaran7, 
Alison M. Bell1,3,8,9, Lisa Stubbs1,3,5,9, Gene E. Robinson1,9,10, Sihai Dave Zhao1,11,*, and Saurabh 
Sinha1,2,10,*.  

Affiliations: 1 Carl R. Woese Institute for Genomic Biology; 2 Department of Computer Science; 3 
Interdisciplinary Informatics Program, University of Illinois at Urbana-Champaign, Urbana, IL 
USA. 4 Department of Ecology, Evolution and Behavior, Hebrew University, Jerusalem, Israel. 5 
Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 
Urbana, IL USA. 6 Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY 
USA. 7 Biomedical Engineering, University of Michigan, Ann Arbor, MI USA. 8 Department of 
Animal Biology; 9 Neuroscience Program; 10 Department of Entomology; 11 Department of 
Statistics, University of Illinois at Urbana-Champaign, Urbana, IL USA. 

* To whom correspondence should be addressed. 

Address correspondence to: 

Sihai Dave Zhao: email: sdzhao@illinois.edu  

Saurabh Sinha: email: sinhas@illinois.edu 

KEYWORDS: Comparative Genomics, Animal Behavior, Transcriptomics, Social Behavior, 
Social Challenge, Systems Biology, Coexpression, Honey Bee, Mouse, Three-Spined 
Stickleback 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/219444doi: bioRxiv preprint 

https://doi.org/10.1101/219444


 2 

ABSTRACT 

Social challenges like territorial intrusions evoke behavioral responses in widely diverging 

species. Recent work has revealed that evolutionary “toolkits” – genes and modules with 

lineage-specific variations but deep conservation of function – participate in the behavioral 

response to social challenge. Here, we develop a multi-species computational-experimental 

approach to characterize such a toolkit at a systems level. Brain transcriptomic responses to 

social challenge was probed via RNA-seq profiling in three diverged species – honey bees, 

mice, and three-spined stickleback fish – following a common methodology, allowing fair 

comparisons across species. Data were collected from multiple brain regions and multiple time 

points after social challenge exposure, achieving anatomical and temporal resolution 

substantially greater than previous work. We developed statistically rigorous analyses equipped 

to find homologous functional groups among these species at the levels of individual genes, 

functional and coexpressed gene modules, and transcription factor sub-networks. We identified 

six orthogroups involved in response to social challenge, including groups represented by 

mouse genes Npas4 and Nr4a1, as well as common modulation of systems such as 

transcriptional regulators, ion channels, G-protein coupled receptors, and synaptic proteins. We 

also identified conserved coexpression modules enriched for mitochondrial fatty acid 

metabolism and heat shock that constitute the shared neurogenomic response. Our analysis 

suggests a toolkit wherein nuclear receptors, interacting with chaperones, induce transcriptional 

changes in mitochondrial activity, neural cytoarchitecture, and synaptic transmission after social 

challenge. It reveals systems-level mechanisms that have been repeatedly co-opted during 

evolution of analogous behaviors, thus advancing the genetic toolkit concept beyond individual 

genes.  
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INTRODUCTION 

A pivotal idea arising from evolutionary developmental biology is that across the bilaterian clade, 

the same signaling and transcription factor genes, known as “toolkit” genes, underlie the 

patterning of basic morphological features such as the body plan and the eye (Carroll et al. 

2005). This provides a conceptual framework for increasingly detailed explanations of 

developmental patterning in specific model organisms (Wilkins 2002). Moreover, its success has 

motivated researchers to ask if the toolkit framework, where common genetic programs 

coordinate fundamental processes and undergird shared phenotypes, is also applicable to 

studies of behavior (Rittschof & Robinson 2016; Toth & Robinson 2007). 

Studying toolkits for behavior poses numerous challenges including: the relative paucity of 

detailed and directly comparable genetics and genomics datasets for behaviorally relevant 

phenotypes in most animal species, difficulties in defining correspondence between behaviorally 

relevant phenotypes in diverged species from different ecological contexts, and ambiguity 

regarding brain regions and other tissues where shared behaviorally relevant molecular 

mechanisms may manifest. Further, behaviors, being transitory and directly observable only 

while an animal is living, cannot be as readily gleaned from fossils as developmental 

phenotypes (Chen et al. 2013), giving us little evidence from the distant past that contextualizes 

what we observe in extant species.  

In an example of an evolutionary approach, our group recently studied whether shared gene 

expression correlates constitute a toolkit for the neural response to a territorial intrusion by a 

conspecific – more generally referred to as a social challenge – in the mouse, the three-spined 

stickleback fish, and the honey bee (Rittschof et al. 2014). These three highly diverged model 

social species have well-assembled genomes, providing ample technical resources for detailed 

comparisons of functional genomic correlates. Further, phylogenetic analyses strongly suggest 

convergent evolution of relatively sophisticated social phenotypes for these species (Kapheim et 

al. 2015; Woodard et al. 2011). Though a toolkit would be derived within each individual 

species, it would contain a common core of conserved components important for coordinating 

brain response to social contexts, and an argument for such a toolkit requires the identification 

of shared functional correlates. Accordingly, we found robust transcriptional responses in brain 

gene expression profiles across these three species 20-30 minutes after exposure to the 

intruder and discovered several common molecular mechanisms associated with the intruder 

response. Though similar to evolutionary development studies in its pursuit of a “toolkit”, our 
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earlier study was notably different for its use of gene expression as the primary means to 

identify toolkit genes rather than direct or indirect measures of gene sequence. Similarly, other 

groups have discussed conservation in the transcriptional correlates of aggressive behavior 

within the vertebrate subphylum (Freudenberg et al. 2016; Malki et al. 2016) and in arthropods 

(Asahina et al. 2014). 

The success of the above studies in identifying shared mechanisms motivates a concerted effort 

towards more comprehensive and rigorous descriptions of behaviorally relevant evolutionary 

toolkits. However, further progress has been limited due to two factors. First, the prior studies 

measured expression at only a single time point after animals were exposed to the social 

challenge and relatively soon after exposure. Such a design cannot capture longer-acting 

genetic programs. This simple design also limits the power of this previous study to detect 

responses whose anatomical and temporal profiles are shaped by the unique cell biology, 

neuroendocrine, and metabolic properties of brains in these three species (Bukhari et al. 2017; 

Saul et al. 2017; Shpigler et al. 2017b). 

Second, evolutionarily shared mechanisms are likely to be found at various levels of 

organization that are not reducible to single genes, which have been the main level of 

comparative analyses thus far. Shared mechanisms embodied by gene orthogroups comprising 

multiple orthologs and paralogs, coexpressed modules, groups of genes dedicated to specific 

known biological processes, or regulatory sub-networks (Rittschof & Robinson 2016) have 

eluded discovery so far. Analytic tools that can identify such higher order functional entities 

across multiple species, brain regions, and time points in the face of complex gene orthology 

relationships among highly diverged species have been lacking.  

