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ABSTRACT 
 

The vast majority of human mutations have minor allele frequencies (MAF) under 1%, with the plurality ob-

served only once (i.e., “singletons”). While Mendelian diseases are predominantly caused by rare alleles, their 

role in complex phenotypes remains largely unknown. We develop and rigorously validate an approach to joint-

ly estimate the contribution of alleles with different frequencies, including singletons, to phenotypic variation. 

We apply our approach to transcriptional regulation, an intermediate between genetic variation and complex 

disease. Using whole genome DNA and RNA sequencing data from 360 European individuals, we find that sin-

gletons alone contribute ~23% of all cis-heritability across genes (dwarfing the contributions of other frequen-

cies). We then integrate external estimates of global MAF from worldwide samples to improve our inference, 

and find that average cis-heritability is 15.3%. Strikingly, 50.9% of cis-heritability is contributed by globally 

rare variants (MAF<0.1%), implicating purifying selection as a pervasive force shaping the regulatory architec-

ture of most human genes. 

 

 

 

One Sentence Summary: The vast majority of variants so far discovered in humans are rare, and together they 
have a substantial impact on gene regulation.  
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INTRODUCTION 

The recent explosive growth of human populations has produced an abundance of genetic variants with minor 

allele frequencies (MAF) less than 1% (1). While many rare variants underlying Mendelian diseases have been 

found (2), their role in complex disease remains unknown (3–8). Evolutionary models predict that the contribu-

tion of rare variants depends highly on selection strength (9, 10), and that population growth can magnify their 

impact (10, 11). Recent methodological breakthroughs (12, 13) have enabled researchers to jointly estimate the 

independent contributions of low and high frequency alleles to complex traits, often demonstrating a large rare 

variant contribution likely driven by natural selection (5, 14–17). However, these studies excluded the rarest 

variants (14) or included only well-imputed variants (5). Directly querying the role of all variants with large-

scale sequencing and sensitive statistical tests has the potential to reveal important sources of missing heritabil-

ity, direct genetic research efforts, and clarify how natural selection has shaped human phenotypes.  

In this work, we develop, validate, and apply an approach for inferring the relative phenotypic contributions of 

all variants, from singletons to high frequency. We focus on the narrow-sense heritability (h2) of gene expres-

sion because a growing body of literature suggests that genetic variants primarily affect disease by modifying 

gene regulatory programs (18–20), and recent examinations have identified significant rare variant effects on 

transcription (8). To characterize the genetic architecture of gene expression, we analyze 360 unrelated individ-

uals of European ancestry with paired whole genome DNA (21) and RNA (22) sequencing of lymphoblastoid 

cell lines (LCLs). We evaluate the robustness of our approach to genotyping errors, read mapping errors, popu-

lation structure, rare variant stratification, and a wide range of possible genetic architectures (23).  

RESULTS 

Before analyzing data, we performed a rigorous series of simulations to identify an approach for estimating her-

itability that is robust to possible confounding factors. In our simulations, we use real genotype data (all variants 

within 1 megabase of the transcription start or end sites of genes) and generate gene expression phenotypes 

across individuals while varying the number of causal variants contributing to the phenotype (from 1 to 1,000), 

the distribution of effect sizes (including uniform, frequency-dependent, and an evolutionary-based model), and 

the distribution of causal allele frequencies [ranging from predominantly rare to predominantly common (10, 

23)]. In total, we simulated 440 different genotype-phenotype models that span beyond the range of genetic ar-

chitectures that could plausibly underlie complex phenotypes such as gene expression, and analyzed each simu-

lated dataset multiple ways. A common approach for estimating heritability in unrelated samples is to fit a linear 

mixed model (LMM) via restricted maximum likelihood [REML (24, 25)]. However, Haseman-Elston (H-E) 

regression [an alternative approach based on regressing phenotypic covariance on genotypic covariance (24)] is 

more robust in small samples (23). 
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Similar to previous work (26), we 

found that for many simulation set-

tings, jointly analyzing all variants 

together can result in a substantial 

over- or underestimate of heritabil-

ity (Fig 1A, which shows results 

when true heritability is 0.2). One 

common solution is to partition 

sites by frequency (5, 14, 27). 

Simply isolating rare (MAF<=1%) 

from common variants using two 

partitions and performing joint in-

ference (14) can improve the accu-

racy for most models. However, 

when there are many causal rare 

variants, the estimator remains up-

wardly biased. Partitioning alleles 

into five or more categories by 

MAF (5) alleviates this problem. Remarkably, not only does the overall heritability bias decrease as the number 

of allele frequency categories increases, but Fig 1B-F shows that the bias of the heritability for each MAF bin 

also decreases substantially across all models (23). These simulations suggest that with our sample size, parti-

tioning SNPs into 20 MAF bins results in the smallest bias in our estimate of total heritability as well as the 

smallest bias for each bin across all simulated parameters.   

