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ABSTRACT 20 

 21 

High-throughput sequencing technologies have revolutionized microbiome research by 22 

allowing the relative quantification of microbiome composition and function in different 23 

environments. One of the main goals in microbiome analysis is the identification of 24 

microbial species that are differentially abundant among groups of samples, or whose 25 

abundance is associated with a variable of interest. Most available methods for microbiome 26 

abundance testing perform univariate tests for each microbial species or taxa separately, 27 

ignoring the compositional nature of microbiome data.  28 

We propose an alternative approach for microbiome abundance testing that consists on the 29 

identification of two groups of taxa whose relative abundance, or balance, is associated 30 

with the response variable of interest. This approach is appealing, since it has direct 31 

translation to the biological concept of ecological balance between species in an ecosystem. 32 

In this work, we present selbal, a greedy stepwise algorithm for balance selection.  33 

We illustrate the algorithm with 16s abundance data from an HIV-microbiome study and a 34 

Crohn-microbiome study. 35 

 36 

 37 

Importance 38 

A more meaningful approach for microbiome abundance testing is presented. Instead of 39 

testing each taxon separately we propose to explore abundance balances among groups of 40 

taxa. This approach acknowledges the compositional nature of microbiome data.  41 
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INTRODUCTION 42 

 43 

Human microbiome research, focused on understanding the role in health and disease of 44 

microbes living in the human body, has experienced significant growth in the last few years. 45 

High-throughput sequencing technologies have revolutionized this field by allowing the 46 

quantification of microbiome composition and function in different environments.  Large 47 

scale projects, like the Human Microbiome Project (1),(2) or MetaHIT (Metagenomics of the 48 

Human Intestinal Tract), have established standardized protocols for creating, processing 49 

and interpreting metagenomic data (3). However, the analysis of microbiome data for 50 

differential abundance or association with sample metadata is still challenging.  51 

 52 

Typically, after DNA sequencing, bioinformatics preprocessing and quality control of the 53 

sequences, an abundance table with the number of sequences (reads) per sample for 54 

different microbial species (taxa) is obtained. Total number of sequences for each sample 55 

is highly variable, and depends on laboratory sample preparation. Indeed, raw abundances 56 

and the total number of reads per sample are non-informative since they depend on 57 

physical and technical mechanisms when sequencing the DNA. In order to mitigate the 58 

problem of different sampling depth, microbiome data are often normalized previous to 59 

differential abundance testing (4),(5).  60 

 61 
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Working with proportions, that is, relative abundances instead of raw abundances, does not 62 

solve the problem since there is a dependence structure in the data that may lead to 63 

misleading results such as spurious correlations or incoherent distances (6),(7). 64 

Rarefaction, which consists of random sampling of the same number of sequences for each 65 

sample, is similar to working with relative abundances. Though rarefaction might be 66 

convenient for richness and diversity analyses and avoids the problem of different sample 67 

depth, it supposes a loss of information and the increase of Type I error for differential 68 

abundance analyses (4). Other normalization alternatives, developed for RNA-Seq, are also 69 

applied in microbiome analysis for dealing with the problem of different number of counts 70 

per sample through variance stabilizing transformations (5). However, these RNA-Seq 71 

proposals also present problems with the false discovery rate when library sizes are very 72 

different among samples (8). 73 

 74 

An alternative approach to rarefaction and normalization methods for microbiome analysis 75 

is to acknowledge the compositional nature of microbiome data and to use the 76 

mathematical theory available for compositional data (CoDa). Compositional data is defined 77 

as a vector of strictly positive real numbers carrying relative information.  Relative 78 

information refers to the fact that the information of interest is contained in the ratios 79 

between the components of the composition and the numerical value of each component 80 

by itself is irrelevant (9).  81 

As mentioned before, raw microbiome abundances are by itself non-informative since they 82 

depend on technical artifacts such as sequencing depth. Thus, microbiome data fits the 83 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2017. ; https://doi.org/10.1101/219386doi: bioRxiv preprint 

https://doi.org/10.1101/219386
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

definition of compositional data except for the fact that microbiome abundance tables 84 

contain many zeros. Assuming that observed zeros are rounded zeros, meaning that they 85 