We report here the results of a detailed investigation of the shared molecular roots of social 

behavior, specifically neural response to social challenge, that remedies the above issues. We 

use both a powerful experimental design and a new suite of computational tools to identify 

mechanisms that are deeply shared across species at different levels of organization. For 

simplicity we will refer to these as homologous functional groups (HFGs); see Figure 1. 

The experimental design integrated datasets on mice, sticklebacks, and honey bees. Insights 

into the social neural transcriptomes for each of these individual species have been published 

(Bukhari et al. 2017; Saul et al. 2017; Shpigler et al. 2017b) and the transcriptomic data 

deposited in public databases (see Materials and Methods). However, these datasets were 
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sequenced in parallel, allowing for comparative analysis and discovery of shared mechanisms 

with minimal technical effects. Each dataset compared the neural transcriptomes of animals 

exposed to the social challenge of a conspecific resident-intruder with control animals exposed 

to a novel non-social stimulus of approximately similar size. Recording transcriptional events in 

a time series (30 min, 60 min, and 120 min after the exposure to the social challenge within 

each species) generated a holistic view of a dynamic transcriptional process while allowing for 

inter-species differences in the timing of transcriptional trajectory. These experiments probed 

discrete socially relevant brain regions in each species, which increased the specificity of RNA-

seq signals relative to sequencing whole brains as was done previously (Rittschof et al. 2014) 

while making no assumptions about whether these brain regions are homologous across 

species. Altogether, this experimental approach permits the elucidation of common molecular 

correlates of social behavior that may not seem important in individual species but rise to 

significance when looking at all three species together. 

The main goal of the present work is to integrate these cross-species data for overall 

comparative analysis and discovery of shared mechanisms. Such an approach allows the 

elucidation and unification of common molecular correlates of social behavior that may not 

seem important in individual species but rise to significance when looking at all three species 

altogether. We developed computational methods that allowed us to ascertain not only 

individual genes, but also coordinately expressed ontology terms, coexpression networks, and 

transcriptional regulatory cascades commonly associated with a behaviorally relevant stimulus 

across these distantly related species. Our work goes beyond existing cross-species studies of 

tissue-specific (Lin et al. 2014) or developmental time-course transcriptomes (Gerstein et al. 

2014); here, we not only identify shared transcriptomic patterns but also rigorously test and 

quantify their associations with brain responses while accounting for complex homology 

relationships between and within species. We also address open computational problems 

uniquely associated with a comparative systems biology study such as ours: identifying shared 

coexpression modules and transcriptional regulators in diverged species, as well as performing 

functional annotations of gene modules in a cross-species manner that accounts for available 

gene orthology information. 

We report below the discovery of significant shared mechanisms at varying levels of molecular 

organization, later discussing our conclusions from the aggregate of evidence at multiple levels 

of abstraction from genes to systems. 
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MATERIALS AND METHODS  

Social Challenge Exposure, Sequencing, and Identification of Differentially Expressed 
Genes 

The results described derive from three separate experiments that proceeded in parallel 

previously in three different species. Briefly, within each species, animals were exposed to 

either a conspecific resident-intruder (challenged) or a neutral non-social stimulus of roughly 

equal size and shape (control). For details about the specific experimental paradigms used 

within each individual species, see our previous work (Bukhari et al. 2017; Saul et al. 2017; 

Shpigler et al. 2017b). After exposure to either challenge or control stimulus, we waited either 

30 min, 60 min, or 120 min to collect brains for transcriptomic data within each species. 

RNA-seq data were collected as described previously (Bukhari et al. 2017; Saul et al. 2017; 

Shpigler et al. 2017b). The data for these three sets are deposited in the GEO under accession 

numbers: GSE85876 (honey bee), GSE80346 (mouse), and GSE96673 (three-spined 

stickleback). In each species, we used a 1 CPM cutoff for an equivalent of the smallest group 

size for expression, as proposed in the edgeR documentation (Robinson et al. 2010). DEGs for 

each time point compare transcriptomes of challenged (experimental) to neutral (control). FDR 

thresholds from each individual species paper – 5% for bee, 10% for mouse, and 10% for 

stickleback – were used to compile the DEG lists (Figure 1A). We chose a lower FDR threshold 

for the honey bee because its experimental design was more powerful and therefore produced 

more DEGs. 

OrthoDB 

Comparing DEGs between species requires a reliable orthology map between these three 

species. Using the raw data from OrthoDB v8 (Kriventseva et al. 2015), we first filtered for the 

three species of interest. We then identified the metazoan level orthogroups present within all of 

the three individual species used in this experiment, a total of 4,982 orthogroups. We found all 

paralogs inside of each orthogroup for the individual species, which brought us to a total of 

10,158 genes in mouse, 6,725 genes in bee, and 10,869 genes in stickleback. The scripts used 

to annotate these orthogroups have been uploaded to GitHub 

(https://github.com/msaul/three_species_orthology).  
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Figure 1: Summary of (A) dataset and (B) methods used within the paper to assess homologous function 
groups (HFGs). A) Description of dataset constituting multiple calls of differentially expressed genes 
(DEGs) within each brain region assayed for each species. Honey bee DEGs are called at FDR < 0.05 
while mouse and stickleback DEGs are called at FDR < 0.10. B) Schematic of HFG analysis. Multiple 
methods of HFG identification utilized included: genes and orthogroups, functional terms, gene networks, 
and transcriptional regulatory networks (TRNs) and enrichment. HFGs are highlighted in green. Once 
HFGs were identified, enrichment of DEGs swithin each species was assessed prior to calculation of 
cross-species simultaneous enrichment. 
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Multi-scale characterization of conserved molecular basis for analogous cross-species 
phenotype 

We probed for an evolutionary toolkit for social challenge response at multiple levels of 

molecular organization in a uniform and systematic manner. For each level of organization – 

individual genes, cellular processes, coexpression modules, and TF regulons – we first 

identified HFGs (Figure 1B) in the three species as sets of genes that exhibited intra-species as 

well as inter-species commonality, e.g., involvement in the same cellular process, being 

paralogs or orthologs of each other, etc. We then tested each HFG for association with 

phenotype across all three species (see below). This systematic two-step approach is a novel 

feature of our work, and while our previous work (Rittschof et al. 2014) reported an initial use of 

the approach, it is developed fully in this work with a focus on statistical rigor. 

