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Abstract 25 

Inter-areal functional connectivity (FC), neuronal synchronization in particular, is thought to constitute a key 26 

systems-level mechanism for coordination of neuronal processing and communication between brain regions. 27 

Evidence to support this hypothesis has been gained largely using invasive electrophysiological approaches. In 28 

humans, neuronal activity can be non-invasively recorded only with magneto- and electroencephalography 29 

(MEG/EEG), which have been used to assess FC networks with high temporal resolution and whole-scalp 30 

coverage. However, even in source-reconstructed MEG/EEG data, signal mixing, or “source leakage”, is a 31 

significant confounder for FC analyses and network localization.   32 

Signal mixing leads to two distinct kinds of false-positive observations: artificial interactions (AI) caused 33 

directly by mixing and spurious interactions (SI) arising indirectly from the spread of signals from true 34 

interacting sources to nearby false loci. To date, several interaction metrics have been developed to solve the 35 

AI problem, but the SI problem has remained largely intractable in MEG/EEG all-to-all source connectivity 36 

studies. Here, we advance a novel approach for correcting SIs in FC analyses using source-reconstructed 37 

MEG/EEG data.  38 

Our approach is to bundle observed FC connections into hyperedges by their adjacency in signal mixing. 39 

Using realistic simulations, we show here that bundling yields hyperedges with good separability of true 40 

positives and little loss in the true positive rate. Hyperedge bundling thus significantly decreases graph noise 41 

by minimizing the false-positive to true-positive ratio. Finally, we demonstrate the advantage of edge bundling 42 

in the visualization of large-scale cortical networks with real MEG data. We propose that hypergraphs yielded 43 

by bundling represent well the set of true cortical interactions that are detectable and dissociable in MEG/EEG 44 

connectivity analysis.  45 

 46 

Keywords Signal leakage, spurious correlation, artificial correlation, volume conduction, 47 

signal mixing, point spread, graph theory, MEG, EEG 48 

 49 

Highlights  50 

• A true interaction often is “ghosted” into a multitude of spurious edges (SI) 51 

• Effective in controlling and illustrating SI 52 

• Hyperedges have much improved TPR and graph quality  53 

• Advantages in visualizing connectivity  54 
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1 Introduction 55 

Large-scale neuronal networks, e.g., manifested  by functional, directed, and effective connectivity(Karl 56 

J. 2011), are thought to be critical for healthy brain functions while their abnormalities are thought to underlie 57 

many brain diseases (Brookes et al., 2016; Bullmore and Sporns 2009; Bullmore and Sporns 2012; Fornito et 58 

al., 2015; Papo et al., 2014; Petersen and Sporns 2015; Rubinov 2015; Sporns 2014; Uhlhaas and Singer 2010; 59 

Uhlhaas and Singer 2006). Currently, magneto- and electro-encephalography (MEG/EEG) are the only non-60 

invasive electrophysiological tools for studying connectivity networks with millisecond-range temporal 61 

resolution and good coverage of the cortical surface (Kujala et al., 2008; Palva and Palva 2012; S. Baillet et al., 62 

2001; Salmelin and Baillet 2009). Accurately identifying interaction dynamics from MEG/EEG data is of 63 

crucial importance for understanding their role in human cognition and its deficits.  64 

To date, numerous interaction metrics have been developed and utilized to assess functional connectivity (FC) 65 

in terms of amplitude-, phase-, and phase-amplitude correlations within or across frequency bands for pairs of 66 

electrophysiological signals (Bastos and Schoffelen 2016; Kreuz 2011; O'Neill et al., 2015). These pairwise 67 

metrics are typically applied to estimate FC among all brain regions, i.e., to obtain “all-to-all” FC connectomes 68 

(Sporns et al., 2005). Networks of inter-areal FC are often represented as graphs where brain areas constitute 69 

the nodes (or vertices) and observed inter-areal connections the edges (Bullmore and Sporns 2009; Rubinov 70 

and Sporns 2010).  71 

FC graphs estimated from MEG/EEG sensor space data are neuroanatomically uninformative and severely 72 

confounded by signal mixing. Signal mixing has two facets: first, any focal neuronal signal is picked up by 73 

several sensors. Conversely, one sensor detects a mixture of signals from several distinct sources. Source 74 

reconstruction can be used to reduce signal mixing and, importantly, elucidate the likely neuroanatomical 75 

sources of the MEG/EEG signals (Buzsaki et al., 2012; Gross et al., 2013; Hamalainen et al., 1993; Palva and 76 

Palva 2012; Schoffelen and Gross 2009). Yet, because of ill-posed nature of the inverse problem, no source 77 

reconstruction approach can yield an unambiguous estimate of the source topography. Residual signal mixing 78 

in source space, signal leakage, is quantitatively dependent on the source-reconstruction method of choice but 79 

qualitatively characteristic to all such methods.  80 

Because of signal leakage, FC measures exhibit two distinct types of false positive observations: artificial 81 

interactions (AI) and spurious interactions (SI) (see Box 2, (Palva and Palva 2012)). AIs arise directly from 82 

the signal mixing by one true signal being smeared to multiple sensors or sources, regardless of whether true 83 

interactions are present. SIs are “ghost” interactions caused by the leakage of the signals from two true 84 

connected nodes to their surroundings nodes that in turn become falsely connected like the truly connected 85 

nodes. AIs can be suppressed by a number of bivariate metrics that typically aim to remove linear coupling 86 

terms, and therefore removing artificial and true interactions with zero- and anti-phase-lag coupling (for a 87 

review see (Palva et al., 2017)). However, the problem of SIs is much less acknowledged and more difficult to 88 

solve because SIs stem from multivariate mixing effects. With typical distributed source modeling approaches, 89 

signal leakage causes a large number of SIs that render both the network localization and graph property 90 
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estimates inaccurate (Drakesmith et al., 2015). To date, one solution has been proposed for correcting SIs in 91 

oscillation amplitude correlation estimates, which simultaneously orthogonalizes all source time series through 92 

the Löwdin procedure (Colclough et al., 2015; Colclough et al., 2016). Despite this promising advance, no 93 

solutions have yet been proposed to suppress SIs for other interaction metrics. 94 

Here we advance a novel approach, hyperedge bundling, to alleviate the problem of SIs problem in all-95 

to-all connectivity analyses performed with any interaction metric. Instead of correcting the mixing effects in 96 

source signals per se, the approach is based on a quantification of the extent of mixing between all sources, 97 

evaluation of mixing similarity among all edges, and then clustering the raw interaction metric edges into 98 

hyperedge bundles. This procedure aims to yield a hypergraph where each hyperedge represents a true 99 

interaction and its spurious reflections. 100 

In this study, we performed a large set of connectivity simulations and realistic all-to-all MEG source 101 

space analyses, in which we estimated phase synchrony as a measure of FC with an AI-insensitive metric. We 102 

show that in simulated graphs, hyperedge bundling greatly decreases the number of false positives, i.e., SIs. 103 