correspond to values below the detection limit, they can be replaced by a positive value or 86 

pseudo count (10) so that CoDa analysis in terms of relative abundances between groups of 87 

microorganisms can be applied.  88 

 89 

Several recent works acknowledge the compositional nature of microbiome abundance 90 

data and propose their analysis accordingly (11,12). Most of these approaches consider the 91 

centered log-ratio transformation (clr) and perform relative abundance testing for each clr 92 

transformed component, which is given by the logarithm of the component divided by the 93 

geometric mean of all the components in the sample. This allows the identification of clr 94 

transformed components that are associated with a specific characteristic of interest. 95 

However, the interpretation of such association is not straightforward because the clr 96 

transformation involves the abundances of all the taxa in the sample.  97 

Instead, we propose to perform microbiome relative abundance testing by identifying two 98 

groups of taxa whose relative abundance is associated with the phenotype of interest. For 99 

this we use the notion of balance between two groups of components of a composition, 100 

which is a central concept in CoDa analysis.  101 

 102 

Mathematically, a balance is defined as follows. Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑘) be a composition 103 

of the number of counts for k different microbial species or taxa. Given two disjoint subsets 104 
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of components in 𝑋, denoted by 𝑋+ and 𝑋−, indexed by 𝐼+ and 𝐼−, and composed by 𝑘+ and 105 

𝑘− taxa, respectively, the balance between 𝑋+ and 𝑋− is defined as: 106 

 107 

𝐵 = √
𝑘+∙𝑘−

𝑘++𝑘−
log

(∏ 𝑋𝑖𝑖∈𝐼+ )
1/𝑘+

(∏ 𝑋𝑗𝑗∈𝐼− )
1/𝑘−

  . 108 

 109 

Expanding the logarithm, the balance is proportional to 110 

 111 

𝐵 ∝   
1

𝑘+
∑ log 𝑋𝑖𝑖∈𝐼+

− 
1

𝑘−
∑ log 𝑋𝑗𝑗∈𝐼−

  , 112 

 113 

which is a more familiar expression corresponding to the difference in means of the log-114 

transformed abundances between the two groups. 115 

Balances are in compositional data analysis a key element in the construction of new 116 

coordinates through the so called isometric log-ratio transformation (ilr) (13) . 117 

 118 

The concept of balance, as proposed in the compositional data theory, provides a new and 119 

interesting perspective for microbiome data analysis, since this mathematical concept is 120 

related to the biological concept of ecological balance in ecosystems.  121 

 122 

Recently, some authors have proposed the use of CoDa approaches for microbiome analysis 123 

with different objectives such as the differential abundance between groups (14), 124 
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differentiation of niches (15), or the inclusion of phylogenetic associations between the 125 

components included in the study (16).  126 

 127 

In this work, we propose an algorithm for the identification of balances between groups of 128 

taxa that are associated with a dependent component of interest. This approach provides a 129 

new perspective to differential abundance and microbiome association studies. Starting 130 

with the balance composed by only two taxa that is most associated with the response, the 131 

algorithm performs a forward selection process and, at each step, a new taxon is added to 132 

the existing balance so that the specified association criterion is maximized. The algorithm 133 

stops when none of the possible additions improves the current association.  134 

 135 

The paper is organized as follows. In the Results and Discussion section, the proposed 136 

algorithm is applied to an HIV-microbiome study and to a Crohn’s disease-microbiome 137 

study. Then these results are analyzed and both the advantages and technical issues of the 138 

algorithm when applied to microbiome data sets are discussed. Finally, in Material and 139 

Methods we present a detailed explanation of the algorithm. 140 

  141 
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RESULTS  142 

We illustrate the proposed methodology with a dataset from a cross – sectional HIV – 143 

microbiome study conducted in Barcelona (Spain) including both HIV – infected subjects 144 

and HIV – negative controls (17). Microbiome information is derived from MiSeqTM 16SrRNA 145 

sequence and bioinformatically processed with Mothur. After applying abundance filters 146 

and agglomerating taxa to genus level, microbiome abundance is summarized in a matrix of 147 

raw abundances for 155 samples and 60 different genera (Bioproject accession number: 148 

