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Motivation: Genome annotation is of key importance in many research14

questions. The identification of protein-coding genes is often based on15

transcriptome sequencing data, ab-initio or homology-based prediction.16

Recently, it was demonstrated that intron position conservation improves17

homology-based gene prediction, and that experimental data improves18

ab-initio gene prediction.19

Results: Here, we present an extension of the gene prediction tool GeMoMa20

that utilizes amino acid sequence conservation, intron position conservation21

and optionally RNA-seq data for homology-based gene prediction. We show22

on published benchmark data for plants, animals and fungi that GeMoMa23

performs better than the gene prediction programs BRAKER1, MAKER2,24

and CodingQuarry, and purely RNA-seq-based pipelines for transcript25

identification. In addition, we demonstrate that using multiple reference26

organisms may help to further improve the performance of GeMoMa.27

Finally, we apply GeMoMa to four nematode species and to the recently28

published barley reference genome indicating that current annotations of29

protein-coding genes may be refined using GeMoMa predictions.30

Availability: GeMoMa has been published under GNU GPL3 and is freely31
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available at http://www.jstacs.de/index.php/GeMoMa.32

Contact: jens.keilwagen@julius-kuehn.de33

34

1 Introduction35

The annotation of protein-coding genes is of critical importance for many36

fields of biological research including, for instance, comparative genomics,37

functional proteomics, gene targeting, genome editing, phylogenetics, tran-38

scriptomics, and phylostratigraphy. The process of annotating protein-coding39

genes to an existing genome (assembly) can be described as specifying the40

exact genomic location of genes comprising all (partially) coding exons. A dif-41

ficulty in gene annotation is distinction between protein-coding genes, trans-42

posons and pseudogenes.43

Genome annotation pipelines utilize three main sources of information,44

namely evidence from wet-lab transcriptome studies (Trapnell et al., 2010;45

Pertea et al., 2015), ab-initio gene prediction based on general features46

of (protein-coding) genes (Solovyev et al., 2006; Stanke et al., 2008), and47

homology-based gene prediction relying on gene models of (closely) re-48

lated, well-annotated species (Slater and Birney, 2005; She et al., 2011;49

Keilwagen et al., 2016).50

Experimental data allow for inferring coverage of gene predictions and51

splice sites bordering their exons, which may assist computational ab-initio52

or homology-based approaches. Due to the progress in the field of next gener-53

ation sequencing, RNA-seq has revolutionized transcriptomics (Wang et al.,54

2009). Today, RNA-seq data is available for a wide range of organisms, tis-55

sues and environmental conditions, and can be utilized for genome annotation56

pipelines.57

In recent years, several programs have been developed that com-58

bine multiple sources allowing for a more accurate prediction of protein-59

coding genes (Holt and Yandell, 2011; Testa et al., 2015; Hoff et al., 2016).60

MAKER2 is a pipeline that integrates support of different resources including61

ab-initio gene predictors and RNA-seq data (Holt and Yandell, 2011). Cod-62

ingQuarry is a pipeline for RNA-Seq assembly-supported training and gene63

prediction, which is only recommended for application to fungi (Testa et al.,64

2015). Recently, Hoff et al. (2016) published BRAKER1 a pipeline for unsu-65

pervised RNA-seq-based genome annotation that combines the advantages66

of GeneMark-ET (Lomsadze et al., 2014) and AUGUSTUS (Stanke et al.,67

2008).68

Here, we present an extension of GeMoMa (Keilwagen et al., 2016) that69

utilizes RNA-seq data in addition to amino acid sequence and intron position70

conservation. We investigate the performance of GeMoMa on publicly avail-71

able benchmark data (Hoff et al., 2016) and compare it with state-of-the-art72
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competitors (Holt and Yandell, 2011; Testa et al., 2015; Hoff et al., 2016).73

Subsequently, we demonstrate how combining homology-based predictions74

based on gene models from multiple reference organisms can be used to im-75

prove the performance of GeMoMa. Finally, we apply GeMoMa to four nema-76

tode species provided by Wormbase (Howe et al., 2016) and to the recently77

published barley reference genome (Mascher et al., 2017), where GeMoMa78

predictions will be included into future versions of the corresponding genome79

annotations.80

2 Methods81

In this section, we describe recent extensions of GeMoMa to make use of82

evidence from RNA-seq data, the RNA-seq pipelines used and the data con-83

sidered in the benchmark and application studies.84

2.1 GeMoMa using RNA-seq85

GeMoMa predicts protein-coding genes utilizing the general conservation86

of protein-coding genes on the level of their amino acid sequence and on87

the level of their intron positions, i.e., the locations of exon-exon bound-88

aries in CDSs (Keilwagen et al., 2016). To this end, sequences of (partially)89

protein-coding exons are extracted from well-annotated reference genomes.90

Individual exons are then matched to loci on the target genome using91

tblastn (Altschul et al., 1990), matches are adjusted for proper splice sites,92

start codons and stop codons, respectively, and joined to full, protein-coding93

genes models. In this process, the conserved dinucleotides GT and GC for donor94

splice sites, and AG for acceptor splice sites have been used for the identifica-95