Identifying orthogroups with a conserved response to social challenge 

We identified a given HFG as associated with phenotype if its constituent species-specific gene 

sets are simultaneously enriched in phenotype-associated genes. To test for this simultaneous 

enrichment, we combined enrichment p-values obtained from each gene set, then tested the 

significance of the combined p-value by simulating a null distribution according to a precisely 

specified null model. 

In each species, for each orthogroup we only considered genes in the orthogroup and in the 

corresponding species’ gene “universe”, that is, the full complement of genes expressed above 

a threshold in each species. Under the null hypothesis of no orthogroup activity in response to 

social challenge, we modeled the number of DEGs contained in an orthogroup as a 

hypergeometric random variable. We tested if each orthogroup contained more DEGs from that 

species than expected by chance, using a one-tailed hypergeometric test. We did not separate 

brain region- and time point-specific DEGs within each species at this stage of analysis. This 

resulted in three p-values for each orthogroup, 𝑝"##, 𝑝$%&'#, and 𝑝()'*, which we then 

aggregated using Fisher’s combination test statistic 𝑇 = −2 ln 𝑝"## − 2 ln 𝑝$%&'# − 2 ln 𝑝()'*. 

For each orthogroup triplet, we calculated the p-value of the test statistic T under the reasonable 

assumption that the 𝑝"##, 𝑝$%&'#, and 𝑝()'* were statistically independent. If they were uniformly 

distributed, classical theory gives that T would be 𝜒23-distributed under the null hypothesis that 

none of the three orthogroups was responsive to social challenge. However, due to the discrete 
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nature of the hypergeometric variables from which the 𝑝"##, 𝑝$%&'#, and 𝑝()'* were calculated, 

we resorted to simulations to calculate the true p-value of T. We simulated 5 million instances of 

the hypergeometric variables for each orthogroup in each species under the null hypothesis and 

calculated the p-value of each orthogroup triplet’s T using the simulated distribution. 

Technically, the alternative hypothesis of this test is that there is at least one species in which 

the corresponding orthogroup is enriched in social challenge DEGs. This does not exactly 

match the conservation hypothesis, which should state that all orthogroups in all three species 

are enriched in DEGs. However, this latter hypothesis corresponds to a composite null 

hypothesis, which is difficult to formally test without sacrificing a great deal of statistical power. 

Here we instead test the simpler sharp null hypothesis where all orthogroups are inactive, it is 

known that the test statistic T that we have chosen is oriented toward the desired alternative 

hypothesis where all three orthogroups are enriched in DEGs. Thus, our tests are oriented 

toward the desired conservation hypothesis. 

Identifying GO terms and TF orthogroups with a conserved response to social challenge 

We downloaded GO annotations for mouse and stickleback from Ensembl Biomart (Ensembl 

v83, Kinsella et al. 2011) and for bee from Ensembl Metazoa Biomart (v29, Kinsella et al. 2011) 

and considered only the 341 terms that contained at least 5 genes as HFGs. We used our 

orthogroup analysis method, described above, to identify terms that were significantly enriched 

in DEGs in multiple species. TRNs were reconstructed for each individual species individually 

as previously described (Bukhari et al. 2017; Saul et al. 2017; Shpigler et al. 2017b). In each 

species, for each orthogroup of TFs, we collected the gene targets of all TFs in the orthogroup 

into a single set. We then used our orthogroup analysis method to identify TF orthogroups 

whose target sets were enriched in DEGs in multiple species as HFGs. 

CNSRV 

We developed a method to discover homologous gene coexpression modules across divergent 

species as a method of ab initio discovery of HFGs. This was necessitated by our multi-scale 

analysis strategy but may also be of independent interest. Our module inference method, called 

“Common NetworkS ReVealed” (CNSRV), is closest in spirit to the OrthoClust method (Yan et 

al. 2014), but uses a different score for the quality of cross-species modules. This score helps 

avoid a bias towards large or small modules that is commonly seen with existing methods of 

module discovery (Langfelder & Horvath, 2008). We performed systematic assessments to 
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demonstrate that our methods led to less extreme module sizes (Supplementary Figure SM2) 
and also found the resulting modules to be more statistically enriched for Gene Ontology terms 

(Supplementary Figure SM3). The code for CNSRV has been deposited in GitHub 

(https://github.com/weiyangedward/CNSRV). For a full description of CNSRV and its 

evaluations, see Supplementary Methods. We outline its main steps below. 

Construction of coexpression networks 

For each species, we first calculated coexpression of gene pairs as the Pearson correlation of 

their expression values in a specific brain region at different time points after exposure 

(including intruder-exposed as well as control animals) and retained pairs that had correlation 

coefficient above 0.7 in all brain regions considered for that species.  

Cross-species coexpression module detection 

The algorithm partitions the genes in each species’ coexpression network into K = 20 non-

overlapping clusters, referred to by identifiers 1, 2, … K, such that cluster i in one species 

“corresponds to” clusters labeled i in the other species. The algorithm seeks to find partitions 

such that (1) clusters in each species exhibit “modularity” (Newman 2006) – high density of 

within-cluster coexpression edges compared to cross-cluster density of such edges, and (2) 

corresponding clusters in a pair of species exhibit high density of orthology edges (an orthology 

edge is created for any pair of genes in the same orthogroup from the two species). To meet 

these two goals, the CNSRV method attempts to maximize the following objective function: 

𝑸 = (𝟏 − 𝝀)9 9𝒘;𝒌𝒔𝒍𝒐𝒈𝟐(𝒗;𝒌𝒔)
𝑲

𝒌D𝟏

𝑺

𝒔D𝟏
+ 	𝝀9 9 9 𝝎;𝒂𝒃

(𝒂,𝒃)∈𝑶𝒓𝒕𝒉(𝒊,𝒋,𝒌)𝒊,𝒋∈[𝟏..𝑺],𝒊V𝒋	

𝑲

𝒌D𝟏
 

Here S is the number of species, K is the desired number of clusters. 𝑤;X is the normalized count 

of coexpression edges in cluster k of species s, defined as 𝑤;X' = 𝑤X' 𝐸'⁄ , where 𝑤X' is the 

number of coexpression edges in cluster k of that species and 𝐸' is the total number of edges in 

that species. Similarly,	𝑣\X' is the normalized count of coexpression edges connected to nodes in 

cluster k of species s, defined as 𝑣\X' = 𝑣X' 𝐸'⁄ , where 𝑣X' is the count of coexpression edges 

incident to nodes in cluster k in that species. (𝑎, 𝑏) refers to any pair of orthologous genes from 

species i and j such that both genes are in cluster k of their respective species. To normalize the 

number of orthologous edges from many-to-many gene mappings, 𝜔;`" = 1 2⁄ (1 𝑑`⁄ + 1 𝑑"⁄ ) 
where 𝑑` is the number of orthologous edges from gene 𝑎 in species 𝑖 to genes in species 𝑗. 
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The two terms in this formula, representing the “modularity” and “orthology” goals respectively, 

are weighted by factors of  l and (1 - l) respectively. We chose a value of l = 0.05 to provide a 

suitable balance between the coexpression modularity and cross-species sharing aspects of our 

desired gene modules (Supplementary Figure SM1).  