PRJNA307231, SRA accession number: SRP068240). Below, we present the results for two 149 

different analyses, the association of microbiome abundance with HIV status and with the 150 

inflammation parameter, sCD14. In the first case, the component of interest is dichotomous 151 

while in the second case it is continuous. 152 

 153 

We also present the results of a Crohn’s disease study (18). Only patients with Crohn’s 154 

disease (n = 662) and those without any symptom (n = 313) were analyzed. The information 155 

was obtained from MiSeqTM 16SrRNA sequence, agglomerated to the genus level, resulting 156 

in a matrix with information of 48 genus for 975 samples. In this case, the goal is to identify 157 

groups of taxa whose abundance balance is associated with Crohn’s disease. 158 

  159 

Microbiome and HIV status  160 

The main goal of this analysis is to find a microbiome balance associated with HIV-status, 161 

that is, a microbiome balance that is able to discriminate between HIV-positive and HIV-162 

negative individuals. As exposed in Noguera–Julian et al. (17), the HIV risk factor MSM (Men 163 
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who have Sex with Men) vs non-MSM should be considered as a possible confounder in any 164 

HIV - microbiome study. The proposed algorithm implements a regression model which 165 

allows adjustment for other variables. Thus, we applied the algorithm to 𝑌=HIV-status and 166 

𝑋=microbiome abundance at genus level, adjusted by 𝑍=MSM factor.  167 

 168 

According to the cross-validation (cv) procedure implemented with function selbal.cv, the 169 

optimal number of components to be included in the balance is 2 (Figure 1). The balance 170 

we identified as the most associated with HIV-status is given by 𝑋+, a taxon of the family 171 

Erysipelotrichaceae and unknown genus and 𝑋−, a taxon of the family Ruminococcaceae 172 

and unknown genus (Figure 2). HIV-positive status is associated with higher balance scores, 173 

that is, larger relative abundances of Erysipelotrichaceae with respect to Ruminococcaceae. 174 

The discrimination accuracy of this balance is moderate, with an AUC of 0.786 on the whole 175 

sample and a cross-validation AUC of 0.674. As can be observed in the boxplot in Figure 2, 176 

HIV-negative individuals are associated with lower balance values, most of them negative, 177 

while HIV-positive individuals have heterogeneous balance values. Figure 3 shows the result 178 

of the cross – validation procedure. The balance identified with the whole dataset is the 179 

most frequently identified in the cross-validation procedure, appearing 44% of the times, 180 

an indicator of robustness for the proposed global balance. 181 

 182 

Microbiome and sCD14 inflammation parameter 183 

 184 
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Acute and chronic inflammations typically occur after HIV infection. Even patients under 185 

antiretroviral medications and undetectable viral load present chronic inflammation, which 186 

may cause tissue damage and is associated with many chronic diseases. In this context, 187 

there is a great interest in defining possible interventions involving modifications of the gut 188 

bacterial environment, which may reduce inflammation in HIV patients. This requires a good 189 

understanding of the association between gut microbial composition and several 190 

inflammation parameters. In this case, we focus on an immune–marker related to the 191 

chronic inflammation: the levels of soluble CD14 (sCD14), which was measured for a subset 192 

of samples (n = 151). The optimal number of components to be included in the model is 193 

four, according to the cv-MSE (Figure 4). The balance that is identified as the most 194 

associated with sCD14 is composed by two taxa in the numerator, 𝑋+ =195 

 {g_Subdoligranulum, f_Lachnospiraceae_g_unclassified} and two in the denominator 𝑋− =196 

 {f_Lachnospiraceae_g_Intertae_Sedis, g_Collinsella}. The association is moderate, with R = 197 

0.53.  Figure 5 provides a scatter plot of the balance values and sCD14 values, indicating 198 

that higher balance scores are associated with higher sCD14 values. The robustness of the 199 

selected balance can be evaluated through the results of the cv-procedure (Figure 6). We 200 

see that the proposed global balance is also the one that has been more frequently selected 201 

in the cv, 34% of the times. The four taxa defining the global balance correspond to the top 202 