tion of splice sites bordering matches to the (partially) protein-coding exons96

of the reference transcripts. The improved version of GeMoMa may now also97

include experimental splice site evidence extracted from mapped RNA-seq98

data to improve the accuracy of splice site and, hence, exon annotation. We99

visualize the extended GeMoMa pipeline in Fig. S1.100

Starting from mapped RNA-seq data, the module Extract RNA-seq evi-101

dence (ERE) allows for extracting introns and, if user-specified, read cover-102

age of genomic regions. GeMoMa filters these introns using a user-specified103

minimal number of split reads within the mapped RNA-seq data. Introns104

passing this filter define donor and acceptor splice sites, which are treated105

independently within GeMoMa. If splice sites with experimental evidence106

have been detected in a genomic region with a good match to an exon of a107

reference transcript, these are collected for further use. If no splice sites with108

experimental evidence have been detected in a genomic region with a good109

match to an exon of a reference transcript, GeMoMa resorts to conserved din-110

ucleotides allowing to identify gene models that are not covered by RNA-seq111
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data due to, e.g., very specifically or lowly expressed transcripts. Combin-112

ing two potential exons, all in-frame combinations using the collected donor113

and acceptor splice sites are tested and scored according to the reference114

transcript. The best combination is used for the prediction.115

Based on this experimental evidence, the improved version of GeMoMa116

provides several new properties reported for gene predictions. The most117

prominent features are transcript intron evidence (tie) and transcript per-118

centage coverage (tpc). The tie of a transcript varies between 0 and 1, and119

corresponds to the fraction of introns (i.e., splice sites of two neighboring120

exons) that are supported by split reads in the mapped RNA-seq data. In121

case of transcripts comprising a single coding exon, NA is reported. The tpc122

of a transcript also varies between 0 and 1, and corresponds to the fraction123

of (coding) bases of a predicted transcript that are also covered by mapped124

reads in the RNA-seq data.125

GeMoMa allows for computing and ranking multiple predictions per refer-126

ence transcript, but does not filter these predictions. Predictions of different127

reference transcripts might be highly overlapping or even identical, especially128

if the reference transcripts are from the same gene family. Since GeMoMa129

1.4, the default parameters for number of predictions and contig threshold130

have been changed which might lead to an increased number of highly over-131

lapping or identical predictions. In addition, it might be beneficial to run132

GeMoMa starting from multiple reference species to broaden the scope of133

transcripts covered by the predictions. However, these may also result in re-134

dundant predictions for, e.g., orthologs or paralogs stemming from the differ-135

ent reference species considered. To handle such situations, the new module136

GeMoMa annotation filter (GAF) of the improved version of GeMoMa now137

allows for joining and reducing such predictions using various filters. Filter-138

ing criteria comprise the relative GeMoMa score of a predicted transcript,139

filtering for complete predictions (starting with start codon and ending with140

stop codon), and filtering for evidence from multiple reference organisms. In141

addition, GAF also joins duplicate predictions that originate from different142

reference transcripts.143

Initially, GAF filters predictions based on their relative GeMoMa score, i.e.,144

the GeMoMa score divided by the length of the predicted protein. This filter145

removes spurious predictions. Subsequently, the predictions are clustered146

based on their genomic location. Overlapping predictions on the same strand147

yield a common cluster. For each cluster, the prediction with the highest148

GeMoMa score is selected. Non-identical predictions overlapping the high-149

scoring prediction with at least a user-specified percentage of borders (i.e.,150

splice sites, start and stop codon, cf. common border filter) are treated as151

alternative transcripts. Predictions that have completely identical borders152

to any previously selected prediction are removed and only listed in the GFF153

attribute field alternative. All filtered predictions of a cluster are assigned154

to one gene with a generic gene name. Finally, GAF checks for nested genes155
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in the cluster looking for discarded predictions that do not overlap with any156

selected prediction, which are recovered.157

In addition to the modules for annotating a genome (assembly) described158

above, we also provide two additional modules in GeMoMa for analyzing159

and comparing to prediction to a reference annotation. The module Com-160

pareTranscripts determines that CDS of the reference annotation with the161

largest overlap with the prediction utilizing the F1 measure as objective func-162