The objective function is maximized with a Simulated Annealing algorithm. Initially, genes are 

assigned random cluster labels from 1 to K and the “temperature” variable is set to 10. In each 

proposed move, a gene is selected at random and assigned a different cluster label. The 

objective function is re-evaluated, “good” moves that generate a better score are accepted, 

whereas “bad” moves are rejected with probability that depends on the score of the proposed 

reassignment and the temperature variable. Specifically, the probability of accepting a proposed 

move that generates a new clustering with score Qnew, assuming the current score is Qcur, is 

given by min(1, (Qnew/Qold)T), where temperature T changes across iterations according to the 

cooling schedule 𝑇Xef = 𝛼𝑇X, where 𝛼 = 0.9, and k is the iteration index. This results in bad 

moves being rejected with low probability in earlier iterations (when the “temperature” is higher), 

and with higher probability in later iterations. The iterative procedure stops once no good move 

can be found after certain amount of attempts, or a pre-determined number of iterations have 

been performed. 

Identifying and annotating gene coexpression modules with a conserved response to 
social challenge 

We used 19-df chi-square tests of independence to test if the DEGs in each species/brain 

region/time point combination were distributed randomly across the 20 modules. A non-random 

distribution indicates that exposure to social challenge results in certain modules being more 

activated than others. To identify the active ones, we used post-hoc hypergeometric enrichment 

tests in the species/brain region/time point combinations with significant chi-square tests. 

It is not clear immediately clear how to annotate these active modules in a way that also 

accounts for the available orthology information across the species. This is because annotations 

for the same module can change depending which species is considered. To address this issue, 

we employed a multi-species extension of our previously reported DRaWR tool (Blatti & Sinha 

2016, see Supplemenatary Methods for details). DRaWR takes a heterogeneous biological 

network with gene and annotation nodes and ranks all annotation nodes in the network for their 

proximity to a set of gene nodes of interest by using random walks (Figure 2). We constructed a 
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network containing “gene nodes” representing genes from all three species and “annotation 

nodes” that represent Gene Ontology annotations (obtained from Biomart for Ensembl v83, 

Kinsella et al. 2011) and Pfam domains (whose presence was predicted using HMMER, Finn et 

al. 2011). Edges connected genes with their properties (GO annotations and Pfam domains), 

and also connected homologous pairs of genes from the same or different species. For a given 

module, we executed the DRaWR random walk with restarts from module genes from all three 

species, so that the method is also able to “walk” from a gene to its ortholog(s) in other species. 

Separately, we also executed the random walk with restarts from module genes of each species 

individually, and selected annotation nodes that were ranked highest across all four restart 

configurations. As such, an annotation that is highly ranked by our multi-species DRaWR 

technique is either enriched in module genes from multiple species or enriched in orthologs of 

those genes (even if it is not enriched in the module genes themselves), or both. We also 

required that the reported annotations be significantly enriched (p-value < 0.05 using one-sided 

Figure 2: Schematic of heterogeneous knowledge network enrichment using cross-species DRaWR. In 
brief, the algorithm operates in 3 steps: 1) Construct a heterogeneous network consisting of edges 
connecting gene nodes with one another within species (paralogy relationships in this dataset), with one 
another between species (cross-species orthology information in this dataset), and with annotations 
features (Gene Ontology terms and Pfam domains in this dataset). 2) Using a random walk with restarts 
starting on the whole gene set, identify features that are frequently traversed and weight them 
appropriately. 3) Using a random walk with restarts on the differential expression gene set, identify 
features that are more frequently traversed than in all genes. 
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Fisher exact test) in at least one of the three species. To our knowledge, the resulting “multi-

species DRaWR” algorithm is the first method capable of functional annotation of gene sets in a 

cross-species manner, making it ideal for identifying HFGs across distantly related species. 

RESULTS 

Brain transcriptomic response to social challenge in three diverged species shares 
several orthologous gene groups 

We profiled gene expression by sequencing mRNA at 30 min, 60 min, or 120 min after exposure 

to an intruder from discrete brain regions chosen for each species: the mushroom bodies in 

honey bee; the amygdala, frontal cortex, and hypothalamus in mouse; and the diencephalon 

and telencephalon in stickleback. We considered only genes that were sufficiently expressed in 

these RNA-seq experiments for downstream analysis 10,701 in honey bee, 15,388 in mouse, 

and 17,435 in stickleback. Differentially expressed genes (DEGs) were obtained by comparison 

of intruder-exposed animals to control animals in matched conditions (see Materials and 
Methods), providing three sets of DEGs in honey bee, nine sets in mouse, and six sets in 

stickleback; these results have been reported elsewhere as individual species studies (Bukhari 

et al. 2017; Saul et al. 2017, Shpigler et al. 2017b) and are summarized in Figure 1A, but this is 

the first time that these data have been analyzed and discussed in a comparative context. 

These DEG sets varied in size between 36 genes (mouse amygdala, 60 min) to 1,151 (honey 

bee mushroom bodies, 120 min). 

We were first interested in whether the same (orthologous) genes were associated with social 

challenge responses across these three species. However, the great evolutionary divergence of 

these species precludes unambiguous ortholog assignments at the gene level. We instead used 

orthologous groups (“orthogroups”) of genes as our fundamental unit of analysis. A resulting 

major analytical challenge is that most orthogroups contain different numbers of paralogs in the 

genomes of each individual species, and furthermore different numbers of brain regions were 

assessed in each species. These challenges make it difficult to ensure a fair comparison across 

species. Overcoming these issues requires carefully designed statistics, and existing 

approaches to this type of analysis, such as the one we previously employed in ref. (Rittschof et 

al. 2014), cannot be applied. To address this problem, we developed a method to identify 

orthogroups with the strongest evidence for activity in multiple species, where activity was 

measured by the proportion of DEGs, at any time point and brain region, within the orthogroup 
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in each species (see Materials and Methods). Our procedure is based on another algorithm we 

recently developed called Orthoverlap (Shpigler et al. 2017a) and offers stringent control of false 

positives. 