4 most frequently selected in the cross - validation. These results emphasize the robustness 203 

of the selected global balance. 204 

 205 

Crohn’s disease 206 
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 207 

Crohn’s disease is an inflammatory bowel disease (IBD) linked to microbial alterations in the 208 

gut (18),(19). We ran selbal.cv algorithm with the goal of identifying groups of taxa whose 209 

abundance balance can discriminate between individuals with Crohn's disease from those 210 

without the disease.  211 

The optimal number of components in the balance is twelve according to the MSE criterion 212 

(Figure 7). The groups defining the balance are 𝑋+= {g_Roseburia, o_Clostridiales_g_, 213 

g_Bacteroides, f_Peptostreptococcaceae_g_} and 𝑋− = {g_Dialister, g_Dorea, 214 

o_Lactobacillales_g_, g_Eggerthella, g_Aggregatibacter, g_Adlercreutzia, g_Streptococcus, 215 

g_Oscillospira}. Cases with Crohn's disease have lower balance scores than controls (Figure 216 

8) which means lower relative abundances of 𝑋+ with respect to 𝑋−. The discrimination 217 

value of the identified balance is important, with an AUC = 0.838 and a cv-AUC = 0.819. 218 

The identified global balance is very robust as the results of the cv reveal (Figure 9). The 219 

global balance obtained with the whole dataset is also the most frequently identified 220 

balance in the cv-procedure, namely 36% of the times. Moreover, the components defining 221 

the global balance are also the ones more frequently selected in the cv procedure. The 222 

balance identifies Bacteroides and Clostridiales as part of the denominator of the balance, 223 

which have also been identified previously as less abundant in Crohn's disease individuals 224 

than in controls (18).  225 

 226 

 227 

 228 
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DISCUSSION 229 

The identification of individual microbial species, or taxa, that are differentially abundant 230 

among groups of samples is challenging because the change in relative abundance of one 231 

taxon affects the relative abundances of the other taxa. As an alternative, we propose the 232 

analysis of relative abundances among groups of taxa instead of analyzing each taxon 233 

separately. In this work, we present selbal, a greedy stepwise algorithm for balance 234 

selection that takes into account the compositional nature of microbiome abundance data. 235 

The algorithm identifies two groups of taxa whose relative abundance, or balance, is 236 

associated with the response variable of interest.  237 

 238 

selbal overcomes the problem of differences in sample size that is usually treated with 239 

different methods based on count-normalization, rarefaction or transformation into 240 

proportions. The only way in which data is altered in selbal is at the zero imputation stage 241 

required because of the use of logarithms and ratios in the definition of balances. This 242 

replacement of zeros by positive numbers is performed under the assumption that 243 

observed zeros are rounded zeros, that is, all taxa are present in all the samples but some 244 

of them are not detected because of low abundance and insufficient sample depth. 245 

However, it is not clear how the imputation method and the presence of structural zeros 246 

(absence of the taxa in the sample) may influence the results. Future research will be 247 

focused on the treatment of zeros with the aim of more precisely evaluating if zeros are 248 

rounded or structural and on selecting the best replacement method. 249 

 250 
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Due to the computational cost, selbal does not explore the whole balance space and the 251 

method for selecting the optimal balance is suboptimal and may be improved. Thus, 252 

exploring for alternative approaches in the search of the optimal balance is another topic 253 

of future research.  254 

 255 

In order to improve classification or prediction accuracy of the variable of interest a 256 

prediction model with several balances can be obtained by applying selbal algorithm 257 

sequentially. This sequential search of balances can be performed similarly to partial least 258 

squares approach: when the first balance B1 is identified, all variables are deflated by the 259 

first balance, that is, each variables is adjusted for the first balance, by regressing the 260 

variable on B1 and taking residuals. Then, the second balance is searched on the new 261 

orthogonalized data.   262 

 263 

Endorsed by the compositional treatment of microbiome abundance data, selbal can also 264 

be useful for comparing different microbial studies. Since balances are based on relative 265 

abundances among groups of taxa, this relative information is likely to remove the noise 266 

and biases of each particular study. 267 

 268 

  269 
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MATERIALS AND METHODS 270 

 271 

Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑘) be a composition, that is, a vector of strictly positive real numbers. 272 