tion (Keilwagen et al., 2016). The module AnnotationEvidence computes tie163

and tpc of all CDSs of a given annotation. Hence, these two modules can be164

used to determine, whether a prediction is known, partially known or new165

and whether the overlapping annotation has good RNA-seq support.166

2.2 MAKER2 predictions167

Recently, we have shown that GeMoMa outperforms state-of-the-art168

homology-based gene predictors (Keilwagen et al., 2016). We are not aware169

of any homology-based gene prediction program that allows for incorporat-170

ing of RNA-seq data. Hence, we provide predictions of MAKER2 using171

the same reference proteins as GeMoMa for a minimal comparison. In-172

ternally, MAKER2 uses exonerate (Slater and Birney, 2005) for homology-173

based gene prediction. We run MAKER2 with default parameters except174

protein2genome=1, and genome and protein set to the respective input175

files. In addition, we run MAKER2 using (i) RNA-seq data in form of176

Trinity 2.4 transcripts (-jaccard clip) (Haas et al., 2013), (ii) homology in177

form of proteins of one related reference species, and (iii) ab-initio gene178

prediction in form of Augustus 3.3 (Stanke et al., 2008). In this case, we179

run MAKER2 with default parameters except genome, est, protein, and180

augustus_species, which have been set to the corresponding species. For181

comparison, we run Maker2 with the same parameter settings but using the182

GeMoMa predictions for protein_gff instead of using protein.183

2.3 RNA-seq pipelines184

Computational pipelines have been used to infer gene annotation from RNA-185

seq data produced by next generation sequencing methods. Dozens of tools186

and tool combinations have been proposed. Here, we focus on the short187

read mapper TopHat2 (Kim et al., 2013), the transcript assemblers Cuf-188

flinks (Trapnell et al., 2010) and StringTie (Pertea et al., 2015), and the cod-189

ing sequence predictor TransDecoder (Haas et al., 2013). Based on the tran-190

script assemblers, we build two RNA-seq pipelines following the instructions191

in Hoff et al. (2016).192
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2.4 Data193

For the benchmark studies, we consider target species and their genome ver-194

sions as specified in the BRAKER1 supplement. For the homology-based pre-195

diction by GeMoMa, we choose one closely related reference species per target196

species that are sequenced and annotated (Rawat et al., 2015; Howe et al.,197

2016; Matthews et al., 2015; Rhind et al., 2011). For these species, we con-198

sider the latest genome versions available (Tab. S1). For the analysis of199

C. elegans, we use the manually curated gene set of C. briggsae provided200

by Wormbase. In addition, we use the experimental evidence from RNA-seq201

data referenced in the BRAKER1 publication.202

For the analysis of the four nematode species, C. brenneri, C. briggsae,203

C. japonica, and C. remanei, we use the genome assembly and gene an-204

notation of Wormbase WS257 (Howe et al., 2016). We choose the model205

organism C. elegans as reference species (Tab. S2). In addition to genome206

assembly and gene annotation, we also use publicly available RNA-seq data207

of these four nematode species, which have been mapped by Wormbase us-208

ing STAR (Dobin et al., 2013). We used a minimum intron size of 25 bp, a209

maximum intron size of 15Kb, specify that only reads mapping once or twice210

on the genome are reported, and alignments are reported only if their ratio211

of mismatches to mapped length is less than 0.02. In accordance with the212

previous benchmark study, we use the manually curated gene set of Worm-213

base.214

For the analysis of barley, we use the latest genome as-215

sembly and gene annotation (Mascher et al., 2017). As ref-216

erence species, we choose A. thaliana (Lamesch et al., 2012),217

B. distachyon (International Brachypodium Initiative, 2010),218

O. sativa (Ouyang et al., 2007), and S. italica (Bennetzen et al., 2012)219

(Tab. S3). In addition to genome assembly and gene annotation, we also used220

RNA-seq data from four different public available data sets (ERP015182,221

ERP015986, SRP063318, SRP071745). Reads were mapped and assembled222

using Hisat2 and StringTie (Pertea et al., 2016). As reference annotation,223

we used the union of high and low confidence annotation.224

As independent evidence for validating GeMoMa predictions in the nema-225

tode species and barley, we use ESTs and cDNAs. While Wormbase provides226

coordinates for best BLAT matches, we adapt the pipeline and download all227

available EST from NCBI and map them to the genome using BLAT (Kent,228

2002).229
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Arabidopsis thaliana (ref. A. lyrata)

Gene Sn 44.0 61.3 66.5 28.9 35.9 64.4 51.3 NA 56.9 57.9

Gene Sp 47.8 65.7 71.3 47.9 59.1 52.0 52.5 NA 65.7 67.8

Transcript Sn 37.5 52.2 57.2 26.6 33.7 55.0 43.5 NA 48.3 49.1

Transcript Sp 47.8 65.7 65.3 35.6 48.3 50.9 52.5 NA 65.7 67.8

Exon Sn 70.0 79.3 80.6 58.1 60.8 82.9 76.1 NA 81.8 82.1

Exon Sp 81.9 86.6 87.5 81.9 87.1 79.0 76.1 NA 87.5 88.6

Caenorhabditis elegans (ref. C. briggsae)

