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ABSTRACT		

Cancer	cells	within	a	tumor	are	known	to	display	varying	degrees	of	metastatic	propensity	but	the	

molecular	basis	underlying	such	heterogeneity	remains	unclear.	We	analyzed	genome-wide	gene	

expression	data	obtained	from	primary	tumors	of	lymph	node-negative	breast	cancer	patients	using	a	

novel	metastasis	biology-based	Epithelial-Mesenchymal-Amoeboid	Transition	(EMAT)	gene	signature,	

and	identified	subtypes	associated	with	distinct	prognostic	profiles.	EMAT	subtype	status	improved	

prognosis	accuracy	of	clinical	parameters	and	statistically	outperformed	traditional	breast	cancer	

intrinsic	subtypes	even	after	adjusting	for	treatment	variables.	Additionally,	analysis	of	3D	spheroids	

from	an	in	vitro	isogenic	model	of	breast	cancer	progression	reveals	that	EMAT	subtypes	display	

progression	from	premalignant	to	malignant	and	pre-invasive	to	invasive	cancer.	EMAT	classification	is	a	

biologically	informed	method	to	assess	metastasis	risk	in	early	stage,	lymph	node-negative	breast	cancer	

patients.	

	

INTRODUCTION					

Metastasis	accounts	for	nearly	90%	of	cancer	related	mortality,	and	cancer	cells	within	a	tumor	are	

known	to	possess	different	metastatic	potentials	(Fidler	&	Kripke,	1977).	However,	the	molecular	basis	

underlying	the	observed	heterogeneity	in	metastatic	proclivity	remains	unclear	and	a	suitable	molecular	

classification	is	lacking.	Intrinsic	molecular	subtypes	of	breast	cancer	have	been	associated	with	distinct	

metastatic	predilections	for	one	organ	or	the	other,	but	are	not	necessarily	associated	with	an	increased	

metastatic	propensity	per	se	(Smid,	Wang	et	al.,	2008).	For	instance,	an	intrinsic	subtype	that	displays	a	

higher	rate	of	brain	metastasis	does	not	necessarily	mean	all	patients,	or	even	the	majority	of	patients	

diagnosed	with	that	subtype	of	cancer	will	go	on	to	manifest	with	metastatic	disease	in	the	brain.	Clearly	

other	factors,	independent	of	and	in	addition	to	those	that	determine	the	intrinsic	molecular	subtype	of	

the	cancer,	influence	its	invasive	potential	and	metastatic	propensity.		
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Although	implicated	in	cancer	progression	and	metastasis,	the	clinical	significance	of	processes	like	

epithelial-to-mesenchymal	transition	(EMT)	and	mesenchymal-to-amoeboid	transition	(MAT)	remains	to	

be	fully	appreciated.	EMT,	a	cellular	transformation	process	that	plays	a	key	role	in	embryonic	

development,	is	widely	considered	to	be	one	such	factor	influencing	metastasis.	Cancer	cells	derepress	

the	normally	silenced	EMT	molecular	program,	acquiring	malignant	properties	that	enable	them	to	

invade	tissues	surrounding	their	site	of	origin	thereby	effectively	spreading	and	colonizing	distant	sites	

(Thompson,	Paik	et	al.,	1992,	Yang	&	Weinberg,	2008).	Likewise,	MAT	is	another	process	that	plays	an	

important	role	in	embryonic	development	and	is	similarly	reawakened	by	cancers	during	the	invasion-

metastasis	cascade	(Wolf	&	Friedl,	2006,	Wolf,	Mazo	et	al.,	2003).		

	

Since	the	EMT	process	is	exploited	by	cancer	cells	progressing	to	metastasis,	there	have	been	several	

attempts	to	subtype	patient	tumors	based	on	an	EMT	signature,	but	these	have	not	been	successful	in	

demonstrating	a	discernible	difference	in	associated	breast	cancer	prognosis	(Marsan,	Van	den	Eynden	

et	al.,	2014,	Tan,	Miow	et	al.,	2014,	Taube,	Herschkowitz	et	al.,	2010).	Additionally,	for	cancer	cells	that	

have	already	transitioned	through	EMT	but	are	facing	microenvironmental	(e.g.	hypoxia)	or	xenobiotic	

(e.g.	chemotherapy)	stress,	MAT	may	be	an	effective	adaptive	response	to	bypass	the	stress	(Lehmann,	

te	Boekhorst	et	al.,	2017).	Indeed	a	recent	report	of	effectively	thwarting	metastatic	spread	through	

simultaneous	targeting	of	both	mesenchymal	and	amoeboid	motility	in	an	animal	model	of	cancer	

progression	appears	to	support	this	notion	(Jones,	Kelley	et	al.,	2017).	We	thus	hypothesized	that	the	

true	clinical	and	prognostic	significance	of	EMT	as	a	driving	process	in	cancer	progression	towards	

distant	metastasis	cannot	be	fully	appreciated	unless	it	is	considered	in	the	context	of	being	

complemented	by	the	conditional	occurrence	of	MAT	as	well.	Only	when	both	processes	are	considered	

to	coexist	and	undergo	plastic	interchange	triggered	by	environmental	pressures	can	the	clinical	

significance	of	both	be	recognized	and	prognostic	impact	demonstrated.	We	therefore	sought	to	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 11, 2018. ; https://doi.org/10.1101/219410doi: bioRxiv preprint 

https://doi.org/10.1101/219410
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

develop	a	more	inclusive	gene	expression	signature	that	accurately	captures	EMT,	MAT,	and	the	variable	

dynamic	co-occurrence	of	both	the	processes	in	the	same	tumor.	In	this	study	our	aims	were	to	i)	

elucidate	prognostic	subtypes	in	a	primary	tumor	based	on	an	EMT-MAT	continuum	that	captures	the	

heterogeneity	of	metastatic	propensity	and	ii)	to	more	comprehensively	define	biologically	informed	

subtypes	predictive	of	breast	cancer	metastasis	and	survival.		

	

We	constructed	a	gene	signature	(henceforth	referred	to	as	the	EMAT	signature)	by	combining	a	

previously	reported	signature	of	EMT	(Taube	et	al.,	2010),	derived	from	gene	expression	data	of	multiple	

distinct	EMT-inducing	perturbation	experiments	using	cancer	cells,	with	a	newly	generated	MAT	

signature,	derived	following	identical	methodology	to	minimize	derivation	bias.	This	gene	signature	was	

derived	purely	from	cancer	cells	as	our	objective	was	to	solely	gauge	the	potential	contribution	of	

cancer	cells	in	mediating	metastasis	independent	of	the	contribution	of	other	cells	in	the	tumor	

microenvironment	or	that	of	the	tumor	stroma.	We	utilized	this	new	EMAT	gene	signature	to	probe	

lymph	node-negative	human	primary	breast	cancer	gene	expression	datasets	and	were	able	to	delineate	

informative	subtypes	of	breast	cancer	that	possess	distinct	molecular	features,	morphology/motility	

phenotypes	and	metastatic	propensities.	While	EMT	or	MAT	signatures	on	their	own	could	not	identify	

clusters	of	distinct	prognosis,	their	combined	consideration	as	EMAT	subtypes	significantly	improved	

survival	prediction	of	standard	clinical	parameters	and	significantly	outperformed	prognosis	accuracy	of	

other	known	subtypes	of	breast	cancer	even	when	adjusting	for	treatment	variables.	Focusing	on	lymph	

node-negative	samples	allowed	us	to	identify	clusters	that	can	predict	clinical	outcome	at	an	early	

clinical	stage	of	cancer.	In	addition,	since	cancer	cells	may	utilize	different	mechanisms	to	promote	

metastasis	before	and	after	lymph	node	invasion,	we	studied	lymph	node-negative	and	positive	samples	

separately	and	found	the	clinical	characteristics	of	EMAT-defined	subtypes	to	be	largely	similar,	with	

some	key	differences.	Furthermore,	we	identified	transcription	factors	that	may	play	key	regulatory	
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roles	in	establishing	the	newly	identified	EMAT	subtypes	and	may	be	used	as	potential	biomarkers	for	

these	subtypes.	Finally,	the	identified	subtypes	were	validated	in	a	comparable	but	independent,	lymph	

node	negative,	treatment-naïve	dataset	and	their	enrichment	was	examined	in	an	established	and	

accepted	in	vitro	cell	line	3D	spheroid	model	of	molecular	drivers	of	breast	cancer	progression,	further	

confirming	that	EMAT	subtypes	reflect	the	progressive	cellular	transition	from	benign	to	malignant	and	

from	non-invasive	to	invasive	cancer.	Our	successful	demonstration	of	prognostic	stratification	of	breast	

cancer	patients	based	on	an	EMAT	signature	opens	up	exciting	avenues	for	future	research	into	the	

mechanisms	of	the	invasion/metastasis	cascade.	