Given two disjoint subsets of components in 𝑋, denoted by 𝑋+ and 𝑋−, indexed by 𝐼+  273 

and 𝐼−, composed by 𝑘+ and 𝑘− components respectively, the balance between 𝑋+ and 𝑋− 274 

is defined as: 275 

 276 

𝐵(𝑋+, 𝑋−) = √
𝑘+∙𝑘−

𝑘++𝑘−
log

(∏ 𝑋𝑖𝑖∈𝐼+ )
1/𝑘+

(∏ 𝑋𝑗𝑗∈𝐼− )
1/𝑘−

  . 277 

 278 

Expanding the logarithm, the balance is proportional to 279 

 280 

𝐵(𝑋+, 𝑋−)  ∝   
1

𝑘+
∑ log 𝑋𝑖𝑖∈𝐼+

−  
1

𝑘−
∑ log 𝑋𝑗 =  𝑀+ −  𝑀−𝑗∈𝐼−

  , 281 

 282 

which corresponds to the difference of the arithmetic means of the log-transformed initial 283 

components in the two groups that we denote by  𝑀+ and 𝑀−, respectively. This second 284 

expression is preferable from a computational point of view and is the one implemented in 285 

the proposed algorithm. 286 

Given 𝑌, a response variable, which can be either numeric or dichotomous, a composition 287 

𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑘) and additional covariates 𝑍 = (𝑍1, 𝑍2, … , 𝑍𝑟), the goal of the algorithm 288 

is to determine the sub-compositions of 𝑋, 𝑋+ and 𝑋−, indexed by 𝐼+ and 𝐼−, respectively, 289 

so that the balance 𝐵 between 𝑋+ and 𝑋− is highly associated with 𝑌 after adjustment for 290 
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covariates 𝑍. Depending on the nature of the dependent variable, the association can be 291 

defined in several ways.  292 

For a continuous variable 𝑌, the optimization criterion is defined as maximization of the 293 

coefficient of determination of the linear regression model: 294 

 295 

𝑌 = 𝛽0 + 𝛽1𝐵 + 𝛾′𝑍 . 296 

 297 

For a dichotomous variable 𝑌, we fit the logistic regression model  298 

 299 

𝑙𝑜𝑔𝑖𝑡(𝑌) = 𝛽0 + 𝛽1𝐵 + 𝛾′𝑍 , 300 

 301 

and, in this case, we consider three possible optimization criteria: the area under the ROC 302 

curve (default option), the maximization of the explained variance (20) or the discrimination 303 

coefficient (21). 304 

 305 

The main function of the proposed algorithm to detect the most associated balance is called 306 

selbal and follows these steps: 307 

 308 

STEP 0: Zero replacement 309 

 310 

The initial matrix of counts in a microbiome study, denoted by �̃�, typically contains zeros. 311 

In order to apply the mathematical theory of compositional data, the observed zeros are 312 
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assumed to be non-structural zeros but a consequence of under detection limit. They are 313 

replaced by a positive value using a Bayesian-Multiplicative replacement (10) of count zeros 314 

as implemented in function cmultRep() of the R package zCompositions (22). It is important 315 

to remark that this transformation keeps the information contained in the ratios between 316 

non-zero components. The resulting matrix without zeros is denoted by 𝑿 and coincides 317 

with �̃� only if the latter has no null value. 318 

 319 

 320 

STEP 1: Optimal balance between two components 321 

 322 

The algorithm evaluates exhaustively the optimization criterion for all possible balances 323 

composed by only two components; that is, all the balances of the form: 324 

𝐵 = √
1

2
 (log(𝑋𝑖) − log (𝑋𝑗)) 325 

for 𝑖, 𝑗 ∈ {1,   .  .  .  , 𝑘}   𝑖 ≠ 𝑗. We denote by 𝐵(1) the optimal two- component balance in 326 

terms of maximization of the association value. 327 

For each pair of components (𝑋𝑖, 𝑋𝑗) there are two options when defining a balance: 328 