We obtained 4,982 orthogroups common to the three species from the OrthoDB database 

(Kriventseva et al. 2015), and our method identified six orthogroups that were responsive to a 

social challenge in all three species at FDR ≤ 0.10 (Figure 3, Supplementary Table 1). Three 

of the six contained at least one DEG in each of the species. Group EOG80K992 (p-value ≤ 1 x 

10-7) – which includes the mouse genes F5, Nrp2, Sned1, and Vwf – is potentially involved in a 

deeply conserved immune response (Chang et al. 2012), but is also related to neurite outgrowth 

(Hey-Cunningham et al. 2013) and axon guidance (Klagsbrun & Eichmann, 2005). Group 

EOG8THX4X (p-value = 8.2 x 10-6), which includes the mouse gene Npas4, is a gene that is 

involved in activity-dependent development of synapses (Lin et al. 2008) and that regulates the 

balance between GABA and glutamate in neural circuits (Spiegel et al. 2014). This finding is 

consistent with our previous work (Rittschof et al. 2014; Saul et al. 2017), which also identified 

Npas4 as a central gene in the shared response to social challenge based on transcriptomic 

analysis. Finally, group EOG8TMSCQ (p-value = 1.6 x 10-5) includes subunits of the heat shock 

protein 70 family, which is nominally associated with stressors like heat shock that require 

protein refolding and that often acts in concert with co-chaperones in the heat shock protein 90 

family (Mayer & Bukau, 2005). Heat shock proteins from the Hsp70/Hsp90 complex have an 

additional documented but less discussed 

role, being necessary for ligand binding and 

subsequent signal transduction of nuclear 

receptors and other signaling molecules (Pratt 

& Toft, 2003). 

The remaining three statistically significant 

orthogroups include DEGs in two out of the 

three species. We still considered these 

orthogroups of potential importance. For 

example, group EOG8M934T (p-value = 9.6 x 

10-6), which includes the mouse gene Nr4a1, 

only contained DEGs in honey bee and 

mouse. However, one of the stickleback 

orthologs was detected at an FDR of 0.1012 
Figure 3: Orthogroups with significant conservation 
of differential expression across all three species. 
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(uncorrected p-value = 0.0189) in telencephalon at 30 min, only slightly higher than the 10% 

FDR cutoff used for that species. This group of Nr4a orthologs, orphan nuclear receptors with 

unknown ligands, thus appears to have common socially regulated activity. These receptors, 

which are known to regulate glucose metabolism and homeostasis (Close et al. 2013), have 

documented roles in memory and in object recognition (McNulty et al. 2012) and have been 

documented as related to social aggression in vertebrates previously (Malki et al. 2016). 

Additionally, group EOG8F4TSP (p-value = 2 x 10-7), which contains “zinc finger of the 

cerebellum” (Zic) proteins, contains at least one DEG in both mouse and stickleback, but not in 

honey bee. This group of C2H2 zinc finger proteins is known for their evolutionarily conserved 

roles in neural development (Aruga, 2004; Fujimi et al. 2006). 

Several of these findings rose to significance only because we collected RNA-seq data in three 

species. For example, Npas4 and Nr4a1, transcription factors involved in neural function and/or 

development, had not been identified as central molecules in the response to social challenge in 

each individual species (but see Rittschof et al. 2014; Shpigler et al. 2017b), but our 

comparative analysis showed that these genes were consistently involved in the brain’s 

response to challenge in all three of our species. The multiple brain region/time point resolution 

of these RNA-seq data also allowed us to identify shared genes that are transiently expressed, 

and/or expressed in a brain-region specific manner. For example, the heat shock orthogroup, 

which contains the chaperone gene Hspa1a, a potential cofactor with nuclear receptors like 

Nr4a1, was only active at 120 min in the mouse and in the diencephalon in the stickleback and 

would have been missed if not for the time course design. 

Social challenge triggers shared hormone-dependent neuronal signaling 

Shared mechanisms of the response to social challenge may emerge at higher levels of 

organization than that of individual genes. We asked if the same cellular processes (e.g., Gene 

Ontology terms) are transcriptionally active in response to social challenge, even if specific 

genes exhibiting differential expression are not strictly orthologs of each other. This allows us to 

be more sensitive to cellular mechanisms that may have evolved by convergence through 

repeated coopting the same biological pathways.  

We considered gene sets defined by 341 GO terms that contained at least 5 genes in each of 

the species studied here. Using the method that we developed for our analysis of shared gene 

orthogroups above, we identified those GO terms that had the strongest evidence for 
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enrichment of DEGs in each of the three species. We identified 66 GO terms at FDR ≤ 0.10 and 

37 GO terms at a more stringent threshold of FWER ≤ 0.10 (Table 1). These terms centered on 

five major categories: hormone activity, transmembrane transport, G-protein coupled signal 

transduction, synaptic activity, and extracellular matrix components. This analysis thus identified 

a set of processes that correspond to the same general functions, though they have a slightly 

different complement of genes between distantly related taxa. Specifically, these results suggest 

that hormone receptors, acting as nuclear receptors, signaling molecules and transcription 

factors, are essential in the coordination of the large-scale social challenge induced 

transcriptional responses that potentially cause remodeling of axons and dendrites, which lead 

to differences in synapse-related proteins, extracellular matrix proteins, transmembrane 

transporters, and the modulation of GPCRs for neural signaling. 

Table 1: Multiple cross-species-mapped GO terms show conserved activity in response to social 
challenge (includes Biological Processes, Cellular Components, and Molecular Functions). 

Biological Process GO ID – Term P Sim. 
Ratio (Hits / Total Genes in GO Term) 
Honey Bee Mouse Stickleback 

GO:0007186 – G-protein coupled receptor signaling 
pathway < 1 x 10–7 30/139 52/344 58/399 

GO:0007218 – neuropeptide signaling pathway < 1 x 10–7 5/17 20/70 2/6 
GO:0007601 – visual perception < 1 x 10–7 1/6 7/71 12/16 
GO:0055085 – transmembrane transport < 1 x 10–7 36/246 42/338 67/425 
GO:0007155 – cell adhesion 2.0 x 10–7 8/54 40/308 20/120 
GO:0006836 – neurotransmitter transport 4.0 x 10–7 4/16 11/28 3/28 
GO:0043401 – steroid hormone mediated signaling pathway 5.4 x 10–7 11/21 9/52 5/61 
GO:0007169 – transmembrane receptor protein tyrosine 
kinase signaling pathway 5.8 x 10–6 1/7 14/81 11/45 

GO:0006811 – ion transport 6.6 x 10–6 14/108 17/176 39/190 
GO:0006366 – transcription from RNA polymerase II 
promoter 7.2 x 10–6 2/22 41/314 0/6 