	

RESULTS	

An	EMAT	gene	signature	predicts	clinical	outcome	in	breast	cancer	patients	

We	constructed	an	“EMAT”	gene	signature	comprising	a	list	of	253	previously	reported	EMT-related	

genes	(Taube	et	al.,	2010)	and	138	newly	derived	MAT-related	genes	obtained	through	analysis	of	

publicly	available	gene	expression	data	from	multiple	distinct	MAT-inducing	cell	perturbation	

experiments	(Taddei,	Giannoni	et	al.,	2014)	(see	Methods	and	Supplementary	Table	S1).	The	analyzed	

dataset	comprised	mRNA	gene	expression	profiles	and	clinical	data	corresponding	to	562	lymph	node-

negative	(LN)	breast	cancer	primary	tumors	from	the	METABRIC	study	(Curtis,	Shah	et	al.,	2012).	(We	

used	lymph	node	negativity	as	a	criterion	to	ensure	that	the	samples	were	obtained	during	early	clinical	

stages	of	the	invasion-metastasis	cascade.)	We	performed	hierarchical	clustering	of	samples	(see	

Methods),	represented	by	expression	levels	of	EMAT	genes	(Figure	1A),	evaluated	resulting	partitions	

with	n	=	3,	4,	or	5	clusters,	and	found	that	n	=	4	yields	the	best	grouping	of	samples	based	on	average	

silhouette	scores	(data	not	shown)	(Rousseeuw,	1987).	This	clustering	(Supplementary	Table	S2)	

provided	a	clear	separation	of	the	Kaplan-Meier	survival	curves	(p	=	2.42E-4,	log	rank	test,	Figure	1C),	

even	though	the	clustering	procedure	was	not	privy	to	survival	data.	In	addition,	univariable	and		
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Figure	1:	EMAT	clusters	and	their	characteristics.	(A)	EMAT	clusters	based	on	lymph	node-negative	METABRIC	samples	obtained	using	
hierarchical	clustering.	The	heatmap	shows	the	normalized	expression	of	EMAT	genes	(rows)	in	each	sample	(columns).	Sample	dendogram	
colors	are	chosen	to	match	those	of	Kaplan-Meier	plots	in	Figure	1C.	(B)	Characterization	of	samples	based	on	similarity	to	hESC,	PAM50	
subtypes,	ER,	PR	and	HER2	status,	stage,	grade,	and	type	of	treatment.	Spearman’s	rank	correlation,	scaled	between	0	and	1	using	min-max	
normalization,	is	used	as	the	measure	of	similarity	of	samples	to	hESC,	in	which	0	and	1	represent	least	similar	and	most	similar,	respectively.	
(C)	Kaplan-Meier	plots	corresponding	to	n	=	4	clusters.	The	heatmap	shows	the	relative	ranking	of	the	average	expression	of	four	biomarkers	in	
each	cluster	compared	to	other	clusters.	(D)	The	box	plots	show	the	distribution	of	hESC	similarity	of	the	samples	in	each	cluster.	The	similarity	
is	defined	as	the	Spearman’s	rank	correlation	(scaled	between	0	and	1)	between	expression	profiles	of	H1	hESC	lines	and	each	sample.	The	p-
values	(calculated	using	a	one-sided	t-test)	show	how	significant	the	differences	between	two	adjacent	EMAT	clusters	are	with	respect	to	their	
similarity	to	hESC.	The	significance	p-value	for	the	cluster	with	the	least	similarity	to	hESC	(EMAT1)	and	the	cluster	with	the	most	similarity	to	
hESC	(EMAT4)	is	p	=	1.7E-23.	

A)	

C)	

EMAT1	EMAT4	EMAT3	 EMAT2	

B)	

p	=	2.6E-7	

p	=	1.9E-2	

p	=	7.0E-8	

D)	
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multivariable	Cox	regression	analysis	(when	considering	clinical	parameters	and	treatment	variables)	

showed	that	these	clusters	provide	a	statistically	significant	prognostic	value	(Supplementary	Table	S3).	

We	refer	to	the	four	clusters,	in	decreasing	order	of	their	10-year	disease-specific	survival	(DSS)	

probabilities,	as	EMAT1,	EMAT2,	EMAT3	and	EMAT4.	Interestingly,	clusters	EMAT2	and	EMAT3	have	

very	similar	Kaplan-Meier	survival	curves	(Figure	1C),	even	though	their	gene	expression	profiles	are	

distinct	(indicated	by	orange	bar	in	Figure	1A).		

	

To	characterize	each	cluster	obtained	above,	we	examined	the	expression	of	CDH1,	VIM,	RHOA,	and	

JUP,	well-accepted	biomarkers	of	Epithelial	(E),	Mesenchymal	(M),	Amoeboid	(A),	and	collective	cell	

migration	morphologies	in	breast	cancer	(Weber,	Bjerke	et	al.,	2012),	respectively.	We	assessed	the	

expression	of	JUP	as	a	collective	cell	migration	marker	because	while	EMT	and	MAT	usually	manifest	as	

single	cell	migration,	both	epithelial	and	amoeboid	collective	cell	migration	have	also	been	observed	to	

contribute	to	the	metastatic	spread	of	cancer	cells	(Friedl	&	Wolf,	2008).	EMAT4,	the	cluster	with	the	

lowest	DSS	probability,	showed	M-like	characteristics	(VIM	was	over-expressed	in	this	cluster	compared	

to	the	other	three	clusters,	p	=	4.8E-8,	unpaired	two-tailed	t-test).	Cluster	EMAT3,	had	the	lowest	

average	expression	of	VIM	(p	=	3.7E-79)	and	the	highest	average	expression	of	CDH1	(p	=	1.3	E-3)	and	

JUP	(p	=	8.3E-6),	suggesting	that	early	onset	of	epithelial	collective	cell	migration	may	be	manifested	in	

this	group	of	patients.	EMAT2	had	the	highest	average	expression	of	RHOA	(p	=	3.8E-3),	suggesting	A-

like	characteristics.	Finally,	EMAT1	had	high	expressions	of	VIM	and	RHOA	but	low	expression	of	CDH1	

and	JUP,	with	the	average	expression	of	JUP	being	smallest	(p	=	3.9E-15)	in	this	cluster.	These	results	

indicate	existence	of	clusters	having	hybrid	characteristics	rather	than	discrete	E-,	M-	and	A-	subtypes	

and	emphasize	the	advantage	of	using	the	EMAT	signature	over	using	only	E,	M,	or	A	biomarkers	to	

distinguish	groups	of	patient	tumors	associated	with	distinct	prognosis.	It	is	worth	mentioning	that	

genes	most	differentially	expressed	in	each	cluster	(Bonferroni	adjusted	p	<	0.01,	t-test)	included	both	
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EMT	and	MAT	genes	for	all	clusters	(Supplementary	Table	S4),	suggesting	the	involvement	of	both	

signatures	in	identification	of	these	clusters.	