√
1

2
 (log(𝑋𝑖) − log (𝑋𝑗))             and               √

1

2
 (log(𝑋𝑗) − log (𝑋𝑖)) 329 

differenced only by their sign. For dichotomous variables, they will provide the same AUC 330 

value; nevertheless selbal returns the balance whose coefficient in the regression model is 331 

positive. 332 

 333 
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 334 

STEP s: Optimal balance adding a new component 335 

 336 

For 𝑠 > 1 and until the stop criterion is fulfilled, let 𝐵(𝑠−1) be  337 

 338 

 𝐵(𝑠−1)  ∝  𝑀+
(𝑠−1)

−  𝑀−
(𝑠−1) =  

1

𝑘+
(𝑠−1)

∑ log (𝑋𝑖)

𝑖∈𝐼+
(𝑠−1)

−  
1

𝑘−
(𝑠−1)

∑ log (𝑋𝑗)

𝑗∈𝐼−
(𝑠−1)

 339 

where 𝐼+
(𝑠−1)

 and 𝐼−
(𝑠−1) are two disjoint subsets of indices in {1,   .  .  .  , 𝑘}, with 𝑘+

(𝑠−1)
 and 340 

𝑘−
(𝑠−1) elements, respectively. 341 

For each index  𝑝  ∉  (𝐼+
(𝑠−1)

 ⋃  𝐼−
(𝑠−1)), the algorithm evaluates the optimization criterion 342 

of the balance that is obtained by adding  log(𝑋𝑝) to 𝐵(𝑠−1) including 𝑝 either in  𝐼+
(𝑠−1)

 or 343 

in  𝐼−
(𝑠−1). That is, the algorithm evaluates the optimization criterion for both, 𝐵(𝑠+) 344 

and 𝐵(𝑠−), defined as: 345 

 346 

𝐵(𝑠+) = √
(𝑘+

(𝑠−1)
 +1)·𝑘−

(𝑠−1)
 

𝑘+
(𝑠−1)

 +𝑘−
(𝑠−1)

 +1
(

𝑘+
(𝑠−1)

∗𝑀+
(𝑠−1)

+log (𝑋𝑝)

𝑘+
(𝑠−1)

 +1
− 𝑀−

(𝑠−1)), 347 

 348 

𝐵(𝑠−) = √
𝑘+

(𝑠−1)
∗(𝑘−

(𝑠−1)
 +1)

𝑘+
(𝑠−1)

 +𝑘−
(𝑠−1)

 +1
(𝑀+

(𝑠−1)
−

𝑘−
(𝑠−1)

 ∗𝑀−
(𝑠−1)+ log (𝑋𝑝)

𝑘−
(𝑠−1)

 +1
), 349 

 350 
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and selects as 𝐵(𝑠) the one that maximizes the optimization criterion. If 𝐵(𝑠) = 𝐵(𝑠+), the 351 

sets of new indices are defined as, 𝐼+
(𝑠)

= 𝐼+
(𝑠−1)

∪ {𝑝} and 𝐼−
(𝑠) = 𝐼−

(𝑠−1), and similarly 352 

for 𝐵(𝑠) = 𝐵(𝑠−).  353 

 354 

 355 

STOP criterion.  selbal function has two parameters to decide the stopping criterion: 356 

 357 

- th.imp, threshold improvement (default 0). The algorithm stops the iteration 358 

process when the improvement in association is lower than the specified threshold 359 

improvement. 360 

- maxV, maximum number of components. The algorithm stops when the specified 361 

maximum number of components has been included in the balance. 362 

 363 

Cross-validation: selbal.cv 364 

 365 

We perform a cross-validation procedure with two goals: (1) to identify the optimal number 366 

of components to be included in the balance and (2) to explore the robustness of the global 367 

balance identified with the whole dataset.  368 

The cv procedure is implemented in the selbal.cv function. 369 

For each cv process, the dataset is divided into K folds (default value, K = 5). K-1 folds are 370 

used to obtain the balance (with th.imp = 0 as the stop rule) and the remaining fold is used 371 

to test the result. The process is repeated M times (default value, M = 10) 372 
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 373 