We illustrated how bundling can support an informative visualization of FC graphs with real MEG data. We 104 

suggest that such hypergraphs constitute accurate and unbiased representations of neuronal interactions 105 

observable in MEG/EEG source space. 106 

2 Theory  107 

This section covers general topics as follows: signal mixing in MEG/EEG, how spurious interactions (SI) 108 

arise from mixing between sources; and bundling of raw edges into hyperedges. The implementations specific 109 

to this study are described in the Methods section. Throughout the report, we denote a connectivity graph 110 

estimated from reconstructed source time series as raw graph Graw= (V, E), where brain regions are nodes vi ∈ 111 

V and interactions between nodes are “raw” edges, ek = {(vi,vj)∈E|vi,vi∈V}.   112 

2.1 Signal mixing results in false positive artificial (AI) and spurious interactions (SI) 113 

Let us consider a scenario where a true phase correlation is present between two distant (unmixed) 114 

sources V1 and V2 (Fig 1A top). The signals from V1 and V2 are mixed with signals of their nearby and 115 

mutually uncorrelated neighbours V3 and V4. Estimating phase FC among all four nodes with the phase-116 

locking value (PLV) will reveal both the true edge E(V1,V2) and false positive “short-range” AIs between the 117 

nearby nodes E(V1,V3) and E(V2,V4), because PLV is inflated by mixing (thick gray edges, Fig 1A bottom). 118 

However, due to leakage of the signal from V1 and V2 to their neighbors V3 and V4, false positive “long-range” 119 

SIs E(V3,V4), E(V2,V3), and E(V1,V4) will also be observed (thin dashed edges). These SIs are thus only 120 

indirectly caused by mixing and, unlike the zero-phase-lag AIs (see 2.2), SIs inherit the phase-lag of the true 121 

interaction. Mixing-insensitive bivariate metrics such as the imaginary part of PLV (iPLV) can remove AIs but 122 

do not eliminate SIs if the true coupling has non-zero phase lag.  123 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2017. ; https://doi.org/10.1101/219311doi: bioRxiv preprint 

https://doi.org/10.1101/219311
http://creativecommons.org/licenses/by-nd/4.0/


 

5 

 

2.2 Quantifying the mixing between reconstructed sources  124 

Signal mixing/leakage between two sources is instantaneous and therefore always leads to inflated zero-125 

phase-lag correlations between the sources. Mixing does not vary over time or across frequency bands 126 

(Brookes et al., 2012; Brookes et al., 2014; Drakesmith et al., 2013; Nolte et al., 2004; Palva and Palva 2012).  127 

2.2.1 Source-reconstruction 128 

Suppose we have a data matrix X = {x(1), x(2), …, x(n)}∈ℝ
n×t representing narrow-band time series of t 129 

samples from n neuronal populations. Simulating a MEG/EEG recording, X can be linearly projected to 130 

sensor-space (Hämäläinen and Ilmoniemi 1994): 131 

 � � �� � �     (1) 132 

where Y∈ℝs×t represents the forward-modeled time series from s sensors (n > s). Here, Γ ∈ℝs×n is the 133 

forward operator (or the lead field) and ε∈ℝs×t is the model prediction error derived from measurement noise. 134 

Next, Y can be projected back into the source-space, e.g., by minimum-norm estimation (MNE) based inverse 135 

modeling:  136 

 �� � �� � 	��
�	�� � ���
���   (2) 137 

where W∈ℝ
n×s is the inverse operator (sources × sensors), the regularization parameter λ2=0.1, R is the 138 

source covariance matrix, and χ is the noise covariance matrix. Next, several thousand of source vertices can 139 

be collapsed onto a smaller number (50-400) of cortical parcels. 140 

2.2.2 Cross-talk function and resolution matrix  141 

In MEG/EEG source connectivity studies, a resolution matrix � � ��  (Ρ∈ℝn×n) is often used to 142 

describe the relationship between true signals and modeled signals from n sources in the absence of noise 143 

(Farahibozorg et al.,2017 ; Hauk and Stenroos 2014; Hauk et al., 2011; Liu et al., 2002). In P, each diagonal 144 

element quantifies the sensitivity for estimating signals from that source. Each row of P is the “cross-talk” 145 

function (CTF) that describes the amount of mixing between one source and all other sources. Each column of 146 

P is a “point-spread” function (PSFs) that describes how the modeled signal from any one source is spread 147 

across all other sources. 148 

2.2.3 The mixing function 149 

For collapsed cortical parcels, we approximate the resolution matrix Ρ with a mixing matrix Amix of 150 

dimension n × n parcels. Each element of Amix is a mixing function (fmix) that characterizes the signal mixing 151 

between two parcels. We rationalize that if the true source signals are uncorrelated, the amount of correlation 152 

at zero-lag between reconstructed signals can only be explained by mixing between the sources. Thus, fmix can 153 

be quantified by the zero-lag correlation between parcel time series estimated using a simulated MEG/EEG 154 

measurement of uncorrelated source noise.  155 
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We first generate uncorrelated signals X0∈ℝ
n×t, t samples for n parcels, and forward transform them to 156 

obtain sensor signals Y0 (eq. 1). We next inverse transform Y0 to obtain reconstructed signals ��� (eq. 2). In this 157 

process, the reconstructed signals ���
��
, ���
��
 of any two nearby sources vi and vj become correlated to a 158 

certain degree due to mixing. Thus, the mixing from the simulated “true” signal x0(vi) to the reconstructed 159 

signal ���(vj) can be quantified as:  160 

fmix(vi, vj) = ���
����
��
��
, ���
��


�   (3) 161 

where re() denotes the real part of a complex number and cPLV is the complex-valued phase locking 162 

value (Lachaux et al., 1999): 163 

����
A, B
 � �

�
∑ ����	�
���	�
��
��
��� � �

�
∑ � ����

�

|��||��|
  �

���  , (4) 164 

where T denotes the number of samples, θA and θB are the instantaneous phases of signal A and B; SA and 165 

SA are complex-valued narrow-band signals from A and B, and z* is the complex conjugate of z. Because 166 

mixing is instantaneous, re(cPLV(A,B)) captures all correlations caused by mixing. For parcel pairs that do not 167 

become correlated by signal mixing, fmix is near zero. For parcel pairs influenced by signal mixing, fmix >> 0 168 

and reaches 1 for complete mixing. 169 

2.3 Signal mixing smears a true interaction into multiple spurious interactions 170 

For a simplified illustration of how signal mixing / source leakage produces SIs, we used toy model 171 

with a 13 × 13 grid of point sources. The infidelity matrix Ainfid  of dimension 169 × 169, was defined so that 172 

mixing between any two sources was a 2D Gaussian distribution decreasing with distance between the two 173 

sources (inset, Fig 1B, methods see Supplementary).  174 

We simulated one true edge by setting two sources V1 and V2 to have phase coupling of 0.9 with non-175 

zero phase lag and keeping the remaining 167 sources uncorrelated. Next, we introduced mixing between 176 

reconstructed sources and mapped all-to-all phase FC with an AI-free metric, the imaginary part of the phase-177 

locking-value (iPLV) (Palva and Palva 2012) 178 

"��� � |"$
����
|  ,    (5) 179 

The iPLV, like the imaginary coherency (Nolte et al., 2004), removes zero-lag couplings by excluding 180 

the real part of cPLV. Therefore, iPLV yields only the true phase-lagged interactions and their false positive 181 

ghosts (SIs). In this simulation, visualization of the strongest 0.1% of iPLV edges revealed the true edge and 182 

several SIs, all of which connected sources within the mixing neighbourhoods of the true sources V1 and V2 183 