	

Our	finding	that	an	EMAT	signature	allows	grouping	of	patients	with	significantly	different	DSS	is	

particularly	interesting	in	light	of	previous	reports	where	EMT	gene	signatures	alone	failed	to	do	so	(Tan	

et	al.,	2014,	Taube	et	al.,	2010).	We	confirmed	these	previous	observations	in	our	dataset	by	clustering	

the	tumor	samples	based	on	the	expression	of	the	EMT	signature	(subset	of	the	EMAT	signature	above)	

using	hierarchical	clustering	into	two	clusters,	following	the	method	of	previous	studies.	We	noted	that	

biomarkers	of	Epithelial	(CDH1)	and	Mesenchymal	(VIM)	morphology	were	differentially	expressed	

between	these	two	clusters,	with	VIM	being	over-expressed	in	EMT1	(p	=	1.8E-69)	and	CDH1	over-

expressed	in	EMT2	(p	=	1.4E-2).	In	spite	of	this	distinction	of	biomarker	expression,	Kaplan-Meier	

analysis	(Supplementary	Figure	S1A)	did	not	show	a	significant	difference	between	the	clinical	outcomes	

of	these	two	groups	(p	=	0.28).	We	also	clustered	samples	based	on	the	expression	of	MAT	genes,	and	

noted	differential	expression	of	known	biomarkers	of	Mesenchymal	(VIM,	p	=	2.7E-7)	and	Amoeboid	

(RHOA,	p	=	6.4E-4)	morphology.	However,	Kaplan-Meier	analysis	(Supplementary	Figure	S1B)	did	not	

show	a	significant	difference	between	the	clinical	outcomes	of	these	two	groups	(p	=	0.56).	It	would	thus	

appear	that	while	both	EMT	and	MAT	processes	have	been	demonstrated	to	play	contributory	roles	in	

the	biology	of	metastasis,	when	considered	individually	they	cannot	completely	capture	the	diversity	

that	exists	in	the	metastatic	propensity	of	breast	tumors,	as	evidenced	by	their	lack	of	individual	

prognostic	value.		

	

EMAT	clusters	provide	prognostic	information	not	present	in	clinical	parameters	or	intrinsic	subtypes	

Next,	we	examined	whether	the	EMAT	clusters	are	associated	with	clinical	parameters	or	previously	

described	breast	cancer	subtypes	(Figure	1B).	Of	note	is	the	visually	apparent	enrichment	of	EMAT4,	the	
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cluster	with	worst	survival,	with	triple	negative	(negative	for	ER,	PR,	HER2)	and	basal-like	(PAM50	

subtype	(Parker,	Mullins	et	al.,	2009),	purple)	patients.	In	addition,	most	HER2	positive	patients	(green)	

appear	in	EMAT2.	Similarity	to	human	embryonic	stem	cells	(hESC),	representing	unicellular	and	stem-

like	characteristics,	has	been	previously	shown	to	be	associated	with	elevated	metastasis	risk	(Ben-

Porath,	Thomson	et	al.,	2008).	Figure	1D	shows	that	EMAT	clusters	display	worsening	prognosis	

proportionate	to	their	degree	of	similarity	to	hESC,	consistent	with	this	theory.	This	was	despite	the	fact	

that	derivation	of	the	EMAT	gene	signature	was	not	designed	to	intentionally	enrich	for	stem	cell	traits.	

This	provides	further	evidence	in	support	of	the	EMAT	clusters	potentially	representing	a	progressive	

transition	from	less	stem-like	to	more	stem-like	cell	states,	and	less	invasive	to	more	invasive	modes	of	

cancer.			

	

To	assess	the	quantitative	significance	of	the	above	associations,	we	computed	the	enrichment	p-value	

(hypergeometric	test)	of	each	EMAT	cluster	with	respect	to	tumor	size,	PAM50	subtypes,	and	receptor	

status	(Figure	2A-C).	While	the	presence	of	small	tumors	in	clusters	with	good	prognosis	is	expected,	the	

enrichment	of	EMAT1	(the	cluster	with	the	best	prognosis)	in	large	tumors	is	particularly	interesting,	as	

it	suggests	that	large	tumors	do	not	necessarily	result	in	poor	survival	in	the	absence	of	necessary	

metastatic	mechanisms	(Comen,	Norton	et	al.,	2011).	Figure	2B	shows	that	EMAT1	was	moderately	

enriched	in	the	‘normal-like’	PAM50	subtype	(p	=	5.59E-3),	EMAT2	in	Luminal	A	(p	=	1.84e-06),	EMAT3	in	

Luminal	B	(7.34E-12),	and	EMAT4	in	basal-like	subtype	(p	=	7.73E-41).	It	is	critical	to	note	that	in	spite	of	

these	enrichments,	the	EMAT	clusters	are	distinct	from	these	molecular	subtypes.	Figure	2D	shows	that	

68%	of	normal-like	samples	are	in	clusters	other	than	EMAT1,	43%	of	Luminal	A	patients	are	in	clusters	

other	than	EMAT2,	47%	of	Luminal	B	patients	are	in	clusters	other	than	EMAT3	and	46%	of	Basal	

patients	are	in	clusters	other	than	EMAT4.	In	addition,	HER2	patients	are	distributed	in	EMAT1,	EMAT2	

and	EMAT3	clusters.	Finally,	EMAT3	was	enriched	in	ER	positive	(p	=	1.76E-06)	and	PR	positive	(p	=	2E-
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06)	samples,	while	EMAT4	was	enriched	in	ER	negative	(p	=	2.64E-28),	PR	negative	(p	=	4.18E-18),	and	

HER2	negative	(p	=	4.8E-3)	samples	(see	Table	1	for	a	summary).		

	