GO:0007165 – signal transduction 1.8 x 10–4 50/285 60/633 50/506 
GO:0007166 – cell surface receptor signaling pathway 2.9 x 10–4 3/16 17/132 11/58 
 

Cellular Component GO ID – Term P Sim. 
Ratio (Hits / Total Genes in GO Term) 
Honey Bee Mouse Stickleback 

GO:0005576 – extracellular region < 1 x 10–7 27/113 85/481 31/176 
GO:0005578 – proteinaceous extracellular matrix < 1 x 10–7 2/20 40/193 3/14 
GO:0005615 – extracellular space < 1 x 10–7 6/17 107/712 5/18 
GO:0005886 – plasma membrane < 1 x 10–7 8/58 203/2146 23/109 
GO:0005887 – integral component of plasma membrane < 1 x 10–7 3/7 83/562 1/9 
GO:0016021 – integral component of membrane < 1 x 10–7 119/785 245/3266 153/1212 
GO:0016459 – myosin complex < 1 x 10–7 8/23 2/39 21/53 
GO:0031012 – extracellular matrix 2.0 x 10–7 2/11 28/158 6/40 
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GO:0016020 – membrane 4.8 x 10–6 123/813 147/2521 174/1229 
GO:0045202 – synapse 6.7 x 10–5 1/25 31/236 1/6 
 

Molecular Function GO ID – Term P Sim. 
Ratio (Hits / Total Genes in GO Term) 
Honey Bee Mouse Stickleback 

GO:0003774 – motor activity < 1 x 10–7 8/23 2/51 21/53 
GO:0004930 – G-protein coupled receptor activity < 1 x 10–7 26/124 37/247 51/360 
GO:0005179 – hormone activity < 1 x 10–7 3/8 12/41 10/40 
GO:0005509 – calcium ion binding < 1 x 10–7 29/169 57/488 90/535 
GO:0043565 – sequence-specific DNA binding 2.0 x 10–7 32/133 44/385 48/365 
GO:0005515 – protein binding 1.2 x 10–6 279/1635 534/8766 417/3710 
GO:0003707 – steroid hormone receptor activity 1.4 x 10–6 10/18 9/45 5/62 
GO:0005216 – ion channel activity 2.4 x 10–6 5/65 11/109 30/119 
GO:0005198 – structural molecule activity 4.8 x 10–6 2/24 12/86 20/79 
GO:0005201 – extracellular matrix structural constituent 5.6 x 10–6 4/7 6/26 7/25 
GO:0020037 – heme binding 3.3 x 10–5 10/63 15/77 11/72 
GO:0004714 – transmembrane receptor protein tyrosine 
kinase activity 3.4 x 10–5 1/6 8/36 8/28 

GO:0005215 – transporter activity 4.6 x 10–5 13/95 19/110 16/122 
GO:0005506 – iron ion binding 2.6 x 10–4 8/60 16/95 11/82 
GO:0003700 – transcription factor activity, sequence-
specific DNA binding 2.7 x 10–4 40/168 51/637 38/346 

Shared gene coexpression modules responding to social challenge 

In addition to defining sets of genes using GO terms, we sought to identify coordinately 

expressed sets of genes, often called gene modules, ab initio, without the need for prior 

knowledge. Coexpressed gene modules have become a mainstay of systems-level analysis of 

transcriptional programs (Langfelder & Horvath 2008). Studies in evolutionary developmental 

biology have noted that modules underlying development are deeply conserved and are an 

important facet of the genetic “toolkit” concept (Peter & Davidson 2011; Rittschof & Robinson 

2016; Toth & Robinson 2007). Coexpressed modules are also conserved in other biological 

contexts across evolutionary spans as great as humans, flies, worms, and yeast (Stuart et al. 

2003), but typically have not been explicitly examined as an HFG representing shared 

responses to social stimuli.  

Using the new developed CNSRV method for cross-species analysis, we sought to discover 

broadly shared gene modules (see schematic representation of coexpressed shared modules in 

Figure 4A) from our multi-species brain transcriptomic data, then query if any of these are 

regulated by social challenge commonly across the three species. Our experimental design 

allowed us to characterize modules with coordinated anatomic and temporal expression profiles 
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in bee, mouse, and stickleback. We then combined these results with our DEGs to identify 

modules that were highly responsive to social challenge (see Materials and Methods). These 

Figure 4: Cross-species coexpression module algorithm (A) conceptual schematic and (B-D) results. A) 
Schematic of CNSRV, the cross-species clustering algorithm used to find conserved gene modules, 
which uses evidence derived from both coexpression and conservation to find gene modules enriched in 
conservation. B) Clustering results from CNSRV show that conserved modules, shown by the ancillary 
diagonals off the main diagonal, cluster better between species than do unmatched modules. C) 
Enrichment results for DEGs for CNSRV modules within each species reveal significant differences 
among clusters in all but honey bee mushroom body at 30 min (light gray). Multiple CNSRV clusters were 
enriched in individual species (dark gray), but two modules – 10 and 14, shown in green and dark orange 
respectively – show simultaneous enrichment for differential expression across all 3 species. D) 
Multidimensional scaling on semantic distances for GO terms enriched in the multi-species DRAWR 
results show clusters of GO terms commonly related to clusters 10 and 14 across all 3 species. Larger 
points associated with each GO term correspond to stronger p-values. Gray clouds correspond to a high-
level biological description of the GO terms within each cluster annotated by the authors. 
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represent shared core regulatory programs, where conservation is identified at the level of 

coexpressed modules rather than individual genes. 

With CNSRV, we identified 20 homologous modules (Figure 4B), each ranging between 140 

and 523 genes in size (see Materials and Methods and Supplementary Table 2). These 

modules show both dense coexpression within modules in individual species (Figure 2B, central 

diagonal) and elevated frequency of orthology relationships between corresponding modules 

(Figure 2B, ancillary diagonals). Next, for each combination of brain region and time point in 

each species, we tested if DEGs were differentially distributed among the modules (see 

Materials and Methods) and found this to be the case (FDR ≤ 0.10) for all but one of the 18 

species/brain region/time point combination (Figure 4C). Within these 17 significant 

combinations of region, time, and species, we then conducted post-hoc tests at FWER ≤ 0.10 

to identify significantly enriched modules. 

This analysis revealed that two gene coexpression modules, numbered 10 and 14, have shared 

social challenge-specific activity across all three species (Figure 4C). Specifically, module 10 is 

significantly associated with DEGs in honey bee mushroom body (60 min), mouse frontal cortex 

(120 min) and hypothalamus (30 min), as well as stickleback diencephalon (30 min) and 

telencephalon (30 min). Similarly, module 14 is enriched for DEGs in honey bee mushroom 

body (60 min), mouse hypothalamus (120 min), and stickleback diencephalon (60 min). We note 

that time points where the orthologous modules were observed often did not match between the 

species, which may have resulted from differences in the timing of the neurobiological 

responses of each species, underscoring the importance of multiple time points in the study 

design. 