(Fig 1B).  184 

2.4 Raw edges can be bundled into hyperedge by their mixing similarity (SE) 185 

The mixing similarity can next be derived with the known mixing matrix Amix to describe how close 186 

these edges are with each other in signal mixing. A bivariate similarity estimation yields a mixing similarity 187 

matrix SE, where each element SE(i, j) quantifies the similarity between two edges Ei, Ej (for how-to, see 2.5). 188 
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Our objective is to classify raw edges by mixing similarity into “hyperedges”, where each hyperedge is 189 

a “bundle” of raw edges (including true and false-positive SI edges): HEκ = {{ek=(vi,vj)}∈E|vi,vi∈V}. The raw 190 

graph is thereby transformed into a hypergraph Gh = (V, HE). Within any one hyperedge, all raw edges are 191 

mixing-wise close to each other but distant from the raw edges of other hyperedges, and thus collectively 192 

representing a “community” of raw edges that we hypothesize to include the underlying true interaction and its 193 

ghosting SIs.  194 

This classification can be done by partitioning the SE matrix into clusters with an appropriate clustering 195 

method. In the toy model, bundling transformed the raw graph with a multitude of false positives into a 196 

hypergraph with one hyperedge that captured the true interaction with zero false positives (Fig 1C). 197 

For visualizing hyperedges, we utilized a “force directed edge bundling” method that both indicates the 198 

adjacency of the constituent raw edges and illustrates the loci where the SIs originated (Holten and Wijk 2009). 199 

2.5 Hyperedge bundling for multiple true interactions 200 

To demonstrate that bundling could be extended to separate multiple true interactions, we expanded the 201 

simulation and modeled interactions with three degrees of adjacency: “kin”, “nearby”, and “far”. The 202 

estimated raw graph yielded the true-positive (TP) edges surrounded by numerous false positive (FP) SIs (Fig 203 

2D). Estimating and partitioning the edge similarity matrix SE revealed that: 1) two “kin” edges were 204 

inseparable and together with their SIs they merged into the largest hyperedge HE1 (Fig 2E); 2) the “far” pair 205 

was clustered into two clearly separable hyperedges HE2 and HE5; 3) the “nearby” pair and their SIs were also 206 

clustered into two distinct hyperedges HE3 and HE4 with greater inter-hyperedge similarity as measured by 207 

mean-linkage (green box) than the “far” pair (magenta box); 4) a few scattered random false positive edges 208 

were also clustered into hyperedges (gray box), but they were much smaller in size than any of the hyperedges 209 

containing a true edge.  210 

If a hyperedge containing at least one true raw edge is considered as a TP observation, bundling greatly 211 

decreased graph noise in terms of the FP/TP ratio. FP/TP in raw graph was 239/6 and 4/5 in the hypergraph, 212 

which marks a reduction in the fraction of FPs by a factor of 50. Visualizing these bundles showed that the 213 

hypergraph had less visual clutter and facilitated identification of the true interactions compared to the raw 214 

graph (Fig 2F). 215 

2.6 Estimation of the edge similarity matrix SE 216 

Hyperedge bundling is based on the raw connectivity graph AFC (a sparse matrix containing only 217 

significant edges), and the mixing matrix Amix (Fig 2A, C). We first parsed the edges in AFC into a list of node 218 

pairs (Fig 2B). We next find the mixing function fmix between all involved nodes from Amix (Fig 2C, and 219 

illustrated geometrically in Fig 2D) to compute the edge-to-edge adjacency in signal mixing.  220 
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2.6.1 The edge adjacency matrix (AE) 221 

For a raw graph with m edges, the edge-to-edge adjacency matrix AE∈ℝ
m × m represents the pairwise 222 

mixing adjacency among all raw edges and is necessary for computing the similarity matrix SE.  The adjacency 223 

between two edges Ei(V1,V2) and Ej(V3,V4)} was defined as follows (Fig 2D): 224 

if V1−V4 are distinct nodes 225 

AE(i,j) = max [ fmix(V1,V3) fmix(V2,V4),  fmix(V1,V4) fmix(V2,V3) ]  226 

elseif  V1 == V3 :  AE(i,j) = fmix(V2, V4)
2 227 

elseif  V2 == V4  :  AE(i,j) = fmix(V1,V3)
2 228 

elseif  V1 == V4  :  AE(i,j) = fmix(V2,V3)
2 229 

elseif  V2 == V3  :  AE(i,j) = fmix(V1,V4)
2 230 

elseif  i==j       :   AE(i,j)=0   %  diagonal of AE  (6) 231 

here “==” is assertion, “=” is assignment. This algorithm is applied for all pairs of edges in the raw 232 

graph to populate the AE matrix (Fig 2E).  233 

2.6.2 Evaluation of Edge Similarity (SE) with correlation of edge mixing profiles in AE 234 

We denote rows of the AE matrix as the signal mixing profiles so that AE(i) and AE(j) are the mixing 235 

profiles of edges Ei and Ej, respectively, and thus indicate their mixing adjacency to all the other raw edges in 236 

the graph. If Ei and Ej are similar to each other, i.e., a high correlation between AE(i) and AE(j), edge Ei will be 237 

similar to all the edges in the raw graph that Ej is similar to, and vice versa (Fig 2F&2G). Such pattern can be 238 

already observed in the simplified models (Fig1) where SIs of any given true edge are all close to each other 239 

and adjacent to the true interaction. 240 

Conversely, if two edges are far apart in mixing, their mixing profiles exhibit little to no correlation. 241 

Using correlation estimates of mixing profiles, it is thus possible to assess the significant similarity of all pairs 242 

of edges in AE and populate the similarity matrix SE ∈ℝm × m (Fig 2H).  Hyperedge bundling is based on the 243 

notion that a SE can be partitioned into clusters of raw edges that are similar to each other in mixing within 244 

each cluster and therefore to collectively reflect a shared true underlying interaction. 245 