Figure	2:	Enrichment	of	EMAT	clusters	in	other	breast	cancer	subtypes	and	systematic	comparison	of	their	prognostic	power	using	cross-
validation.	The	heatmaps	show	the	-log10	(p-value)	of	enrichment	of	EMAT	clusters	in	different	subtypes	or	clinical	parameters	(using	a	
hypergeometric	test).	Tumor	size	less	than	2cm	is	considered	small,	between	2cm	and	5cm	is	considered	medium	and	larger	than	5cm	is	
considered	large.	The	scatter	plots	compare	the	performance	(measured	in	C-index)	of	Cox	regression	predictions	using	EMAT	cluster	status	and	
clinical	parameters	(y-axis)	versus	other	predictors	(x-axis).	Here,	half	of	the	samples	were	randomly	selected	as	the	training	set,	and	grouped	
into	n	=	4	clusters	using	the	EMAT	signature.	A	Cox	regression	model	was	trained	on	these	samples,	using	clinical	variables	as	well	as	EMAT	
cluster	status.	In	parallel,	Cox	regression	models	were	trained	on	the	same	samples	using	the	three	other	types	of	predictors.	Each	trained	
model	was	then	used	to	estimate	the	expected	survival	of	the	remaining	samples	(i.e.,	test	samples).	In	this	step,	EMAT	cluster	status	was	
assigned	to	test	samples	using	a	centroid-based	classifier	trained	on	the	training	samples.	The	p-values	were	calculated	using	a	one-sided	
Wilcoxon	signed	rank	test	and	represent	the	significance	of	the	improvement	obtained	using	EMAT	cluster	status	and	clinical	parameters	as	
compared	to	other	predictors.	The	measure	PIF	shows	the	percent	of	times	in	which	EMAT	+	clinical	parameters	provided	a	more	accurate	
prediction	compared	to	the	baseline.	(A)	The	heatmap	shows	enrichment	of	EMAT	clusters	by	samples	of	different	tumor	sizes.	The	scatter	plot	
shows	performance	of	Cox	regression	predictions	using	EMAT	+	clinical	parameters	versus	clinical	parameters	alone.	(B)	The	heatmap	shows	
enrichment	of	EMAT	clusters	by	samples	of	different	PAM50	molecular	subtypes.	The	scatter	plot	shows	performance	of	Cox	regression	
predictions	using	EMAT	+	clinical	parameters	versus	PAM50	subtypes	+	clinical	parameters.	(C)	The	heatmap	shows	enrichment	of	EMAT	
clusters	by	samples	of	different	receptor	status.	The	scatter	plot	shows	performance	of	Cox	regression	predictions	using	EMAT	+	clinical	
parameters	versus	receptor	status	+	clinical	parameters.	(D)	The	heatmaps	show	the	distribution	of	patients	in	each	PAM50	subtypes	as	well	as	
different	treatments	in	EMAT	clusters.		
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Table	1:	A	summary	of	the	characteristics	of	the	EMAT	clusters	obtained	using	both	lymph	node-negative	and	lymph	node-positive	breast	
cancer	patients	from	the	METABRIC	study.	In	this	table,	P	stands	for	positive	and	N	for	negative.	EMAT1	is	a	cluster	with	good	prognosis	in	LN	
samples	but	with	poor	prognosis	in	LP	samples.	However,	in	both	cases,	it	has	the	least	similarity	to	hESC	and	is	enriched	in	normal-like	PAM50	
subtype	of	breast	cancer.	EMAT2,	the	cluster	with	a	relatively	good	prognosis	in	both	LN	and	LP	samples,	has	little	similarity	to	hESC,	is	enriched	
in	Luminal	A	subtype	and	in	ER-positive	and	PR-positive	samples.	EMAT3,	the	cluster	with	a	relatively	moderate	prognosis,	has	a	high	degree	of	
similarity	to	hESC,	is	enriched	in	Luminal	B	subtype	and	in	ER-positive,	PR-positive	and	HER2-negative	samples.	EMAT4,	the	cluster	with	the	
worst	prognosis,	shows	the	highest	degree	of	similarity	to	hESC,	is	enriched	in	the	basal-like	subtype	of	breast	cancer	as	well	as	ER-negative,	PR-
negative	and	HER2-negative	samples.	

Cluster	 Prognosis	 hESC	
Similarity	

PAM50	
Enrichment	 ER	 PR	 HER2	

EMAT1	 Lymph	Node-
Status	Dependent	 Lowest	 Normal-like	 Mix	 Mix	 Mix	

EMAT2	 Good	 Low	 Luminal	A	 P	 P	 Mix	

EMAT3	 Moderate	 High	 Luminal	B	 P	 P	 N	

EMAT4	 Poor	 Highest	 Basal	 N	 N	 N	

	

Given	the	observation	that	EMAT	clusters	are	enriched	in	intrinsic	subtypes	defined	based	on	PAM50	

and	receptor	status,	we	sought	to	determine	whether	EMAT	clustering	could	provide	prognostic	

information	beyond	what	is	captured	by	the	aforementioned	subtypes.	To	this	end,	we	trained	a	Cox	

regression	model	on	the	LN	samples	from	the	METABRIC	dataset	using	four	types	of	predictors:	1)	

clinical	parameters,	including	age,	tumor	size,	use	of	chemotherapy,	use	of	hormone	therapy,	use	of	

radiotherapy	and	no	treatment,	2)	clinical	parameters	and	receptor	status,	3)	clinical	parameters	and	

PAM50	subtype	status,	and	4)	clinical	parameters	and	EMAT	cluster	status.	The	Cox	regression	model	

trained	on	clinical	and	EMAT	cluster	status	had	the	smallest	p-value	using	a	likelihood	ratio	test	(p	=	

6.6E-5	compared	to	p	=	1.0E-2	for	clinical	parameters	and	receptor	status,	p	=	1.5E-2	for	clinical	

parameters	and	PAM50	subtypes,	and	p	=	4.2E-3	for	clinical	parameters	only).	This	was	a	promising	

result,	but	not	an	entirely	convincing	comparison	since	EMAT	cluster	status	was	defined	based	on	

samples	used	in	the	Cox	regression	test,	while	the	other	subtypes	were	defined	a	priori.		

	

To	rigorously	compare	the	predictive	ability	of	the	above	classes	of	predictors	while	removing	the	effect	

of	the	varying	number	of	predicting	features,	and	also	to	test	the	generalizability	of	these	models	on	

unseen	data,	we	next	used	a	cross-validation	framework.	In	this	framework,	the	samples	were	randomly	
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divided	in	two	groups	of	(almost)	equal	size	and	a	Cox	regression	model	trained	on	one	half	was	used	to	

estimate	the	expected	survival	on	the	other	half.	This	process	was	repeated	200	times,	each	time	using	a	

distinct	random	partition	of	data.	The	Cox	regression	model	using	EMAT	labels	along	with	clinical	

parameters	provided	the	best	predictions	(Figure	2A-C	bottom	panels),	evaluated	using	a	one-sided	

Wilcoxon	signed	rank	test	on	paired	C-index	values	of	the	compared	methods	as	well	as	another	

measure	called	percentage	of	improved	folds	(PIF)	(Emad,	Cairns	et	al.,	2017)	defined	as	percent	of	the	

partitions	in	which	one	class	of	features	outperforms	another	class.		

	

These	results	indicate	three	major	points.	First,	although	some	of	the	EMAT	clusters	are	enriched	in	

previously	known	molecular	subtypes	of	breast	cancer	(e.g.	PAM50),	they	are	quite	distinct	from	these	

subtypes	(Figure	2D).	In	addition,	the	EMAT	clusters	are	better	predictors	of	patient	survival	outcome	

than	PAM50	or	receptor-based	subtypes.	Finally,	even	though	clinical	parameters	including	the	type	of	

treatment	are	important	in	predicting	survival	outcome,	the	EMAT	clusters	do	not	simply	recover	types	

of	treatments	given	to	patients	(Figure	2D)	but	rather	provide	extra	information	that	are	useful	in	

predicting	patient	prognosis,	as	is	evident	from	Figure	2A.				

	

Cross-dataset	analysis	shows	similar	survival	behavior	of	the	EMAT	clusters		

We	next	evaluated	the	prognostic	power	of	the	EMAT	clusters	on	an	independent,	lymph	node	negative,	

treatment-naive	dataset.	To	this	end,	we	developed	a	subtyping	procedure	using	a	centroid-based	

classifier,	trained	on	the	gene	expression	profiles	and	EMAT	cluster	status	of	the	METABRIC	LN	samples,	

to	assign	EMAT	“subtypes”	to	any	new	dataset	(see	Methods).	We	obtained	gene	expression	and	clinical	

data	corresponding	to	lymph	node-negative,	treatment-naive	breast	cancer	primary	tumors	from	

(Schmidt,	Böhm	et	al.,	2008)	(GEO	accession	number:	GSE11121)	and	determined	their	EMAT	subtypes.	

One	advantage	of	this	dataset	is	that	it	contains	distant	metastasis-free	survival	(DMFS)	information,	
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which	allows	us	to	specifically	study	the	ability	of	EMAT	clusters	to	predict	the	occurrence	of	metastasis.	