Gene Sn 26.2 39.6 49.1 18.7 22.6 55.0 41.0 NA 40.5 47.3

Gene Sp 38.0 49.9 63.8 29.1 36.1 55.2 30.8 NA 51.5 56.4

Transcript Sn 21.0 30.7 39.8 16.2 20.0 43.0 31.3 NA 31.4 36.2

Transcript Sp 38.0 49.9 58.7 24.1 30.1 53.2 30.8 NA 51.5 56.4

Exon Sn 50.3 64.2 67.1 54.4 59.1 80.2 69.4 NA 70.5 75.2

Exon Sp 82.6 81.5 87.5 81.3 84.1 85.3 62.3 NA 85.6 86.7

Drosophila melanogaster (ref. D. simulans)

Gene Sn 64.3 78.2 83.1 55.7 55.2 64.9 55.2 NA 61.5 64.0

Gene Sp 69.2 81.6 87.1 71.3 73.5 59.4 46.3 NA 69.6 71.9

Transcript Sn 44.1 52.9 65.0 48.7 49.0 46.1 38.5 NA 42.7 44.3

Transcript Sp 69.2 81.6 81.2 60.1 65.7 57.9 46.3 NA 69.6 71.9

Exon Sn 69.0 76.3 80.0 67.8 66.2 75.0 66.5 NA 74.3 76.3

Exon Sp 89.1 92.0 93.3 85.4 88.3 81.7 66.9 NA 88.0 89.1

Schizosaccharomyces pombe (ref. S. octosporus)

Gene Sn 49.2 76.4 79.2 69.0 65.8 77.4 42.8 79.7 71.6 74.6

Gene Sp 59.9 84.6 88.0 93.8 92.5 80.5 68.7 72.6 88.1 89.1

Transcript Sn 49.2 76.4 79.2 69.0 65.8 77.4 42.8 79.7 71.6 74.6

Transcript Sp 59.9 84.6 87.6 80.5 71.3 76.5 68.7 72.6 88.1 89.1

Exon Sn 56.1 81.6 83.1 77.2 77.7 83.2 50.1 79.6 79.2 81.2

Exon Sp 73.3 88.6 91.9 87.6 81.7 83.2 71.4 81.7 92.0 92.6

Table 1: Benchmark results on the BRAKER1 test sets. The target species are given
in multi-column rows. The same reference species, which is given in brackets,
is used for all tools using homology-based gene prediction indicated by plus.
The asterisks indicates that the performance of BRAKER1, MAKER2 and
CodingQuarry is given as reported in Hoff et al. (2016). The highest value per
line is depicted in bold-face.
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3 Results and Discussion230

3.1 Benchmark231

The comparison of different software pipelines is often critical as a) specific232

parameters settings might be crucial for good results and b) different input233

might be used. For these reasons, we designed the benchmark as follows.234

First, we use publicly available gene predictions results. Second, we limit the235

number of reference species to one in the initial study.236

We used GeMoMa for predicting the gene annotations of A. thaliana, C. el-237

egans, D. melanogaster, and S. pombe. In Table 1, we summarize the perfor-238

mance of BRAKER1, MAKER2, and CodingQuarry as reported in Hoff et al.239

(2016), as well as the performance of GeMoMa with and without RNA-seq240

evidence, purely RNA-seq-based pipelines and various MAKER2 predictions.241

For all comparisons, we provide sensitivity (Sn) and specificity (Sp) for the242

categories gene, transcript, and exon, respectively (Keibler and Brent, 2003).243

First, we compare the two purely homology-based predictions, namely on244

the one hand side MAKER2 using exonerate and on the other hand side245

GeMoMa without RNA-seq data. In all cases, we use the same reference246

species and reference proteins. We find that MAKER2 using only homologous247

proteins has a higher exon specificity than GeMoMa without RNA-seq data248

for C. elegans, while the opposite is true for all other categories and target249

species.250

Second, we additionally consider RNA-seq data. MAKER2 does not allow251

for combining RNA-seq evidence and homology-based predictions without252

using any ab-initio gene predictor. In contrast, GeMoMa allows for addition-253

ally using intron position conservation and RNA-seq data. For this reason,254

we compare the performance of GeMoMa with and without RNA-seq evi-255

dence (Table 1). We find that sensitivity and specificity in almost all cases256

increases by up to 13.9 with only two exceptions for transcript specificity of257