2.7 The resolution of hyperedge bundling is defined by the cutoff limit  246 

We partition the edge similarity matrix SE into clusters of “hyperedges” so that within any one 247 

hyperedge, the raw edges are mixing-wise close (large SE values)  to each other and distant (small SE values) 248 

from raw edges of other hyperedges.  249 

We now introduce a control parameter, the cutoff limit (CL) that dictates the “resolution” of a 250 

hypergraph. CL is defined as the ratio of desired number of clusters to the number of available raw edges to be 251 

clustered. For example, for a graph of 1000 edges, a CL of 0.1 causes the clustering method to partition the SE 252 

matrix into 100 hyperedges. We chose to control clustering using the CL for better comparability of clustering 253 

methods or graphs of different sizes. The similarity matrix SE∈ℝ
m × m can be partitioned into arbitrary number 254 
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of clusters from 1 to m – 1, i.e., CL ranging from 1/m to (m-1)/m (Fig 2I, for technical details on how CL is 255 

related to the depth at which dendrogram was cut into clusters, see Supplementary).  256 

2.8 Validate the stability of hyperedge clustering 257 

To ensure that the hyperedges are not random outcomes of partitioning the similarity matrix, the 258 

“stability” of partitioning solutions must be evaluated. We ask, at any resolution (CL=c), if the differences 259 

between the partitioning solutions of n randomly perturbed versions of a similarity matrix SE  is statistically 260 

smaller than their surrogate counterparts, the partitioning solution can be considered as stable (Supplementary). 261 

The distance between two partitioning solution can be estimated with the variation of information (VI,(Meilă 262 

2007)). The independent perturbations to a similarity matrix can be acquired by randomly deleting a small 263 

subset, e.g., 10 or 20%, of the elements in the similarity matrix (Ben-Hur et al., 2002; Williams et al., 2015). 264 

The surrogates can be obtained by randomly permuting the perturbed similarity matrix.  265 

3 Methods 266 

The goal of this study was to assess the performance and applicability of hyperedge bundling in 267 

suppressing spurious interactions (SI) in MEG/EEG source connectivity studies. To this end, we obtained 268 

large numbers of functional connectivity (FC) graph estimates from simulated data with realistic sources and 269 

inverse modeling. We next evaluated the efficacy of hyperedge bundling in capturing true positive (TP) 270 

interactions and rejecting false positive (FP) SIs. Finally, we demonstrated the bundling of FC graphs 271 

estimated from MEG data recorded in a visual working memory (VWM) experiment.  272 

This section includes the procedural outlines of the simulations and evaluation of bundling efficacy. The 273 

preprocessing pipeline, technical details of the simulations and preprocessing of the VWM experiment are 274 

described in Supplementary. The Python 2.7 and National Instruments TM LabVIEW version of the hyperedge 275 

bundling program can be downloaded from:  https://figshare.com/projects/Hyperedge_Bundling/26503.  276 

3.1 Simulating “truth” time series of varying coupling strengths 277 

In real electrophysiological data, mixing across source loci and subjects is inhomogeneous (Brookes et 278 

al., 2014) and coupling strengths of neuronal interactions also exhibit great spatiotemporal and inter-subject 279 

variability (Preti et al., 2016; Zalesky et al., 2014). To account for such variability, we created 1000 distinct 280 

truth graphs each containing 200 randomly generated true interactions between 400 cortical parcels in a 281 

standard cortical source space (Destrieux et al., 2010). Each node thus connected only to a single other node, 282 

which allows an unbiased survey of the whole cortical surface in every graph realization. We did not simulate 283 

structured networks therefore excluding the impact of higher order SI. These higher order SI can arise from 284 

common drive, third-party sources, and cascade effects, although identifying them is of equal importance 285 

(Mannino and Bressler 2015; Wollstadt et al., 2015). 286 

For every truth graph, we simulated ten sets of coupled time series, representing two different modes of 287 

coupling, i.e., gamma distribution (Cλ with maximum coupling of 0.9 and order parameter r ranging from 1 to 288 
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20) or uniform distribution (Cc) at 5 different levels of coupling strength each (Supplementary). A set of 289 

uncorrelated null hypothesis time series was also simulated for each truth graph. These null hypothesis time 290 

series were used for estimating the parcel mixing properties (3.2) and as the baseline condition against coupled 291 

conditions in group analysis.  292 

3.2 Estimation of mixing properties using the H0 time series 293 

Mixing in source reconstructed MEG/EEG data is essentially captured in the forward and inverse 294 

operators used in source reconstruction. These operators are determined by the data acquisition system and 295 

specifics of the individual source model (Wens 2015). In addition to the mixing function fmix (see 2.2.3), we 296 

characterized the source model used here with a set of additional mixing metrics obtained from the 12 subjects 297 

from the VWM experiment: 298 

1) Parcel fidelity quantifies the reconstruction accuracy and is defined as the phase correlation between 299 

the simulated null hypothesis time series �� , and reconstructed null hypothesis time series ���  of 300 

parcel vi  301 

 ������ � |	
���
��������, ��������| ,   (7) 302 

2) Edge fidelity, fe(vi,vj) = fp(vi)fp(vj), that quantifies the reconstruction accuracy of raw edges connecting 303 

two parcels vi and vj. 304 

3) Residual spread function is the correlation between two parcels reconstructed null hypothesis time 305 

series. 306 

 �
����� , ��� �  �	
���
���������, ���������� ,  (8) 307 

The definition of PLV0 appears similar to that of fmix, but they are conceptually different. The fmix 308 

measures how much of each source’s true signals are picked up in other sources’ reconstructed signals. PLV0, 309 

on the other hand, is the correlation between any two sources’ modeled time series that both are contaminated 310 

by mixing with numerous other sources. Because the iPLV estimates can be biased by mixing, we used PLV0 311 

to exclude edges connecting sources with large mixing (Palva et al., 2017). 312 

3.3 Elimination of poorly measurable edges with the intractable-edge-mask (IEM) 313 

We applied an intractable-edge-mask (IEM) to exclude edges that connect sources with poor 314 

reconstruction accuracy. True interactions between these sources may exist, but cannot be reliably detected 315 

because estimations of connectivity between them are unreliable due to the limitations of the source model. 316 

We utilized the mixing properties (see 3.2) and construct a group-level IEM in two steps:  317 

1) With average edge-fidelity <fe> and the residual spread <PLV0>, we create two Boolean masks:  318 

i. The edge-fidelity mask (Mfe) to exclude edges with low fidelity, thereby removing edges 319 

connecting poorly reconstructed sources. 320 

ii. The residual spread mask (MPLV0) to exclude edges with large PLV0, thereby removing edges 321 

whose FC estimates likely are much distorted by mixing between these loci (Palva et al., 2017).  322 

2) The IEM is the union of these two masks. 323 
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In this study, we set 0.1 as the threshold for Mfe, which removed the 40% most poorly reconstructed 324 

edges from all 79,800 (N(N−1)/2, N = 400) possible edges in raw graphs. The MPLV0 was acquired by deleting 325 

edges whose PLV0 was greater than the 95th percentile of the PLV0 matrix. 326 

3.4 Estimation of group-level FC of simulated graphs 327 

The group-level significant iPLV estimates thresholded with the IEM were used as raw graphs for 328 

hyperedge bundling. The group-level analysis for the simulated graphs and for real MEG/EEG data in the 329 