As	can	be	seen	in	Figure	3A,	the	separation	among	Kaplan-Meier	curves	for	the	subtypes	is	statistically	

significant	(p	=	1.39E-2,	log	rank	test).	In	addition	univariable	and	multivariable	Cox	regression	analysis	

(when	considering	clinical	parameters)	showed	that	these	clusters	provide	a	statistically	significant	

prognostic	value	in	this	independent	dataset	as	well	which	comprised	only	of	LN	patients	who	did	not	

receive	any	adjuvant	chemotherapy	(Supplementary	Table	S5).	It	is	interesting	to	note	that	the	survival	

behavior	of	EMAT	subtypes	remains	largely	similar	to	their	behavior	in	the	LN	METABRIC	dataset,	with	

EMAT4	having	the	worst	survival,	EMAT3	the	second	worst	survival	and	EMAT1	and	EMAT2	having	the	

best	survival	probabilities.	(We	also	tried	a	5-nearest	neighbor	classifier	for	EMAT	subtype	status	

assignment	which	resulted	in	clusters	with	survival	behaviors	better	matching	those	of	Figure	1C;	see	

Supplementary	Figure	S2.)	Expression	of	the	four	biomarkers	in	GSE11121	samples	assigned	to	each	

EMAT	subtype	generally	follows	a	similar	trend	as	in	Figure	1C.	These	results	show	a	high	concordance	

between	the	characteristics	of	the	EMAT	subtypes	in	two	independent	studies.		

	

Up	until	now,	by	focusing	on	the	LN	samples,	our	analysis	presumably	reflected	the	metastatic	

mechanisms	active	prior	to	lymph	node	invasion.	However,	samples	with	similar	gene	expression	

patterns	may	have	different	clinical	outcome	conditioned	on	their	lymph	node	status,	as	cells	that	have	

already	acquired	invasive	characteristics	may	rely	on	different	mechanisms	to	promote	metastasis.	To	

evaluate	this,	we	obtained	clinical	and	gene	expression	data	corresponding	to	493	lymph	node-positive	

(LP)	samples	from	the	METABRIC	study,	and	used	our	subtyping	procedure	to	assign	EMAT	subtype	

designations	to	each	sample.	Kaplan-Meier	analysis	(Figure	3B)	shows	a	significant	distinction	among	

survival	probabilities	of	each	EMAT	subtype	in	LP	patients	(p	=	3.64E-3).	In	addition,	univariable	and	

multivariable	Cox	regression	analysis	(when	considering	clinical	parameters)	showed	that	these	subtypes	

provide	a	statistically	significant	prognostic	value	(Supplementary	Table	S3).		
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Figure	3:	Cross-dataset	analysis.	A	centroid-based	classifier	trained	on	LN	METABRIC	samples	is	used	to	assign	EMAT	subtype	labels	to	each	
sample.	(A)	The	Kaplan-Meier	survival	plots	and	biomarker	status	for	EMAT	subtypes	of	LN	breast	cancer	samples	from	the	GSE11121	dataset.	
Expression	of	the	four	biomarkers	generally	follows	a	similar	trend	as	in	Figure	1C;	however,	VIM	is	no	longer	highly	expressed	in	EMAT4,	but	
instead	has	the	highest	expression	in	EMAT2.	In	addition,	expression	of	JUP	is	lowest	in	EMAT3,	while	it	was	highest	in	this	cluster	in	Figure	1C.	
(B)	The	Kaplan-Meier	survival	plots	and	biomarker	status	for	EMAT	clusters	of	LP	breast	cancer	samples	from	the	METABRIC	dataset.	The	
expression	of	biomarkers	is	largely	consistent	with	LN	samples.	Two	exceptions	are	the	higher	expression	of	VIM	and	CDH1	in	EMAT2	and	lower	
expression	of	VIM	in	EMAT4	in	LP	samples	compared	to	LN	samples	in	Figure	1C.	

	

The	main	difference	between	the	results	obtained	using	the	LP	and	LN	samples	is	in	the	survival	

characteristics	of	EMAT1:	while	this	subtype	had	the	best	survival	probability	in	LN	patients,	it	exhibits	

poor	prognosis	(second	worst)	in	LP	samples.	However,	the	relative	behaviors	of	EMAT2,	EMAT3,	and	

A)	

B)	
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EMAT4	samples	(Figure	3B)	mimic	those	of	their	LN	counterparts,	in	terms	of	their	relative	survival	

probabilities	(Figure	1C)	and	biomarker	characteristics	(Figure	1C,	inset).	In	summary,	our	analysis	

suggests	that	the	clinical	and	molecular	characteristics	of	the	subtypes	are	preserved	between	LN	and	LP	

samples,	with	the	exception	of	EMAT1:	the	EMAT1	phenotype	when	manifested	prior	to	lymph	node	

invasion,	represents	a	less	aggressive	mode	of	cancer,	but	at	later	stages	the	same	phenotype	

represents	an	aggressive	mode,	although	biomarker	expressions,	enrichment	in	breast	cancer	subtypes,	

and	resemblance	to	hESCs	was	similar	in	both	LN	and	LP	groups	(Supplementary	Figure	S3).	In	the	

absence	of	nodal	involvement,	EMAT1	tumors	appear	to	lack	metastatic	propensity,	while	the	

metastatic	propensity	of	EMAT2,	EMAT3	or	EMAT4	tumors	is	manifested	even	in	lymph	node-negative	

patients.	This	suggests	that	the	current	classification	is	not	adequate	to	capture	the	biologic	

heterogeneity	of	the	EMAT1	phenotype.	Future	studies	that	can	further	sub-classify	the	EMAT1	

phenotype	may	shed	light	as	to	why	nodal	involvement	is	not	only	predictive	of	an	increased	risk	of	

metastatic	dissemination	in	some	patients,	but	may	also	likely	to	be	a	necessary	mechanistic	

prerequisite	for	distant	metastasis	to	occur.		

	

Identification	of	transcription	factors	associated	with	EMAT	clusters		

We	evaluated	the	expression	of	1,338	transcription	factors	(TFs)	present	in	the	METABRIC	dataset.	For	

this	purpose,	we	used	a	t-test	(corrected	for	multiple	hypothesis	testing)	to	identify	TFs	that	are	

differentially	expressed	in	one	cluster	compared	to	others,	in	LN	samples	(Supplementary	Table	S6).	

Next,	for	each	cluster	we	identified	two	TFs	that	were	most	over-expressed	and	under-expressed	(total	

of	8	TFs).	These	TFs	include	PPP1R13L	and	MNDA	(EMAT1),	ETV7	and	TSHZ3	(EMAT2),	SLUG	and	AFF3	

(EMAT3),	and	FOXA1	and	FOXC1	(EMAT4),	which	were	under-expressed	and	over-expressed	in	each	

cluster,	respectively,	indicating	a	link	with	progression	and	invasion	mechanisms	(see	Discussion).	

Hierarchical	clustering	of	LN	samples	from	the	METABRIC	dataset	using	the	eight	identified	TFs	had	a	
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very	high	concordance	with	clusters	obtained	using	the	full	EMAT	gene	signature.	In	addition,	Kaplan-

Meier	analysis	using	the	clusters	based	on	these	TFs	demonstrated	a	significant	separation	of	survival	

curves	(Figure	4).	These	results	further	support	the	key	role	of	these	TFs	in	potentially	regulating	the	

distinct	expression	profiles	of	EMAT	subtypes	and	lend	support	to	their	clinical	utility	as	potential	

biomarkers	of	the	identified	EMAT	clusters.	

	

Figure	4:	Analysis	of	clusters	obtained	using	eight	TFs	most	under-expressed	or	over-expressed	in	each	EMAT	cluster.	(A)	Hierarchical	clustering	
based	on	the	expression	of	the	eight	identified	TFs	is	used	to	cluster	samples	into	four	groups.	The	color	bar	at	the	bottom	shows	the	true	
EMAT	cluster	label	of	each	sample.	(B)	Concordance	of	clusters	obtained	using	eight	TFs	with	EMAT	clusters	based	on	the	Jaccard	index.	(C)	
Kaplan-Meier	survival	plots	for	clusters	obtained	using	the	TFs.	