While it was instructive to observe shared modules apparently regulated by social challenge, it 

was not as clear what biological functions these modules might be involved with. Functional 

annotation of these modules is difficult because a module in our context is not a single list of 

genes but a set of three different species-specific gene lists with strong mutual orthology, and 

standard gene set enrichment tests do not take into account the multi-species nature of the 

modules or their orthology relationships. To solve this problem, we adapted our previously 

developed tool DRaWR (Blatti & Sinha, 2016), which considers a network whose nodes are 

genes and annotations (e.g., Gene Ontology terms) and edges connect a gene to each of its 

annotations. It annotates a gene set by performing a random walk starting from nodes in the 

gene set and recording the annotation nodes that are visited most frequently. We extended this 
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approach here to annotate the orthologous CNSRV modules by constructing a network using 

module genes, GO annotations, and orthology edges from all three of our species (see 

Materials and Methods). 

Figure 4D shows the top functional annotations for modules 10 and 14, as revealed by a high 

DRaWR percentile score in every species, and with additional support from standard 

enrichment tests (hypergeometric test nominal p-value ≤ 0.05) in at least two of the three 

species. Module 14 comprises genes involved in cell-matrix adhesion, a process involved in 

neural development and plasticity (Murase & Schuman 1999); Rho GTPase binding, a process 

implicated in several aspects of neuronal development as well as neurological diseases (Govek 

et al. 2005); and actin binding, a process associated with function and plasticity of dendritic 

spines and synapses (Lin & Webb, 2009). Module 10 includes genes annotated for AMP 

deaminase activity and IMP biosynthesis, processes associated with purine balance in the 

brain. Purine balance and purinergic reception play well-known roles in neuronal repair and 

protection, acting as a bridge between neural signaling and the neural immune system in 

mammals (Skaper et al. 2010; Thauerer et al. 2012). Further, the enrichment of enoyl-CoA 

hydratase activity found in Module 10, as a step of fatty acid metabolism found in the Cellular 

Component and Molecular Function results, potentially bridges neural signaling and the 

metabolic processes previously observed in response to social challenge both across species 

and within individual species (Chandrasekaran et al. 2015; Rittschof et al. 2014). These 

coexpression modules bolster evidence from the shared DEGs and from the GO results in 

support of a shared transcriptomic response that includes structural proteins, heat shock 

proteins, and GPCR signaling proteins. 

Common transcription factor regulatory activities underlie social challenge 

The previous sections provide insight into the common biological processes and gene modules 

underlying the response to social challenge. We next sought to identify transcription factors 

(TFs) that act as master regulators of those processes and modules, using state-of-the-art tools 

for reconstruction of transcriptional regulatory networks in each species. In particular, we 

queried if the same TFs (or their paralogs) regulate the brain transcriptomic response to social 

challenge across species. TF-gene relationships are among the best studied and most widely 

accepted conception of gene networks, and they have been explored in the context of genetic 

toolkit studies in evo-devo (Rittschof & Robinson, 2016). The gene orthogroup analysis reported 

above (Figure 3) identified multiple TF orthogroups containing social challenge DEGs; however, 
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there may be TFs which do not detectably change in transcript expression upon social 

challenge but may for example be activated by post-transcriptional modifications. Regulatory 

targets for these TFs may nevertheless be socially regulated and the TFs reasonably 

speculated to have a role in the transcriptional response to social challenge. We reasoned that 

even if the TFs are not differentially expressed on social challenge, their regulatory targets may 

still be identifiable from a covariance between TF and gene expression across the many brain 

regions and time points assayed here, allowing us to test enrichment between each TF’s targets 

and social challenge DEGs.  

To explore this idea, we constructed transcriptional regulatory networks (TRNs) for each 

species using the previously developed tool ASTRIX (Chandrasekaran et al. 2011), which uses 

the ARACNE algorithm (Margolin et al. 2006) to identify putative TFs for a gene, then employs 

Least Angle Regression (Efron et al. 2004) to identify those TFs that best predict expression 

levels of that gene target in multiple experiments. In this case, each TRN had been 

reconstructed from different brain regions and time points within each individual species 

previously (Bukhari et al. 2017; Saul et al. 2017; Shpigler et al. 2017b). We used these 

previously reconstructed TRNs to identify TF orthogroups whose gene targets were enriched in 

DEGs in all three species, using the same method as described above for identifying the HFGs 

of shared gene orthogroups and GO terms. We considered only orthogroups that contained at 

least one TF with at least one gene target in each species. This analysis detects TFs important 

to social challenge even if the TFs themselves are not significantly differentially expressed. 

We detected six TF orthogroups (FDR ≤ 0.10) that are likely to be conserved regulators of the 

transcriptomic response to social challenge (Table 2). For instance, the orthogroup 

EOG8KWM99 comprises the mouse TF genes Pbx1 and Pbx3, for which the ASTRIX-derived 

TRN included 2 target genes in mouse, both of which are social challenge DEGs, 45 targets 

(including 3 DEGs) in stickleback and 25 targets (including 9 DEGs) in honey bee. Further, one 

orthogroup that includes the mouse neural development transcription factor genes Rax and 

Pax6 may be involved in the conserved regulation of the formation of new neurons from a 

neural stem cell lineage (Davis et al. 2003; Pak et al. 2014). Rax was identified as a 

transcriptional regulator in our earlier work (Rittschof et al. 2014). One particularly interesting 

TF, the orphaned nuclear receptor mouse gene Nr2e1, has been implicated in our previous 

cross-species work (Rittschof et al. 2014), in aggression in mice (Abrahams et al. 2005), and in 

aggression in flies (Davis et al. 2014). These results identify specific transcriptional regulators 

that appear to be important central regulators of the processes described in the above sections  
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Table 2: Conserved transcription factor expressed in the brain implicated as regulators of response to 
social challenge 

 Ratio (Hits / Total Targets)   
Orthogroup Honey Bee Mouse Stickleback p Mouse Gene Names 
EOG8JT1HM 1/3 12/84 30/128 0 Sp3, Klf16, Klf13, Klf10, Sp4, Klf4, 

Klf9, Sp1, Sp7, Klf5, Klf12, Klf7 
EOG873R3N 0/1 8/42 11/34 0.000004 Barx2, Nkx2-1, Hmx2, Hhex 
EOG8KWM99 9/25 2/2 3/45 0.0003072 Pbx3, Pbx1 
EOG86DNH2 5/9 0/1 1/1 0.0012816 Nr2e1 
EOG8JWWWP 4/5 1/6 0/6 0.0055148 Gsx1 
EOG81RRB5 5/105 1/2 9/42 0.0171374 Arx, Pax6, Rax 

and therefore constitute potential key shared master regulators of the transcriptional response 

to social challenge. 