VWM experiment were carried out in the same manner.  For simulated graphs, we forward- and inverse-330 

modeled the coupled truth time series into 12 subjects’ individual source space, thereby introducing mixing 331 

into reconstructed signals (Schoffelen and Gross 2009). We next estimated iPLV connectivity for these 332 

subjects. We then tested across subjects, for each edge in every estimated FC graph, whether there was a 333 

significant difference (one-tailed t-test) in the iPLV estimate between the coupled and the H0 condition. Those 334 

edges that showed a significant difference were identified as raw edges (corrected for multiple comparisons 335 

within each FC graph). We acquired FC graphs with three significance levels p < 0.05, 0.01, and 0.001 for 336 

each of the ten coupled time series.  337 

3.5 Hyperedge bundling with two clustering methods  338 

After applying the IEM to all group-level FC matrices, we followed the procedures described in Theory 339 

to obtain the similarity matrix SE for each FC. We next partitioned each SE into clusters of “hyperedges” with 340 

two clustering methods. The unweighted pair group method with arithmetic mean (UPGMA) is an 341 

agglomerative hierarchical clustering method that builds a rooted hierarchical tree to represent the distance in 342 

signal mixing between all raw edges (Jain et al., 1999). The Louvain method for community detection extracts 343 

communities by optimizing the modularity of clusters through a gradient descent procedure (Blondel et al., 344 

2008). 345 

3.6 Comparing hypergraphs with raw graphs  346 

We denoted the TPs as the edges from truth graphs that were identified as significant edges in the 347 

group-level FC matrix, and FPs as significant edges in the group-level FC matrix but absent in the truth graph. 348 

Thus, the true positive rate (TPR, sensitivity) is given by TPR = TP/Ntrue*, where Ntrue* is the number of 349 

“detectable true edges” referring to the number of simulated true edge that passed the intractable-edge-mask. 350 

We further defined the noise as the FP to TP ratio. An ideal group-level FC should capture as many of the true 351 

interactions as possible while rejecting other edges, i.e., high TPR and low FP/TP. 352 

We used TPR and FP/TP as the main criteria to characterize raw graphs instead of the commonly used 353 

receiver operating characteristic curve (ROC) for two reasons. First, the ROC is derived from the TPR and 354 

false positive rate (FPR) which are not directly comparable between raw graphs and hypergraphs, as these are 355 

different constructs; second, because the number of FP is disproportionally larger than that of TP (as shown 356 

later with an example), the shape of the ROC is misleadingly optimal when limiting the number of raw edges 357 

with varying edge weight threshold. 358 
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We defined a TP hyperedge (TPHE) as a hyperedge capturing at least one TP raw edge, whereas a FP 359 

hyperedge (FPHE) contained only FP raw edges. Hyperedges may also contain multiple TP raw edges. To 360 

quantify this, we defined separability as the fraction of true positive hyperedges that contain only one TP raw 361 

edge out of all true positive hyperedges. An ideal hypergraph should balance high TPR and separability 362 

against low FP/TP. 363 

4 Results 364 

This section includes three parts: 1) Demographics of group-level FC of the simulated graphs; 2) Efficacy 365 

of hyperedge bundling; 3) Application of hyperedge bundling to real MEG data. 366 

4.1 Group-level FC as raw graphs  367 

In individual subjects, mixing introduced by the virtual MEG experiment distorted PLV, iPLV and the 368 

phase-lag of all measured graphs of varying coupling strength including the H0 time series (Supplementary). 369 

To find group-level significant edges, we tested for each edge whether there was a difference in iPLV value 370 

between the coupled condition and the H0 condition (Fig 3A, see 3.4). Edges that showed a significant 371 

difference were reported as raw edges (corrected for multiple comparisons). Thus, we obtained FC graphs for 372 

each of the ten sets of coupled graphs at 3 significance levels of p < 0.05, 0.01 and 0.001.  373 

4.1.1 Raw graphs of iPLV edges are noisy 374 

Overall, the number of significant iPLV edges increased as coupling strengths increased (Fig 3B). The 375 

group-level graphs at all 3 significance levels captured over 75% of all detectable TP edges, except in the case 376 

of weak uniform coupling, Cc(0.1) (Fig 3C). We simulated 200 random edges in each ground truth graph and 377 

computed the true positive rate (TPR) for each measured group graph as the number of significant edges 378 

divided by the number of all simulated true edges that passed through the intractable-edge-mask (IEM). 379 

Despite the high TPR, there was a large variability in the ratio of false and true positives, FP/TP, across these 380 

graphs (Fig 3D). 381 

4.1.2 Is strict statistical thresholding a good solution for pruning FPs? 382 

We chose the graphs of gamma coupling (Cλ) with order parameter r of 15 and uniform coupling (CC) 383 

with coupling of 0.5 to test statistical thresholding (below) and hyperedge bundling because they had 384 

comparable TPR (Fig 3C) and equivalent true edge strengths (see distribution in Supplementary 1). Moreover, 385 

both contained only ~750 edges, which mitigated computational overhead in later clustering analyses. 386 

One sensible way to identify key structures in FC graphs is to apply a statistical threshold to iPLV 387 

values. We found that by increasing the significance iPLV threshold, the number of FP edges decreased at a 388 

faster rate than the number of TP edges in both graphs (Fig 3E). Around 120 of the 640 strongest edges were 389 

TP, giving a TPR > 90% for 125 detectable true edges, but a FP/TP ratio of 4. When retaining the 20 strongest 390 

edges reduced the FP/TP to 0.1 (Fig 3F) but at the cost of reduced TPR, (TPR = 0.15). Overall we found that 391 

the mean iPLV of TP edges was larger than that of FP edges’ (Fig 3G), which suggests that strict thresholding 392 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2017. ; https://doi.org/10.1101/219311doi: bioRxiv preprint 

https://doi.org/10.1101/219311
http://creativecommons.org/licenses/by-nd/4.0/


 

13 

 

is an applicable solution for reducing FP/TP but comes at a price of an elevated false negative rate, although 393 

the shape of ROC curve appeared to be optimal (inset Fig 3E).  394 

4.2 Hypergraphs yields better FP/TP than raw graphs with reasonable TPR cost 395 

4.2.1 The stability of clusters 396 

Evaluating the stability of clustering was a necessary step prior to further analysis of the properties of 397 

hyperedge clusters. The resolution of clustering and thereby of the hypergraphs was controlled by the cutoff 398 

limit (CL, see 2.6). We used bootstrapping to identify the CL range that yielded stable partitioning of the raw 399 

graphs (see Methods and Supplementary). We found that at CL < 0.4, both UPGMA and Louvain clustering 400 

yielded significantly more stable partitions for simulated graphs than their randomly rewired counterparts (Fig 401 