	

EMAT	subtypes	reflect	a	progressive	acquisition	of	malignancy	and	invasiveness	

We	next	assessed	the	EMAT	signature	in	the	well-characterized	isogenic	MCF10	model	of	breast	cancer	

progression	which	was	produced	by	consecutive	in	vivo	implantation	of	HRAS	transformed	MCF10A	cells	

A)	

C)	

EMAT-TF-1	EMAT-TF-3	EMAT-TF-4	 EMAT-TF-2	

B)	
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in	immune-deficient	mice	followed	by	in	vitro	cell	culture	(Santner,	Dawson	et	al.,	2001).	In	a	recent	

study	that	utilized	whole	genome,	exome	and	RNA-Seq	profiling	of	this	isogenic	MCF10A	cell	line	series	

grown	in	3D	spheroid	culture,	investigators	successfully	identified	genomic	changes	in	these	cell	lines	

that	were	correctly	representative	of	the	stages	of	breast	cancer	progression,	validating	this	system	as	a	

molecularly	accurate	model	of	breast	cancer	progression	(Maguire,	Peck	et	al.,	2016).	

	

RNA-Seq	data	corresponding	to	seven	MCF10A-derived	cell	lines	grown	in	three-dimensional	(3D)	

spheroid	culture	systems	(Maguire,	Peck	et	al.,	2016)	were	analyzed.	For	our	analysis,	we	considered	the	

cell	lines	in	three	groups	–	normal,	benign	and	premalignant	cells	(MCF10A,	MCF10AneoT,	MCF10AT1),	

pre-invasive	in	situ	carcinoma	cells	(MCF10DCIS.com),	and	invasive	carcinoma	cells	(MCF10CA1a,	

MCF10CA1d,	and	MCF10CA1h)	–	and	assessed	their	similarity	to	LN	METABRIC	EMAT	clusters.	For	this	

purpose,	we	used	the	expression	of	the	TFs	identified	above,	except	for	MNDA	and	TSHZ3	which	were	

not	expressed	in	the	cell	lines.	Figure	5	shows	similarity	between	the	centroids	of	each	of	the	three	cell	

line	groups	and	those	of	the	EMAT	clusters,	measured	by	pairwise	Spearman’s	rank	correlation.	Normal	

and	pre-malignant	cells	were	most	similar	to	EMAT2,	a	cluster	with	relatively	good	survival	compared	to	

other	clusters	in	both	LN	and	LP	samples.	The	non-invasive	in	situ	cell	line	is	most	similar	to	EMAT3	

cluster	and	the	group	containing	invasive	carcinoma	cells	is	most	similar	to	EMAT4,	the	cluster	with	the	

worst	survival.	Notably,	the	group	containing	invasive	cell	lines	also	has	a	high	similarity	to	EMAT1	

cluster.	This	supports	the	suggestion	we	made	above,	in	the	context	of	LP	samples	(Figure	3B),	that	the	

EMAT1	phenotype	when	manifested	in	later	clinical	stages	of	the	invasion-metastasis	cascade,	i.e.	post	

nodal	involvement,	denotes	aggressive	biology.	Overall,	these	results	support	the	hypothesis	that	the	

EMAT	clusters	identified	in	vivo	represent	a	gradual	progression	of	cancer	cell	transition	from	non-

invasive	to	fully	invasive	states	capable	of	metastasis.	In	addition,	the	observed	association	between	the		
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EMAT	clusters	with	cell	states	of	cancer	progression	in	this	model	made	intuitive	sense	with	the	

progressively	worsening	prognosis	of	such	EMAT	clusters,	as	was	observed	in	Figures	1C,	3A	and	3B.		

	

	

Figure	5:	Analysis	of	MCF10	cell	line	series.	(A)	Spearman’s	rank	correlation	of	the	centroid	of	normal	and	benign	cells	and	EMAT	clusters	using	
expression	of	identified	TFs.	(B)	Spearman’s	rank	correlation	of	the	non-invasive	carcinoma	cells	and	EMAT	clusters	using	expression	of	
identified	TFs.	(C)	Spearman’s	rank	correlation	of	the	centroid	of	invasive	carcinoma	cells	and	EMAT	clusters	using	expression	of	identified	TFs.	

	

DISCUSSION	

Prior	attempts	at	utilizing	EMT	gene	expression	signatures	of	primary	tumors	to	predict	future	

metastasis	have	largely	approached	the	problem	as	being	able	to	define	either	one	of	two	possible	

binary	states,	thereby	treating	metastasis	as	an	“all-or-nothing”	phenomenon	(Tan	et	al.,	2014,	Taube	et	

al.,	2010).	In	these	studies,	it	was	assumed	that	EMT	exists	in	either	a	turned	“ON”	or	turned	“OFF”	

state:	this	we	thought	might	be	too	simplistic	to	discern	the	true	survival	impact	of	a	complex	tightly	

regulated	biologic	program	like	EMT,	that	most	likely	exists	along	an	entire	spectrum	ranging	from	

depressed	states	to	elevated	states.	In	our	attempt	to	derive	a	gene	expression	signature	based	on	

metastasis	biology	that	could	classify	this	complex	and	dynamic	process,	we	postulated	that	the	

heterogeneity	that	exists	in	the	metastatic	propensity	of	tumors	might	be	better	captured	by	

considering	the	existence	of	multiple	groups	or	clusters	of	patient	tumors,	each	with	characteristic	

molecular	features	and	distinct	prognostic	profiles.		

B)	 C)	A)	
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Of	note,	the	clinical	significance	of	EMT	in	driving	metastasis	has	been	questioned	in	recent	publications	

that	demonstrate	the	transient	nature	of	EMT	(Beerling,	Seinstra	et	al.,	2016)	and	dispute	the	necessity	

of	EMT	occurrence	in	mediating	metastasis	(Bill	&	Christofori,	2015,	Diepenbruck	&	Christofori,	2016,	

Zheng,	Carstens	et	al.,	2015).	While	the	findings	in	such	studies	have	been	challenged	to	be	inconclusive	

(Aiello,	Brabletz	et	al.,	2017,	Ye,	Brabletz	et	al.,	2017),	there	is	another	possible	explanation	for	the	

reported	findings	without	upending	the	potential	significance	of	EMT	in	metastasis.	One	could	speculate	

that	when	the	cancer	cell	was	proceeding	along	EMT,	an	increase	in	the	entropy	of	an	EMT	path	of	

cellular	evolution	could	have	resulted	due	to	the	cell	being	subjected	to	either	microenvironmental	

pressures	(e.g.,	hypoxia)	or	xenobiotic	exposure	(e.g.,	chemotherapy	or	EMT-targeted	biologic	therapy).	

A	cancer	cell	of	epithelial	origin	that	had	already	undergone	EMT	when	faced	with	such	a	situation	could	

then	undergo	plastic	transformation	by	a	process	such	as	MAT	and	adopt	an	alternate	amoeboid	

motility	program	allowing	it	to	proceed	to	metastasis	via	a	lower	entropy	alternative	route	as	recently	

reported	(Lehmann	et	al.,	2017).	Indeed	simultaneous	targeting	of	both	mesenchymal	and	amoeboid	

motility	in	an	animal	model	of	cancer	progression	has	been	demonstrated	to	effectively	arrest	

metastatic	spread	(Jones	et	al.,	2017).	Only	when	both	processes	are	considered	together	to	contribute	

to	multiple	distinct	molecular	states	of	progressively	increasing	metastatic	propensity	does	the	

prognostic	value	of	such	distinct	phenotypes	become	demonstrable.	

	

In	this	study,	we	utilized	an	EMAT	gene	expression	signature	and	clustered	breast	cancer	patients	into	

four	different	groups	with	distinct	prognosis,	morphology,	migratory	behavior	and	molecular	

characteristics.	Our	results	revealed	the	existence	of	subtypes	of	hybrid	characteristics	rather	than	

discrete	E-,	M-,	and	A-like	clusters,	emphasizing	the	advantage	of	using	the	EMAT	signature	over	using	

only	E,	M,	or	A	biomarkers,	to	distinguish	groups	of	patient	tumors	associated	with	distinct	prognosis.	