A. thaliana and D. melanogaster which decreases by at most 0.4. Hence, we258

summarize that RNA-seq evidence improves the sensitivity and specificity of259

GeMoMa and should be used if available.260

Third, we compare the performance of GeMoMa using RNA-seq evidence261

to that of purely RNA-seq-based pipelines, namely Cufflinks and StringTie262

(Table 1). We find for all four species that GeMoMa using RNA-seq ev-263

idence outperforms purely RNA-seq-based pipelines. Interestingly, purely264

RNA-seq-based pipelines also yield the worst gene/transcript sensitivity and265

specificity for C. elegans.Comparing the results based on different transcript266

assemblers, we find that the results based on StringTie are better than those267

based on Cufflinks for A. thaliana and C. elegans, while the opposite is268

true for S. pombe. For D. melanogaster, both pipelines perform compara-269

bly. Additional RNA-seq reads increasing the coverage might improve the270

performance of purely RNA-seq-based pipelines but could also improve the271
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Figure 1: Benchmark results. The y-axis depicts the difference between the GeMoMa
with RNA-seq data and the BRAKER1 performance.

performance of GeMoMa.272

Summarizing these three observations, we find that GeMoMa performs273

better than purely homology-based or purely RNA-seq-based pipelines and274

that including RNA-seq data improves the performance of GeMoMa.275

Hence, we compare GeMoMa to combined gene prediction approaches.276

Specifically, we compare the performance of GeMoMa using RNA-seq evi-277

dence to BRAKER1 in Fig. 1, which provides the best overall performance278

in Hoff et al. (2016). We find that GeMoMa performs better than BRAKER1279

for the categories gene and transcript with the exception of gene and tran-280

script sensitivity for C. elegans. Interestingly, we find the biggest improve-281

ments for D. melanogaster where gene/transcript sensitivity and specificity282

increases between 18.2 and 27.7. For the exon category, we find a less clear283

picture. In total, we observe the worst results for C. elegans where the sen-284

sitivity for all three categories decreases between 3.2 and 13.2, while the285

specificity increases only between 2.2 and 8.6. Notably, we generally find286

the worst gene/transcript sensitivity and specificity for C. elegans compared287

with the other target species considering the best performance of all tools.288

In summary, we find that the gene predictors MAKER2, BRAKER1,289

CodingQuarry and GeMoMa, and the transcript assemblers Cufflinks and290

StringTie often perform quite well on exon level. The main difference be-291

comes evident on transcript and gene level, where exons need to be combined292
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correctly (Table 1) as reported earlier (Steijger et al., 2013; Conesa et al.,293

2016). Homology-based gene predictors might benefit from experimentally294

validated and manually curated reference transcripts guiding the prediction295

of transcripts in the target organism.296

Although GeMoMa performed well, it is not able to predict genes that do297

not show any homology to a protein in the reference species, while ab-initio298

gene predictors might fail in other cases. As both types of approaches have299

their specific advantages, users will probably use combinations of different300

gene predictors in practice to obtain a comprehensive gene annotation.301

3.2 Combined gene prediction pipelines302

Combined gene prediction pipelines, as for instance MAKER2, use RNA-303

seq evidence, homology-based and ab-initio methods for predicting final gene304

models. MAKER2 uses exonerate by default for homology-based gene predic-305

tion. However, MAKER2 also provides the possibility to use other homology-306

based gene predictors instead of exonerate (cf. parameter protein gff). For307

this reason, we compare the performance of MAKER2 using either exonerate308

or GeMoMa for homology based gene prediction (Table 1). In addition, we309

use Augustus as ab-initio gene prediction program and Trinity transcripts310

in MAKER2. We find that MAKER2 using GeMoMa performs better than311

MAKER2 using exonerate for all species and all measure. The improvement312

varies between 0.3% and 6.8% with clearly the biggest improvement for C.313

elegans.314

In addition, we find that the MAKER2 performance is substantially improved315

compared to the performance of the the previously reported MAKER2 pre-316

dictions, either purely based on proteins (cf. Table 1, column MAKER2+317

(exonerate)) or as reported in Hoff et al. (2016) (cf. Maker2∗). These other318

predictions do not utilize all available sources of information as they ei-319

ther ignore RNA-seq data and ab-initio gene prediction or homology to320

proteins of related species. Based on this observation, we agree that com-321

bined gene prediction pipelines benefit from the inclusion of all available322

evidence and that performance is decreased if some important evidence is323

missed (Holt and Yandell, 2011).324

Furthermore, we compare GeMoMa using RNA-seq evidence with MAKER2325

using RNA-seq evidence, homology-based and ab-initio gene prediction. In326

some cases, it is hard to compare these results as sensitivity of one tool is327

higher than the sensitivity of the other tool and the opposite is true for328

specificity. In machine learning, recall, also known as sensitivity, and pre-329

cision, which is called specificity in the context of gene prediction evalua-330

tion (Burset and Guigó, 1996), are combined into a single scalar value called331

F1 measure (Powers, 2011) that can be compared more easily. We combined332

sensitivity and specificity resulting in an F1 measure for each evaluation level333

gene, transcript and exon (Table S4) We find that in many cases GeMoMa334
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using RNA-seq evidence outperforms MAKER2. The reason for this observa-335