4A). For the 640 raw edge graphs, this CL upper bound corresponded to ~250 hyperedges. In the following 402 

analysis, we thus tested bundling with CL ranging from 0.05 to 0.45. 403 

4.2.2 Cluster-size distribution 404 

We next quantified the distributions of hyperedge sizes (numbers of raw edges per hyperedge, Fig 4B) 405 

by pooling hyperedges from 500 clustered graphs with CL ranging from 0.05 to 0.45. As expected, we found a 406 

systematic shift towards smaller hyperedges with increasing resolution/CL. The Louvain method consistently 407 

yielded more small hyperedges than UPGMA. 408 

4.2.3 Hyperedge-bundling performance: trade-offs between separability, TPR and graph noise  409 

Hyperedge bundling aims to detect and separate as many TP interactions as possible while rejecting as 410 

many FP as possible. We tried to find an optimal balance among these competing outcomes by taking into 411 

account two aspects of hyperedge bundling: separability and noise. We defined separability as the ratio 412 

between singleton TP hyperedges (containing only one TP raw edge) and all TP hyperedges, and noise as the 413 

FP/TP ratio of the hyperedges. An ideal hyperedge partitioning would thus have separability = 1, FP/TP ~0, 414 

and a TPR equal to the TPR of raw edges. 415 

We observed that by increasing the hyperedge resolution (CL from 0.05 to 0.45), the separability 416 

increased but noise also increased with both clustering methods (Fig 4C, 4D). Thus at coarse resolutions (low 417 

CL), multiple TP raw edges were partitioned into one hyperedge but there were very few FP hyperedges, 418 

likely because there were less small-sized hyperedges. Conversely, at fine resolutions (high CL), separability 419 

was improved but at the cost of having greater numbers of FPs.  420 

Knowing that small hyperedges are more likely to be FPs than large hyperedges (Fig 1E), we further 421 

tested whether excluding hyperedges by size would decrease noise. At each resolution level, excluding small 422 

hyperedges lead to a decrease in noise (FP/TP decreased with increasing θHEsize, Fig 4C, D). Nevertheless, this 423 

was accompanied by reduced separability (y axis, Fig 4C, D) and a reduced TPR (Fig 4E, F) caused by the 424 

removal of small-sized TP hyperedges together with FP hyperedges.  425 
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To summarize, at all graph resolutions, hypergraphs were less noisy than raw edge graphs. In the least 426 

noisy hypergraph (e.g., Louvain, CL = 0.05 and θHEsize > 8), 87% of the 125 TP raw edges were retained while 427 

achieving a 103-fold decrease in noise compared to the underlying raw graphs, i.e., FP/TP decreased from 428 

(640-125)/125 = 4.1 (Cγ raw graphs in Fig3E) to 3.8×10-3 (leftmost filled box on the cyan curve, Fig 4F). 429 

Nevertheless, this improvement came at the cost of poor separability, meaning many hyperedges in CL = 0.05 430 

graphs contained several true edges.  To balance an optimal trade-off, we decided to use CL ≥ 0.15 and θHEsize > 431 

2, expecting to achieve a reduction of FP/TP to 0.1 (from 4.1 in raw edges) with negligible reduction in TPR 432 

and adequate separability (0.5).  433 

4.2.4 Louvain clustering yields less noisy hypergraphs but lower separability than UPGMA clustering 434 

The Louvain method produced more small hyperedges than the UPGMA method (Fig 4B). Although the 435 

Louvain hypergraphs had higher level of noise when retaining singleton hyperedges (θHEsize = 0), this relation 436 

was inverted when singleton hyperedges were screened (Fig 5A). This indicates that the majority of the 437 

singleton hyperedges yielded by Louvain were FPs. Moreover, the Louvain hypergraphs had greater TPR 438 

when CL values were between 0.15 and 0.25 (Fig 5B). These advantages, however, came at the cost of 439 

separability, which was better with UPGMA throughout the tested range (Fig 5C). 440 

4.3 Visual working memory networks: real MEG data 441 

To assess the feasibility of using hyperedge bundling with real MEG/EEG data, we applied bundling to 442 

raw graphs that reflected significant strengthening of inter-areal phase synchronization during memory 443 

retention compared to pre-stimulus baseline during a visual working memory task (see Supplementary and 444 

Honkanen et al., 2015).  445 

We found that the iPLV estimates in alpha- and gamma-frequency band were greater during memory 446 

retention than in pre-stimulus baseline. Here, we picked the 1000 strongest iPLV edges and drew them as lines 447 

linking the synchronized parcels on a flattened cortical surface (Fig 6A, 6B). We also illustrated a randomly 448 

picked graph from our simulations as a comparison (Fig 6C). We applied hyperedge bundling (UPGMA with 449 

CL=0.15, θHEsize>6) to these raw graphs. The resulting hypergraphs, the real MEG and simulated FC graphs 450 

alike, offer better visualization of large-scale FC than raw graphs, emphasizing the long-range 451 

synchronizations between brain regions(Fig 6D, 6E, 6F). 452 

5 Discussion  453 

MEG and EEG have great potential for yielding insight into the spatio-temporal structure of brain 454 

connectivity. Nonetheless, due to the ill-posed nature of the inverse problem, linear mixing and inaccurate 455 

source localization complicate MEG/EEG connectivity analyses both by distorting phase and amplitude 456 

estimates and by leading to false positive observations of artificial (AIs) and spurious interactions (SIs). We 457 

advance here a novel methodological framework, hyperedge bundling, to suppress SIs in brain connectivity 458 
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graphs. We found that hyperedge bundling can be used to reduce the false positive rate with moderate to little 459 

decrease on the true positive rate.  460 

 Hyperedge bundling has several features that are advantageous and facilitate its application. First, since 461 

it is done only after interaction analyses, it does not require sophisticated preprocessing to suppress mixing 462 

effects in the original source time series. Hyperedge bundling only requires the forward and inverse operators 463 

and a mixing function estimated analytically or from simulations. Accordingly, it also inherently takes the 464 

source-model heterogeneity appropriately into account. Hyperedge bundling is also independent of the 465 

interaction metric and can be applied to connectomes estimated with any bivariate interaction metric. Finally, 466 

the nodal groups in the hypergraph obtained from hyperedge bundling constitute data-driven coarsening of 467 

originally high-resolution source parcellations. We suggest that these nodal groups be more representative of 468 

the true co-active local areas than a priori constructed low-resolution parcellations. This can be an aspect for 469 

future work. 470 

In summary, hyperedge bundling can be used to suppress SIs and identify putative true edges in brain 471 

connectivity data and thereby to improve the localization of true interacting neuronal networks.  472 

Hyperedge bundling vs. edge thresholding: reducing FP/TP while maintaining acceptable true positive rate 473 