Optimal number of components  374 

 375 

For each combination of K and M we perform the selbal function on the training dataset 376 

and find the optimal balance with 𝑐 components, 𝑐 ∈ {2, . . . , 𝐶} (default value, C = 20) and 377 

evaluate the mean squared error (MSE) of the model on the test dataset. For each 𝑐 we 378 

obtain 𝑀𝑆𝐸̅̅ ̅̅ ̅̅
𝑐, the mean MSE of the different models with 𝑐 components and the 379 

corresponding standard error. The optimal number of components is defined with the 1se 380 

rule, as the minimum number of components whose mean MSE is below the minimum 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  381 

plus its standard error. 382 

 383 

For dichotomous components, the MSE is computed in the same way codifying the two 384 

groups as 0 and 1. 385 

 386 

Robustness of the result 387 

 388 

Once the optimal number of components  𝑘𝑜𝑝𝑡 has been chosen, all the balances obtained 389 

in the cv procedure are reduced to 𝑘𝑜𝑝𝑡 components. Then, a frequency table is built both 390 

for balances and for individual components. This information, available in the output of 391 

selbal.cv, is summarized in a table as those shown in Figure 3, Figure 6 and Figure 9. 392 

 393 
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The cv process also provides the association or discrimination value for each balance in the 394 

cv which can be used as a more accurate measure of association or discrimination of the 395 

global model.  396 

  397 
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 471 

Figure 1: Mean squared error (MSE) as a function of the number of components included 472 

in the balance. The optimal number of components is highlighted with a vertical dashed 473 

line.  474 

 475 

Figure 2: The components defining the selected balance are specified on top of the boxplot 476 

that represents the distribution of the balance score for each of the groups. The right part 477 

of the figure contains the ROC–curve with its AUC value (0.786) and the density curve for 478 

each group.  479 

 480 

Figure 3: Cross–validation (cv) results: first column contains the names of the taxa 481 

appearing in the most frequently selected balances in the cv procedure, the second column 482 

provides the frequency of selection (in percentage), the third column corresponds to the 483 

global balance, that is, the balance obtained using all the samples. Columns 4 to 6 represent 484 

the most frequent balances identified in the cv procedure. Colored rectangles indicate if the 485 

component is in the numerator of the balance (red), in the denominator (blue) or not 486 

included (white). The last row provides the proportion of times the balance has been 487 

selected as optimal in the cv procedure. 488 

 489 

Figure 4: Mean squared error (MSE) as a function of the number of components included 490 

in the balance. The optimal number of components is highlighted with a vertical dashed 491 

line. 492 
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 493 

Figure 5. Representation of the balance obtained (X axis) for the sCD14 immune-marker 494 

values (Y axis), the bacteria groups composing it (top of the figure) and the corresponding 495 

regression line (blue).  496 

 497 

Figure 6: Cross – validation (cv) results:  first column contains the names of the taxa 498 

included  in the most frequently selected balances in the cv procedure, the second column 499 

provides the frequency of selection (in percentage), the third column corresponds to the 500 

global balance, that is, the balance obtained using the whole sample. Columns 4 to 6 501 

represent the most frequent balances identified in the cv procedure. Colored rectangles 502 

indicate if the component is in the numerator of the balance (red), in the denominator 503 

(blue) or not included (white). The last row provides the proportion of times the balance 504 

has been the selected in the cv procedure. 505 

Figure 7: Mean squared error (MSE) as a function of the number of components included 506 

in the balance. The optimal number of components is highlighted with a vertical dashed 507 

line. 508 

 509 

Figure 8: The components defining the selected balance are specified on top of the boxplot 510 

which represents the distribution of the balance score for each of the groups. The right part 511 

of the figure contains the ROC – curve with its AUC value (0.838) and the density curve for 512 

each group. 513 

 514 
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Figure 9: Cross – validation (cv) results: first column contains the names of the taxa 515 

appearing in the most frequently selected balances in the cv procedure, the second column 516 

provides the frequency of selection (in percentage), the third column corresponds to the 517 

global balance, that is, the balance obtained using the whole sample. Columns 4 to 6 518 

represent the most frequent balances identified in the cv procedure. Colored rectangles 519 

indicate if the component is in the numerator of the balance (red), in the denominator (blue) 520 

or not included (white). The last row provides the proportion of times the balance has been 521 

the selected in the cv procedure. 522 

 523 
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