Our	findings	suggest	that	during	the	invasion–metastasis	cascade	in	cancer,	both	EMT	and	MAT	
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contribute	to	an	EMAT	continuum	of	reverse	evolution	from	a	multicellular	differentiated	state	towards	

a	more	primitive	unicellular	dedifferentiated	state	resembling	embryonic	stem	cells	(Chen,	Lin	et	al.,	

2015).	In	addition,	using	in	vitro	cell	line	analysis,	we	showed	that	EMAT	subtypes	reflect	a	gradual	and	

progressive	acquisition	of	malignancy	and	invasiveness	suggestive	of	the	fact	that	EMAT	subtypes	with	

worse	prognosis	are	more	similar	to	hESC.	The	expression	patterns	of	biomarkers	of	different	modes	of	

cell	migration	were	generally	consistent	across	different	datasets.	While	in	some	subtypes	one	distinct	

morphology/motility	mode	was	manifested,	for	other	subtypes	a	hybrid	of	several	morphologies	was	

observed.	Collectively,	these	results	support	the	notion	that	several	mechanisms	are	in	effect	

simultaneously	to	promote	metastasis,	even	among	groups	of	individuals	that	share	a	similar	

transcriptomic	profile.	In	addition,	we	showed	that	collective	cell	migration	besides	single	cell	migration	

is	also	a	very	important	factor	in	determining	clinical	outcome,	as	individual	tumors	that	exhibited	

elevated	expression	of	the	collective	cell	migration	marker	JUP	consistently	exhibited	poor	clinical	

outcome.			

	

In	order	to	investigate	potential	regulatory	mechanisms	underlying	the	discovered	EMAT	clusters,	we	

identified	transcriptional	regulators	characteristic	of	each	EMAT	cluster.	In	addition	to	confirming	

previously	known	factors,	new	factors	involved	in	metastasis	biology	were	also	revealed.	EMAT1	factor	

PPP1R13L,	a	known	inhibitor	of	TP53,	regulates	apoptosis	through	NF-kappa-B	and	TP53	proteins	and	

has	been	associated	with	lymph	node	metastasis	in	endometrial	endometrioid	adenocarcinoma.	In	

addition,	the	over-expression	of	this	gene	has	been	shown	to	enhance	tumorigenesis	and	invasion	

through	both	TP53-dependent	and	TP53-independent	mechanisms	(Laska,	Lowe	et	al.,	2009).	MNDA,	

another	predominant	TF	in	the	EMAT1	cluster,	has	been	shown	to	be	upregulated	in	tumorigenic	breast	

cell	lines	(Roy,	Calaf	et	al.,	2001),	and	act	as	a	master	regulator	in	primary	breast	cancer	(Baca-Lopez,	

Mayorga	et	al.,	2012).	ETV7,	a	factor	implicated	in	the	EMAT3	subtype,	is	known	to	be	involved	in	cancer	
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initiation,	progression	and	metastasis	(Sizemore,	Pitarresi	et	al.,	2017).	TSHZ3,	a	TF	which	is	mostly	down	

regulated	in	the	EMAT2	cluster,	is	a	candidate	tumor	suppressor	in	breast	and	prostate	cancers	

(Yamamoto,	Cid	et	al.,	2011).	SLUG	which	is	most	upregulated	in	the	EMAT3	cluster	is	a	well-known	EMT	

transcription	factor	(Taube	et	al.,	2010),	which	represses	E-cadherin	(CDH1)	expression	in	breast	

carcinoma.	The	role	of	this	TF	in	metastasis	is	well	documented	in	many	cancers	(Luanpitpong,	Li	et	al.,	

2016,	Zheng,	Jiang	et	al.,	2015).	AFF3,	another	EMAT3	TF,	has	been	shown	to	mediate	the	oncogenic	

effects	of	β-catenin	in	adrenocortical	carcinoma	(ACC)	(Lefèvre,	Omeiri	et	al.,	2015).	Finally,	FOXC1	and	

FOXA1,	the	two	TFs	representing	the	cluster	with	worst	prognosis	(EMAT4),	belong	to	the	forkhead	

family	of	transcription	factors.	The	roles	of	FOXC1	as	an	EMT	driver	and	the	opposing	role	of	FOXA1	as	

an	EMT	suppressor	are	well	established	(Jensen,	Ray	et	al.,	2015,	Ray,	Jensen	et	al.,	2015,	Ray,	Wang	et	

al.,	2010,	Sizemore	&	Keri,	2012,	Xu,	Qin	et	al.,	2017).		

	

Our	understanding	of	breast	cancer	progression	and	metastasis	has	largely	been	defined	by	three	

paradigms	proposed	over	the	past	century.	The	first	explanation	conforms	to	the	anatomic	Tumor-

Node-Metastasis	model	on	which	cancer	staging	is	based.	It	proposed	that	breast	cancer	progression	is	

an	orderly	process	of	contiguous	spread,	from	primary	tumor	site,	to	regional	lymph	nodes	via	

lymphatics,	on	to	distant	metastatic	sites,	and	thus	the	anatomically	precise	removal	of	any	and	all	

demonstrable	loco-regional	disease,	in	the	form	of	radical	mastectomy,	would	favorably	alter	clinical	

outcome.	This	has	come	to	be	known	as	Halsted’s	paradigm	(Halsted,	1894).	The	second	explanation,	

referred	to	as	Fisher’s	paradigm	(Fisher,	Bauer	et	al.,	1985),	was	triggered	by	results	of	clinical	trials	

proving	the	non-superiority	of	radical	mastectomy,	compared	to	lumpectomy	and	radiation.	It	proposed	

that	breast	cancer	cells	can	spread	and	metastasize	in	a	non-contiguous	manner,	wherein	tumor	biology	

trumps	the	anatomical	extent	of	disease	and	small	tumors	are	only	a	local	manifestation	of	disease	that	

has	already	disseminated.	Hence	their	surgical	removal	would	not	favorably	alter	clinical	outcome,	as	
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systemic	disease	already	exists	at	the	time	of	diagnosis.	By	the	same	token,	nodal	involvement	is	simply	

a	clinical	biomarker	of	distant	disease	already	present	and	does	not	signify	that	adoption	of	the	

lymphatic	route	is	mandatory	in	the	path	to	distant	metastasis.	A	third	hypothesis	accepts	the	existence	

of	both	of	the	above	paradigms,	and	considers	breast	cancers	to	display	a	heterogeneous	spectrum	of	

metastatic	proclivity,	ranging	from	loco-regionally	confined	disease	to	systemically	disseminated	disease	

when	first	detected.	This	has	come	to	be	known	as	Hellman’s	paradigm	(Hellman,	1994,	Hellman	&	

Harris,	1987)	and	provides	a	rational	explanation	for	why	loco-regional	treatment	of	some	breast	

cancers	with	surgery	and	radiation	is	effective	in	favorably	impacting	clinical	outcome,	while	seemingly	

ineffective	at	preventing	distant	metastasis	in	other	cases.		

	

In	our	study,	the	EMAT	subtypes	appear	to	support	Hellman’s	paradigm	in	that	they	support	the	

existence	of	heterogeneity	in	the	metastatic	proclivity	of	breast	cancers.	What	is	important	to	note	is	

that	the	metastatic	propensity	of	breast	cancer	cannot	be	accurately	captured	or	predicted	by	

consideration	of	receptor	status,	PAM50	molecular	subtype	status	or	treatment	variables	alone,	and	

that	the	additional	consideration	of	metastasis	biology	is	warranted.	Our	delineation	of	EMAT	subtypes	

is	an	attempt	to	capture	metastasis	biology	to	improve	prognostic	prediction	with	regards	to	metastasis	

and	further	refinement	of	such	approaches	promises	to	increase	the	accuracy	of	prognostic	prediction	

of	breast	cancer	metastasis.		