tion might be that RNA-seq data and homology based gene prediction is used336

in MAKER2 to train ab-initio gene predictors, in this case Augustus. With337

the recommended parameter setting, homology-based gene predictions are338

not directly used for the final prediction and doing so might further improve339

performance.340

3.3 Influence of reference species341

Utilizing different fly species from FlyBase (Gramates et al., 2017), we scru-342

tinize the influence of different or multiple reference species on the perfor-343

mance of GeMoMa using RNA-seq data (Tab. S5). In Fig. 2, we depict344

gene sensitivity and gene specificity for eight different reference species indi-345

cated by points. We find that performance varies with the reference species.346

In this specific case, D. sechellia and D. persimilis yield the worst re-347

sults for single reference-based predictions. This observation might be re-348

lated to the fact that genome assembly of D. sechellia and D. persimilis is349

of lower quality (Clark et al., 2007), while the genome of D. simulans has350

been updated (Hu et al., 2013) later. Besides these two outliers, the per-351
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Figure 2: Gene sensitivity and specificity for D. melanogaster using different or multiple
reference species in GeMoMa. The points correspond to the eight reference
species. In addition, the dashed line indicates the usage of multiple reference
species. Using multiple reference species allows for filtering identical predic-
tions from several reference as indicated by the numbers.
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formance of the different fly species as reference species for D. melanogaster352

in GeMoMa correlates with their evolutionary distance (Singh et al., 2009).353

Generally speaking, the closer a reference species is related to the target354

species D. melanogaster, the better is the performance in terms of gene sen-355

sitivity and specificity. Hence, we speculate that two requirements must be356

met to have a good reference species. First, the evolutionary distance be-357

tween reference and target species should be small and second, the genome358

assembly and annotation of the reference species should be comprehensive359

and of high quality.360

The new GAF module of GeMoMa allows for combining the predictions361

based on different reference organisms. The combined predictions may be362

filtered by number of reference species with perfect support (#evidence), as363

indicated by the dashed line. We find that combining multiple reference or-364

ganisms improves prediction performance and stability. Depending on the365

number of supporting reference organisms required, gene specificity and gene366

sensitivity may be balanced according to the needs of a specific application.367

We observe that (i) gene sensitivity increases but specificity decreases when368

requiring support from at least one reference organism, whereas (ii) gene369

specificity increases but sensitivity decreases severely filtering for perfect sup-370

port from all eight reference species. In summary, the inclusion of multiple371

reference species may yield an improved prediction performance for GeMoMa372

using the GAF module, where we suggest to filter predictions for support by373

at least two but not necessarily all reference species.374

Furthermore, we check whether GeMoMa allows for identifying new tran-375

scripts in D. melanogaster that do not overlap with any annotated transcript376

but are supported by RNA-seq data. First, we check whether we could377

identify transcripts based on the GeMoMa predictions using D. simulans as378

reference organism. We find 35 multi-coding-exon predictions that do not379

overlap with any annotated transcript but have a tie of 1, i.e., all introns are380

supported by split reads in the RNA-seq data (see Methods). In addition,381

we find 15 single-coding-exon predictions that do not overlap with any an-382

notated transcript but have a tpc of 1, i.e., that are fully covered by mapped383

RNA-seq reads. Second, we check whether we could identify transcripts that384

are supported by at least two of the eight reference species (cf. above). We385

find 14 multi-coding-exon predictions that do not overlap with any anno-386

tated transcript, obtain a tie of 1 and are supported by at least two of the387

eight reference species. In addition, we find 9 single-coding-exon predictions388

that do not overlap with any annotated transcript, have a tpc of 1 and are389

supported by at least two of the five reference species. In summary, those390

genes supported by multiple reference organisms or additional RNA-seq data391

might be promising candidates for extending the existing genome annotation392

of D. melanogaster.393
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Figure 3: Summary of difference for GeMoMa predictions with tie=1. The relaxed eval-
uation (left panel) depicts differences between GeMoMa predictions and anno-
tation without any filter on the annotation, while the conservative evaluation
(right panel) applies additional filters for the annotation (cf. main text). Pre-
dictions that do not overlap with any annotated CDS are depicted in yellow,
Predictions that differ from annotated CDSs only in splice sites are depicted
in green, predictions that have additional exons compared to annotated CDSs
are depicted in turquoise, predictions that missed some exons compared to
annotated CDSs are depicted in blue, predictions with additional and missing
exons compared to annotated CDSs are depicted in pink, predictions that only
differ in the start of the CDS compared to annotated CDS are depicted in red,
and any other category is depicted in gray.