DISCUSSION  

The evolution of gene regulatory programs is a subject of long-standing interest (Halfon & 

Michelson 2002) and has been studied by cross-species comparisons of cis-regulatory 

sequences (Sinha et al. 2004), TF-DNA binding (ENCODE Project Consortium 2012), as well as 

gene expression measurements in matched tissues and organs (Breschi et al. 2017; Gerstein et 

al. 2014; Lin et al. 2014). An important feature of our study was its explicit coupling of gene and 

gene network comparisons with objectively defined and analogous phenotypic states measured 

experimentally to identify shared mechanisms that may constitute a behavioral toolkit. We note 

that such an evolutionary toolkit, consisting of a non-unitary system of genes, does not require 

framing in the dichotomy of common descent versus convergence. It is instead possible that 

shared functions derive from redeployment and elaboration of ancestral gene modules into new 

contexts as has been observed in insect gene regulatory network evolution (Kazemian et al. 

2014, Suryamohan et al. 2016). 

Our approach utilizes an array of novel tools with a common theme of studying different tiers of 

organization for evidence of a shared genetic program: each test assays if groups of related 

genes – orthogroups, functional systems, coexpressed modules, or transcription factor regulons 

– have a non-random association with socially responsive genes expressed in the brain in 

multiple species. Our methodology for cross-species associations between HFGs and 

phenotypes can also be used in other contexts to identify similar broadly shared molecular 

systems in association with other phenotypes of interest. Moreover, the scope of such 

transcriptome-wide comparisons distinguishes this work from more directed studies of 
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regulatory evolution where expression and cis-regulatory divergence of individual genes was 

linked to morphological differences between species (Wray 2007). Our goal is similar to the 

work of (Malki et al. 2016), who compared aggression-related DEGs in brains of mouse and 

zebrafish, but our study pursues the goal through an experiment design wherein data were 

collected from multiple species in a parallel manner, addressing several key technical and 

statistical challenges in the process. 

One technical challenge observed in these data is the difficulty in matching gene expression 

sets across such long evolutionary distances. We note that time points where the orthologous 

modules were observed often did not match between the species, which may have resulted 

from differences in metabolic rates between the species. This observation underscores the 

importance of time series in the study design. Furthermore, it demonstrates that experimental 

designs in future studies must proceed carefully to identify matching expression sets across 

species. We were able to go beyond identification of differentially expressed genes and 

rigorously analyze coexpression relationships only because our experimental design included 

multiple brain regions and time points. Thus, the design gave us access to the higher order 

systems mechanisms mentioned above, significantly elaborating upon our earlier work 

(Rittschof et al. 2014). 

Integrating results from these multiple analytical levels, we propose a system of genes acting 

commonly in the adult brains of these diverged species to transduce social challenge stimuli into 

transcriptional and epigenomic responses. This is graphically summarized in Figure 5. It 

involves the integration of nuclear receptor signaling to drive the transcriptional regulatory 

events that result in changes in neural signaling observed after a social challenge. We 

speculate that because nuclear receptors are both liganded receptors and transcription factors, 

they act as key drivers of the large-scale transcriptional changes seen across all of these 

species. We further speculate that these transcriptional changes occur in concert with 

transcription factors commonly associated with neural development to drive neural signaling 

modulation, which likely take place through alterations in dendritic architecture, axon 

architecture, signaling molecules like GPCRs and ion channels, mitochondrial metabolism, or all 

of these processes simultaneously. 

In this pathway, we call specific attention to the signaling molecules, transcription factors, and 

nuclear receptors that can act as both. Specifically, the various homologs of Npas4, Nr2e1, and 

Nr4a1 are transcription factor genes well-known in neural response to stimuli (Abrahams et al. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/219444doi: bioRxiv preprint 

https://doi.org/10.1101/219444


 24 

2005, Kim et al. 2010; Maxwell & Muscat 

2006). We speculate that the ancestral 

versions of these genes, which were likely 

present in the most recent common 

ancestor of all living bilaterians, were 

potentially already active in the response 

to social challenge stimuli that was 

exhibited by their contemporaries around 

the time of the Cambrian explosion 

(Carbone & Narbonne 2014). Translating 

these gene expression patterns into 

knowledge about how the cellular systems 

inside the brain change in response to 

social challenge is an important next step. 

Such research will require careful work 

across species to identify important points 

of similarity as well as how these systems 

diverge. 

Though we discussed the role and 

neurobiological relevance of some of the 

above-mentioned systems in detail in our previous work – we described hormone receptors in 

sticklebacks (Bukhari et al. 2017), developmental transcription factors in mice (Saul et al. 2017), 

dendritic architecture in honey bees (Shpigler et al. 2017b), and GPCRs in all three species 

(Bukhari et al. 2017; Saul et al. 2017; Shpigler et al. 2017b) – the present work unifies these 

systems in their role in social responsiveness into a whole. The genes and systems-level 

mechanisms we proposed here as drivers of the response to social challenge constitute real, 

testable connections about a possibly conserved genetic program for the response to a social 

challenge, something that was lacking before this analysis. However, we note that these 

mechanisms may not be specific to social contexts, but may instead coordinate information from 

multiple contexts, and thus, the specificity of these gene sets for social challenge response also 

needs rigorous testing. 

Figure 5: Schematic representation of genes and gene 
sets found enriched in the brain’s response to social 
challenge across honey bees, stickleback fish and mice. 
Hypothesized pathway includes 1) nuclear receptor 
signaling interacting with heat shock/chaperones. 2) 
These nuclear receptors translocate across the 
membrane, interacting with well-known neurally active 
transcription factors to cause 3) alterations in 
transcription. These induce changes in 4) postsynaptic 
proteins and 5) mitochondrial function. 
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SUPPLEMENTARY MATERIALS 

Supplementary Methods (Supplementary_Methods.pdf): Detailed materials and methods for 

the CNSRV cross-species coexpression module discovery algorithm (includes Supplementary 
Figures SM1-3). 

Supplementary Table 1 (Supplementary_Table_1.xls): Orthogroups displaying significant 

cross-species enrichment in DEG lists. 

Supplementary Table 2 (Supplementary_Table_2.xls): CNSRV-derived cross-species 

coexpression modules. 
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