	

A	key	limitation	of	the	present	study	is	our	inability	to	reconcile	the	prognostic	impact	of	the	EMAT1	

subtype	in	LN	and	LP	patients.	As	explained	earlier,	the	current	classification	is	not	adequate	to	capture	

the	biologic	heterogeneity	of	the	EMAT1	phenotype	and	future	studies	geared	towards	further	sub-

classifying	the	EMAT1	phenotype	may	shed	light	as	to	why	nodal	involvement	is	not	only	predictive	of	an	

increased	risk	of	metastatic	dissemination	in	some	patients,	but	may	also	likely	to	be	a	necessary	
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mechanistic	prerequisite	for	distant	metastasis	to	occur.	Additional	limitations	of	the	present	study	

include	our	inability	to	consider	the	potential	impact	of	the	host	immune	response,	tumor	stromal	

factors,	and/or	that	of	non-cancer	cells	of	the	tumor	microenvironment	on	influencing	metastatic	

proclivity.	Future	studies	that	are	more	comprehensive	in	collectively	considering	all	potential	factors	

that	may	biologically	impact	metastatic	propensity	of	tumors	hold	promise	of	extending	our	

understanding	of	metastasis	biology	and	significantly	improving	prognostic	prediction	models.	

	

Taken	together,	our	analysis	for	the	first	time	identifies	EMAT	subtypes	of	breast	cancer	progression	and	

metastasis	and	provides	a	mathematically	robust	reasoning	for	the	observed	variance	in	metastatic	

propensity.	While	this	advances	our	understanding	of	the	heterogeneity	and	complexity	of	metastasis,	

delineation	of	the	detailed	molecular	mechanisms	underlying	each	EMAT	subtype	merits	further	

investigation.	Also,	it	still	remains	unclear	whether	the	identified	EMAT	subtypes	reflect	the	metastatic	

propensity	of	adenocarcinomas	(originating	from	epithelial	tissues)	alone,	or	has	an	overlap	with	

processes	involved	in	driving	metastatic	propensity	in	cancers	of	mesenchymal	origin	as	well.		

	

METHODS	

Derivation	of	MAT	and	EMAT	gene	lists	

We	obtained	the	list	of	253	EMT-related	genes	from	(Taube	et	al.,	2010).	This	list	had	been	derived	in	

the	original	publication	by	analyzing	gene	expression	data	obtained	from	5	distinct	and	separate	EMT-

inducing	cell	perturbation	experiments	to	identify	genes	up-	or	down-regulated	at	least	2-fold	in	at	least	

3	experimental	groups	relative	to	control	cells.	Following	identical	methodology	to	minimize	derivation	

bias,	we	derived	a	new	MAT	signature	by	analyzing	gene	expression	data	obtained	from	4	distinct	and	

separate	MAT-inducing	cell	perturbation	experiments	(Taddei	et	al.,	2014)	to	identify	138	genes	up-	or	

down-regulated	at	least	1.5-fold	in	at	least	2	experimental	groups	relative	to	control	cells.	We	then	
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combined	both	the	EMT	and	MAT	gene	signatures	above	to	create	the	388-member	EMAT	gene	

expression	signature.	

	

Data	Collection	

We	downloaded	gene	expression	and	clinical	data	corresponding	to	the	METABRIC	study	from	OASIS	

(http://oasis-genomics.org/)	and	supplemental	material	of	(Curtis	et	al.,	2012),	respectively.	In	this	

dataset,	1055	samples	(562	LN	and	493	LP)	had	gene	expression,	survival	information,	and	lymph	node	

status.	Gene	expression	and	clinical	information	for	cross-dataset	analysis	was	downloaded	from	GEO	

(http://www.ncbi.nlm.nih.gov/geo/)	under	the	accession	number	GSE11121,	which	contains	200	LN	

breast	cancer	samples.	Gene	expression	profile	of	H1	hESC	lines	(Kim,	Khalid	et	al.,	2014)	were	

downloaded	from	GEO	under	the	accession	number	GSE54186.	In	all	datasets,	the	probe	intensities	

were	log2	transformed	and	Z	normalized	prior	to	analysis.	

	

Hierarchical	clustering	and	survival	analysis	

Hierarchical	clustering	of	samples	was	performed	using	the	python	module	SciPy,	using	Ward’s	variance	

minimization	algorithm.	Survival	analysis	(Kaplan-Meier	and	Cox	regression)	was	performed	using	

lifelines	python	module	(doi:	10.5281/zenodo.815943)	and	Survival	R	package	(https://CRAN.R-

project.org/package=survival).	Variables	included	in	the	multivariate	analysis	are	age,	tumor	size,	and	

subtype	status	based	on	receptor	profile,	PAM50	centroid	or	EMAT	centroid.	All	tests	were	two-sided,	

and	P	values	of	less	than	.05	were	considered	statistically	significant.	

	

Cross	validation	framework	to	evaluate	survival	predictive	ability	of	different	predictors	

In	order	to	compare	the	predictive	ability	of	different	classes	of	features	(Figure	2),	we	used	a	cross-

validation	framework,	in	which	half	of	the	samples	(patients)	were	randomly	selected	as	the	training	set	
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and	the	other	half	were	used	as	a	test	set.	A	Cox	regression	model	was	trained	on	the	training	set	using	

one	of	the	four	options	for	predictor	features	described	before,	and	the	model	was	used	to	estimate	the	

expected	survival	of	each	sample	in	the	test	set.	Then,	the	estimated	survival	times	were	compared	to	

the	observed	survival	times	using	the	concordance	index	(C-index).	This	process	was	repeated	200	times,	

each	time	using	a	distinct	random	partition	of	data.	To	determine	the	EMAT	cluster	assignment	of	the	

test	samples,	we	first	used	hierarchical	clustering	to	cluster	samples	in	the	training	set	into	four	clusters.	

Then	we	trained	a	centroid-based	classifier	on	the	training	set	and	predicted	the	cluster	labels	for	the	

test	set.		

	

Cluster	silhouette	score	calculations	

The	silhouette	score	(Rousseeuw,	1987)	is	a	measure	of	the	similarity	of	a	sample	to	its	own	cluster	

compared	to	other	clusters.	A	higher	silhouette	score	averaged	over	all	samples	indicates	a	better	

separation	of	samples	into	clusters.	We	calculated	this	score	for	n	=	3,	4,	5	clusters	using	Scikit-learn	

python	module	(http://scikit-learn.org).	We	used	three	metrics,	the	Euclidean,	correlation	and	cosine	

distances.	Two	of	these	metrics	showed	that	n	=	4	clusters	generate	the	highest	average	silhouette	

score,	which	we	used	for	our	analysis.	

	

The	KNN	and	centroid-based	classifiers	

We	implemented	a	KNN	(only	used	to	generate	Supplementary	Figure	S2)	and	a	centroid-based	classifier	

for	our	analyses.	In	order	to	reduce	the	batch	effects	due	to	cross-dataset	analysis	and	relax	the	

normality	assumption	for	gene	expression	values,	we	used	the	Spearman’s	rank	correlation	as	the	

measure	of	the	similarity	of	samples	in	these	classifiers.	In	the	centroid-based	classifier,	for	each	cluster	

a	centroid	was	calculated	as	a	vector	in	which	each	entry	corresponds	to	the	mean	expression	of	a	gene	
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across	the	samples	of	the	cluster.	The	cluster	whose	centroid	had	the	highest	Spearman’s	rank	

correlation	with	the	expression	profile	of	a	test	sample	was	selected	as	its	label.	
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