3.4 Analysis of nematode species394

The relatively poor results for C. elegans in the benchmark study, might395

be due to insufficiencies in the current C. briggsae annotation. Hence, we396

decided to scrutinize the Wormbase annotation of four nematode species com-397

prising C. brenneri, C. briggsae, C. japonica, and C. remanei based on the398

model organism C. elegans. We compare GeMoMa predictions with manu-399

ally curated CDS from Wormbase. Based on RNA-seq evidence, we collect400

multi-coding-exon predictions of GeMoMa with tie=1 and compare these to401

the annotation as depicted in Fig. 3.402

In summary, we find between 6 749 differences for C. briggsae and 12 903403

for C. brenneri (cf. Fig. 3(a)). The most interesting category are new multi-404

coding-exon predictions, which vary between 53 for C. briggsae and 1 974 for405

C. brenneri. The largest category are GeMoMa predictions that missed exons406
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compared to annotated CDSs, which vary between 2 340 for C. japonica and407

4 220 for C. remanei.408

We additionally filter the transcripts showing differences to obtain a409

smaller, more conservative set of high-confidence predictions. First, we filter410

new multi-coding exon GeMoMa predictions for tpc=1 obtaining between411

39 and 996 for C. briggsae and C. brenneri, respectively. Second, we fil-412

ter GeMoMa predictions that have different splice sites compared to highly413

overlapping annotated transcripts, contain new exons, have missing exons,414

or have new and missing exons for tie<1 of the overlapping annotation. We415

obtain between 100 and 1 079 predictions with different splice-site, between416

42 and 786 predictions containing new exons, between 548 and 1 431 pre-417

dictions with missing exons, and between 284 and 1 191 predictions with418

new and missing exons. Finally, for GeMoMa predictions that differ in the419

start codon compared to the annotation, we filter for tpc=1 of the GeMoMa420

prediction and tpc<1 for the annotation obtaining between 14 and 149 for421

C. brenneri and C. remanei, respectively. In summary, we obtain between422

1 065 predictions differing from the annotation for C. briggsae and 4 735 pre-423

dictions for C. brenneri, respectively (cf. Fig. 3(b)) using these strict criteria.424

Despite the overall reduction of transcripts considered, GeMoMa predictions425

that missed exons compared to annotated CDSs are the largest category for426

all four nematode species.427

For both evaluations, we find that the predictions for C. briggsae are in428

better accordance with the annotation than the predictions of the remaining429

three nematode species. One possible explanation might be that the anno-430

tation of C. briggsae has recently been updated using RNA-seq data (Gary431

Williams, personal communication), while the annotation of C. japonica is432

based on Augustus (Erich Schwartz, personal communication) and the anno-433

tation of the other two nematodes are NGASP sets from multiple ab-initio434

gene prediction programs (Coghlan et al., 2008). For C. japonica, we find the435

second best results, although C. japonica is phylogenetically more distantly436

related to C. elegans than the remaining two nematodes (Kiontke et al.,437

2011). This is additional evidence that the annotation pipeline employed438

has a decisive influence on the quality and completeness of the annotation.439

In addition, we checked for C. brenneri whether the GeMoMa predictions440

partially overlap with cDNAs or ESTs mapped to the C. brenneri genome. In441

472 cases, the prediction overlaps with a cDNA or EST, but not with the an-442

notation. In 364 out of these 472 cases, the prediction has tie=1. To evaluate443

the predictions, we manually checked about 9% (43) of the predicted missing444

genes with tie=1. Based on RNA-seq data, protein homology, cDNA/ESTs445

and manual curation, 95% were genuine new isoforms which have been missed446

in the original C. brenneri gene set. This shows that GeMoMa is valuable in447

finding isoforms missed by traditional prediction methods.448
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#evidence tpc = 0 0 < tpc < 1 tpc = 1

1 1 971 (11) 878 (14) 1 005 (137)

2 204 (19) 158 (8) 299 (55)

3 200 (16) 126 (5) 257 (92)

4 91 (17) 43 (9) 168 (83)∑
2 466 (63) 1 205 (36) 1 729 (367)

a) Single-coding-exon predictions

#evidence tie = 0 0 < tie < 1 tie = 1

1 9 671 (287) 942 (211) 1 681 (775)

2 283 (36) 86 (32) 456 (196)

3 155 (31) 64 (43) 382 (223)

4 142 (57) 55 (37) 302 (196)∑
10 251 (411) 1 147 (323) 2 821 (1 390)

b) Multi-coding-exon predictions

Table 2: Predictions that do not overlap with any high or low confidence annotation. The
numbers in parenthesis depict those predictions that are partially supported by
any best BLAT hit of ESTs.