Some connectivity studies have reduced the amount of edges by applying strict criteria on edge 474 

selection. However, biases and instability of graph properties can be introduced when using arbitrary threshold 475 

criteria on raw edges (Drakesmith et al., 2015; van Wijk, Bernadette C. M. et al., 2010) and weak connections 476 

may also play an important role in cognitive functions (Santarnecchi et al., 2014). Nevertheless, imposing 477 

strict criteria for thresholding is an attractive option for increasing the fraction of true positives among all 478 

observations, i.e., decreasing the FP/TP ratio (see Fig 3E and F) and for focusing the outcome on most robust 479 

effects. However, this approach, while effective in excluding FPs (SIs), also excludes a large fraction of true 480 

positives. For example, we found that in raw graphs when we applied a threshold strict to decrease noise 481 

(FP/TP ratio dropped from 4 to 0.1), but the TPR was reduced to 0.15. In contrast, with hyperedge bundling 482 

we could obtain the same noise level (FP/TP of 0.1) while preserving a TPR of up to 0.88 (see brown line, Fig 483 

4F). Hyperedge bundling is thus superior to strict thresholding in attenuating FP/TP with little decrease in TPR. 484 

Importantly, our simulations show that the raw edges with largest correlational estimates might not 485 

correspond to the strongest or most important neurophysiological connections, because these estimates 486 

appeared to be correlated with reconstruction accuracy (Supplementary). The reconstruction accuracy is 487 

heterogeneous across source space, meaning high accuracy of sources may positively bias the iPLV estimates. 488 

This bias is another reason for including weak observations in FC graphs. 489 

Control parameters of hyperedge determine resolution and the balance among FP/TP, TPR, separability 490 

In the current implementation, hyperedge bundling is controlled by the cutoff limit (CL) and the 491 

hyperedge size threshold (θHEsize). CL determines the resolution of the hypergraph and the balance between 492 

noise (FP/TP) and separability of true hyperedges. Low CL values lead to low noise in hypergraphs but poor 493 
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separation of true raw edges into distinct hyperedges. θHEsize can be used to prune the smallest hyperedges to 494 

further reduce noise, albeit at a cost of pruning TP hyperedges.  495 

We compared two clustering methods, UPGMA and Louvain. While the results showed clearly that by 496 

and large both clustering methods yielded similar performance, each method had interesting advantages. 497 

Louvain yielded better TPR than UPGMA for CL values between 0.05 and 0.25 (see Fig. 5B), and lower noise 498 

when singleton hyperedges were excluded (see Fig. 5A). UPGMA, on the other hand, yielded better 499 

separability of TP hyperedges throughout the control parameter ranges. Overall, using either clustering method 500 

with CL = 0.15–0.25 and θHEsize = 1–2 will yield a large reduction in FP/TP (from 4 to 0.1–0.2) with good 501 

separability and negligible reduction in TPR.  502 

In applications to real data where the truth graph is unknown, choosing parameters, i.e., to control the 503 

trade-off between suppressing noise and maintaining high TPR and separability, can be based on both our 504 

simulation results and objectives of the research. If the objective of the hypothesis requires good separability 505 

(e.g., establishing connectivity between specific visual areas to inferior parietal region), one should create high 506 

resolution hypergraphs, but this will be accompanied by sub-optimal noise reduction. Conversely, if the 507 

objective is to establish connectivity between the visual and parietal regions, a low resolution hypergraph 508 

(with low noise) is pertinent.  509 

Comparison of hyperedge bundling and symmetric orthogonalization 510 

Symmetric orthogonalization is a pioneering solution to the overall problem of SIs in the context of 511 

amplitude correlation estimation (Colclough et al., 2015). Its predecessor, pairwise orthogonalization (Brookes 512 

et al., 2012; Hipp et al., 2012) excluded instantaneous mixing and evaluated amplitude correlations for each 513 

time-series pair at a time. It is thus applicable to the estimation all-to-all amplitude correlations similarly to 514 

any other bivariate AI-free metric for phase or other forms of coupling, and also suffers from SIs in the same 515 

manner (Palva et al., 2017). 516 

Symmetric orthogonalization overcomes the problem of SIs by simultaneously removing zero phase-lag 517 

components from all source time series through a gradient descent procedure known as the Löwdin 518 

orthogonalization (Everson 1999; Löwdin 1950). Next, all-to-all amplitude correlations are estimated with 519 

partial correlation of amplitude envelopes to keep direct and remove indirect interactions (Marrelec et al., 520 

2006). Because the partial correlation matrix is expected to be sparse, a graphical lasso regularisation of the 521 

inverse covariance matrix is applied to penalize near-zero elements (Banerjee et al., 2008; Friedman et al., 522 

2008), which reduces noise in the partial correlation graph.  523 

Symmetric orthogonalization effectively attenuates SIs caused both by signal leakage and by indirect 524 

true couplings (i.e., A ↔ C correlation, when true correlations are A ↔ B ↔ C). The two limitations of this 525 

method are: i) it is applicable only to the estimation of amplitude correlations, ii) it is limited by the rank of the 526 

data due to its dependence on singular value decomposition. For MEG/EEG data that are preprocessed with 527 

signal space separation (SSS) and temporal SSS methods, the rank of the data (~degrees of freedom) is often 528 

limited to 60–70 (Haumann et al., 2016).  Thus, symmetric orthogonalization should be applied to cortical 529 
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networks with less than 60–70 independent sources, such as the 19 regions per hemisphere used in (Colclough 530 

et al., 2015). For studying FC with greater parcellation resolutions (>>70) or with interaction metrics other 531 

than amplitude correlations, hyperedge bundling thus provides an alternative method for SI suppression. The 532 

similarities and differences between symmetric orthogonalization and hyperedge bundling are summarized in 533 

Table 1. 534 

Optimal source space for brain connectivity analyses 535 

There are numerous MEG/EEG source reconstruction methods and the choice of method may have 536 

profound impacts on source connectivity analysis due to their difference in sensitivity to various 537 

synchronization profiles of the interacting sources (Hincapié et al., 2017). Although in the present study we 538 

used linear inverse operators (Hamalainen and Sarvas 1989; Hamalainen and Ilmoniemi 1994; Lin et al., 2006), 539 

hyperedge bundling can also be used with other source reconstruction methods as long as the amount of 540 

mixing among the sources/parcels can be quantified. 541 

Parcel numbers in current MEG/EEG source connectivity studies range from tens of parcels, e.g., 38 in 542 

(Colclough et al., 2015) and around 70 in (Farahibozorg et al., ; Hillebrand et al., 2012), up to 200-400 543 

parcels(Lobier et al., 2017; Siebenhuhner et al., 2016; Zhigalov et al., 2017). We propose that the source-space 544 

for FC studies should have a fine spatial resolution that enables the separation of nearby independent signals to 545 

an extent allowed by the source reconstruction approach. Neither the neuronal source constellations nor the 546 

degrees of freedom in the data are likely to match any a priori chosen parcellation scheme and hence coarse 547 

parcellations can misrepresent or miss source areas that fall in between the parcels or are much smaller than 548 

the parcels.  549 

Our approach to use 400 parcels aims to eliminate the possibility of such pitfall. Moreover, with fine-550 

grained parcellations, hyperedge bundling can well measure the mixing among raw connectivity edges and 551 

produce hypergraphs with high confidence of capturing and separating true interactions. Furthermore, the 552 

nodal groups connecting hyperedges can be utilized to coarsen a fine-grained source space in a data-driven 553 

manner and with consideration of the constraints posed by the source model. On the other hand, hyperedge 554 

bundling will likely to fail in a source-space of low spatial sampling, where the mixing similarity between 555 

observed edges is likely to be low due to initial low mixing among neighboring parcels.  556 

 557 
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Figure captions 565 

Fig 1  566 

Spurious edges are indirect products of mixing and they can be bundled. A) Top: signal mixing causes 567 

the detection of artificial (AI) and spurious interactions (SI). Bottom: AIs are always zero-lag connections 568 

(solid gray edge) whereas SIs (dashed gray edges) are “ghosts” of the phase-lag of the true interaction (dashed 569 

black edge) and thus can be either zero-lag or, more often, non-zero-lag interactions.  B) Toy model 1: one 570 

single true interaction E(V1, V2) on a grid of 13 x 13 point sources. Inset shows the simulated mixing 571 

neighbourhood of V1 and V2.  FC was estimated with iPLV, and the true edge (black) was discovered with 572 

multiple SIs (grey) originating from both sources’ mixing neighbourhoods. C) The similarity in signal mixing 573 

between all edges (true and SI) can be quantified and all these edges can be bundled into one hyperedge. D) 574 

Toy model 2: three pairs of true edges of varying spatial distance were simulated. E) Partitioned similarity 575 

matrix SE, for toy model 2, where each row represents one edge and one cluster represents a hyperedge. The 576 

grey box indicate false-positive hyperedges; the magenta and green boxes indicate the inter-hyperedge 577 

similarity between the “far” and “nearby” pair. F) Visualization of the hyperedges defined in E. 578 

Fig 2  579 

Bundling of raw edges into hyperedges. A) The true interaction E1 and one of its SIs E2 from Fig 1B 580 

schematically shown in matrix form. B) The raw graph AFC (a sparse matrix containing only significant edges) 581 

is parsed to a list node pairs, each pair representing one edge. C) For E1 and E2, the mixing (fmix) between all of 582 

their constituent nodes can be found in the mixing maxtrix Amix.  D) The edge adjacency (AE) between E1 and 583 

E2 is the maximum product of constituent nodes’ mixing.  E) AE is computed for all the pairs of edges found in 584 

AFC. Data taken from a randomly selected simulation. F) Examples of edges that are similar (blue) and not 585 

similar (red) in their mixing profiles. G) Similarity between two edges is the correlation between two edges’ 586 

mixing profiles. H) Mixing similarity matrix SE. I) The partitioning of this SE at low, medium and high 587 

resolutions.  588 

Fig 3  589 

The demographics of group-level FC of simulated graphs A) Significant edges were determined with a 590 

paired one-tailed t-test between a coupled-edge condition (k1) and the H0 condition for simulated graphs. B) 591 

For initial evaluation of bundling, we chose one set of gamma-distribution-coupled (Cγ) and one set of 592 

uniform-distribution-coupled (Cc) graphs, which are indicated by the markers. C) True positive rate TPR (see 593 

methods) of the two chosen graphs was above 90%. D) The true positive rate (TRP) as a function of noise 594 

(FP/TP) for all coupling strengths. E) In the chosen sets of graphs, the number of FP decreases exponentially, 595 

while the number of TP decreases linearly. Inset shows the ROC of Cγ edge weights threshold. F) Noise 596 

(FP/TP ratio) as a function of TPR. G) The mean iPLV of TP or FP edges alone, and all edges.   597 
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Fig 4  598 

Hyperedge bundling outperformed raw edges. A) The hypergraphs created with both clustering methods 599 

were stable below CL of 0.4. B) The cumulative distribution function (cdf) of hyperedge size at different 600 

levels of CL, computed with hyperedges pooled from 500 graphs with 100 iterations within each graph. For 601 

both clustering methods C) and D), increasingly strict hyperedge size threshold (θHEsize varying from 0 to 8) 602 

caused separability and noise level (FP/TP) to decrease. E,F) The retained true positive raw edges also 603 

decreased as hyperedge size threshold increased. 604 

 605 

Fig 5 606 

Louvain clustering method yielded hypergraphs with lower noise but also lower separability than 607 

UPGMA. A) For CL values 0.15 – 0.45, Louvain hypergraphs had lower noise after singleton hyperedges were 608 

deleted. B) True positive rate TPR was larger in Louvain hypergraphs for CL values 0.15 and 0.25 and larger 609 

in UPGMA hypergraphs for CL values 0.35 and 0.45. C) Separability was higher for UPGMA method.  610 

Fig 6  611 

Hypergraphs improve visualization of real and simulated data. Visual crowding of numerous group-612 

level iPLV edges of 1:1 phase synchronization in A) alpha and B) gamma frequency band during VWM 613 

retention (real MEG data), C) a simulated graph overlaid on a flattened 2D map of cortical regions.  D, E, F) 614 

Hypergraphs of A,B,C). D) In alpha band, bundles of long-range hyperedges connect occipital and parietal 615 

areas. Hyperedges were created with CL=0.15, θHEsize>6. E) In gamma band, long-range hyperedges were 616 

observed in the frontal and central regions. On these 2D map, different parcel colours indicate functional sub-617 

systems defined by (Yeo et al. 2011) and in hypergraphs, edge colours are obtained by mixing of the colours 618 

of connected parcels. CN: cuneus; CS: central sulcus; iPGsup: supramarginal gyrus; mFG: middle frontal 619 

gyrus; mOG: middle occipital gyrus; mOS: middle occipital sulcus and lunatus sulcus; laSp: posterior ramus; 620 

prCG: precental gyrus; pCIm: middle posterior cingulate; prCN: precuneus; sPG:superior parietal lobule; sOG: 621 

superior occipital gyrus.  622 

 623 

 624 
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VI of graph partitioning comparing to its random counterpart 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2017. ; https://doi.org/10.1101/219311doi: bioRxiv preprint 

https://doi.org/10.1101/219311
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2017. ; https://doi.org/10.1101/219311doi: bioRxiv preprint 

https://doi.org/10.1101/219311
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2017. ; https://doi.org/10.1101/219311doi: bioRxiv preprint 

https://doi.org/10.1101/219311
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2017. ; https://doi.org/10.1101/219311doi: bioRxiv preprint 

https://doi.org/10.1101/219311
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2017. ; https://doi.org/10.1101/219311doi: bioRxiv preprint 

https://doi.org/10.1101/219311
http://creativecommons.org/licenses/by-nd/4.0/