3.5 Analysis of barley449

Complementary to the studies in animals in the last subsection, we used450

GeMoMa to predict the annotation of protein-coding genes in barley451

(Hordeum vulgare). Based on the benchmark results for D. melanogaster,452

we used several reference organisms to predict the gene annotation using453

GeMoMa and GAF and finally obtain 75 484 transcript predictions. Most454

of the predictions showed a good overlap with the annotation (F1 ≥ 0.8).455

Nevertheless, 27 204 out of these 75 484 predictions had little (F1 <0.8) or no456

overlap with high or low confidence gene annotations. However, thousands457

of the transcripts contained in the official annotation do not have start or458

stop codons (Mascher et al., 2017), which renders an exact comparison of459

predictions with perfect or at least very good overlap unreasonable.460

Hence, we focus on 19 619 predictions with no overlap with any anno-461

tated transcript (Tab. 2). Scrutinizing these predictions, we find 1 729462

single-coding-exon predictions that are completely covered by RNA-seq reads463

(tpc=1) but that are not contained in the annotation. Out of these, 367 are464

partially supported by best BLAT matches of ESTs to the genome. In ad-465

dition, we analyzed multi-coding-exon predictions and find 2 821 predictions466

that obtain tie=1, stating that each predicted intron is supported by at least467

one split read from mapped RNA-seq data. Out of these, 1 390 are partially468

supported by best BLAT matches of ESTs to the genome.469
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Besides predictions that are well supported by RNA-seq data, we also470

observe thousands of predictions that are not (tpc = 0 or tie = 0) or only471

partially (0 < tpc < 1 or 0 < tie < 1) supported by RNA-seq. Despite no or472

only partial RNA-seq support, we find that 833 are partially supported by473

best BLAT matches of ESTs to the genome.474

Alternatively, we can utilize the number of reference organisms that sup-475

port a prediction (#evidence) to filter the predictions as noted for D.476

melanogaster. This approach will decrease sensitivity, but increase speci-477

ficity obtaining predictions with a high confidence. Although, we find the478

most predictions with #evidence = 1, we also find about 3 500 predictions479

with #evidence > 1, more than 1 100 of these predictions are additionally480

supported by RNA-seq data or ESTs.481

4 Conclusions482

Summarizing the methods and results, we present an extension of GeMoMa483

that allows for the incorporation of RNA-seq data into homology-based gene484

prediction utilizing intron position conservation. Comparing the performance485

of GeMoMa with and without RNA-seq evidence, we demonstrate for all four486

organism included in the benchmark that RNA-seq evidence improves the487

performance of GeMoMa. GeMoMa performs equally well or better than488

BRAKER1, MAKER2, CodingQuarry, and purely RNA-seq-based pipelines489

on the benchmark data sets including plants, animals and fungi. In addition,490

we demonstrate that GeMoMa helps to improve the performance of combined491

gene predictor pipelines as for instance MAKER2. Notably, model organisms492

have been used as target organisms in this benchmark, whereas they would493

typically be used as reference organisms in real applications. Hence, the494

performance of homology-based gene prediction programs might be underes-495

timated. In summary, we recommend to use homology-based gene prediction496

using RNA-seq data as implemented in GeMoMa whenever high-quality gene497

annotations of related species are available.498

Interestingly, we find that GeMoMa works especially well for499

D. melanogaster in the benchmark study compared to the performance of500

its competitors. One possible reason could be that Flybase used homol-501

ogy and RNA-seq data besides other evidence to infer the gene annota-502

tion (Matthews et al., 2015). In contrast, we find the worst results in C. el-503

egans in the benchmark study, which might be related to the fact that504

the C. elegans gene set contains many rare isoform community submissions505

whereas C. briggsae was annotated by a large scale gene predictions effort506

based on RNA-seq.507

Scrutinizing the annotation in Wormbase, we predicted protein-coding508

transcripts for four nematode species based on the annotation of the model509

organism C. elegans. We find that a substantial part of the GeMoMa pre-510
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dictions is either missing, marked as modification of annotated transcripts511

or alternative transcripts. Especially for the three nematodes, C. brenneri,512

C. japonica and C. remanei, that are annotated solely using ab-initio gene513

prediction, we find a large part of the annotation that is marked as ques-514

tionable or missing. This may give an indication, why homology-based gene515

prediction for C. elegans shows less good performance in the benchmark516

study. The GeMoMa predictions of the four nematodes will be included in517

Wormbase in the upcoming releases. Furthermore, GeMoMa will be included518

in the WormBase gene curation process and trialled for strain annotation.519

Furthermore, we predicted protein-coding transcripts for barley using four520

reference species and find several hundreds of predictions that are not in-521

cluded in the reference annotation but are supported by RNA-seq data,522

ESTs or multiple reference species. Hence, we conclude that these are valu-523

able predictions harboring additional barley genes. These predictions will be524

incorporated in the new barley annotation.525

GeMoMa provides a user-friendly documentation and can be use526

as command line tool or through the Galaxy workflow manage-527

ment system (Afgan et al., 2016) providing its own Galaxy integra-528

tion (Fig. S1). GeMoMa is freely available under GNU GPL3 at529

http://www.jstacs.de/index.php/GeMoMa.530
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