One possible confounding factor is the effect of genotyping error on heritability estimation (28). If heritability is 

biased by genotyping error, and genotyping error also varies as a function of MAF, there could be differential 

bias across bins when analyzing real data. We considered a range of genotyping error models, and found that all 

investigated forms of genotyping error eroded efficiency of heritability estimation, but did not induce a detecta-

ble upward bias (23).  

When partitioning variants into multiple MAF bins, singletons are quickly isolated into their own category. In-

tuitively, if some fraction of singletons is causal, then individuals with higher singleton load may be more likely 

to be phenotypic outliers. It is therefore reasonable to ask what contribution singletons make to patterning phe-

notypic variation across a population. We therefore investigated the theoretical properties of heritability estima-

tion from singleton variants, and show analytically that when genotypic covariance is estimated using singletons 

alone, H-E regression is equivalent to regressing squared phenotypes against singleton counts (23).  

Fig 1. Simulation results showing that across a broad range of parameters, the accuracy of 
heritability inference improves as the number of SNP bins (partitioned by MAF) increases. (A) 
Mean bias of total heritability (inferred-true) for different numbers of SNP bins (K), where 
each point represents the mean of 500 simulations for different parameters, and a box plot 
summarizing the bias distribution across all parameters. (B-F) The distribution of average bias 
across simulated parameters for each SNP bin, showing that both mean and variance of the 
bias decrease as K increases. 
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A direct implication of our derivation is that H-E regression is unbiased unless singletons have large non-zero 

mean effect sizes (violating an explicit assumption of both H-E regression and LMMs). Interestingly, these are 

precisely the simulation scenarios in Figure 1A where heritability estimates remain upwardly biased (blue 

points). We develop an alternative approach that produces unbiased estimates of both heritability and mean ef-

fect size in all examined cases (23), but because H-E regression is well understood and flexible, we recommend 

its use when mean effect sizes are near zero.  

In order to characterize the genetic architecture of human gene regulation, we partitioned the heritability of gene 

expression by frequency. We used n=360 unrelated individuals of European descent with RNA sequencing data 

from GEUVADIS (22) and whole genome sequencing data from 1000 Genomes Project [TGP (21)]. After ex-

tensive quality control to remove genes not expressed in LCLs, our data set includes 10,203 autosomal genes 

(23). For each gene, we extracted all variants within 1Mb of the transcription start or end sites; we do not con-

sider trans-effects because of the small sample size. To control for non-normality, population structure, and 

batch effects, we quantile normalize expression values and include the first 10 principle components from both 

the genetic and phenotypic data in all analyses (23). We estimate heritability using H-E regression because we 

estimate a mean singleton effect size that is statistically indistinguishable from zero (23). We focus on 20 MAF 

bins because this was the most robust approach across simulated scenarios [see Fig 1 and discussion in (23)], 

and present average heritability across genes to characterize the genetic architecture of human gene regulation.  

Early studies of heritability filtered out SNPs with MAF<5% prior to their analysis (29), and more recent stud-

ies only remove the rarest variants (5, 14). We show that the process of removing any SNPs based on MAF has 

a direct impact on the estimate of heritability. In Fig 2A, we show the total heritability inferred for different mi-

nor allele count (MAC) thresholds (averaged over all genes). We find that by adding progressively rarer vari-

ants to the analysis, there is a monotonic increase in the inferred heritability. Indeed, including all variants down 

to singletons nearly doubles the total heritability inferred (ℎ!!"!#$ = 0.089) compared to the case when only 

common variants (MAF≥5%) are analyzed (ℎ!!"##"$ = 0.045). Most of the increased heritability derives from 

singletons, which alone contribute ~23%, dwarfing the contribution of all other frequency bins (Fig 2B). 

However, not all singletons contribute equally to heritability, and finding the source of large-effect rare variants 

is of utmost importance (8). Evolutionary modeling suggests that rare variants will only contribute a substantial 

amount to heritability when causal alleles are deleterious (9, 10, 30, 31). Under such models, natural selection 

should restrain the frequency of large-effect alleles. We therefore hypothesized that the singletons that were 

contributing most to heritability would also be rare in much larger multi-ethnic cohorts, i.e. globally rare. We 

tested this hypothesis by partitioning our singletons into 20 bins based on their global allele frequencies ob-

served across the entire worldwide sample of 2504 individuals in TGP, and using H-E regression to jointly infer 

the heritability contributed by each class of singletons. Strikingly, 90% of all singleton heritability is contribut-
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ed by those alleles that are actually 

singletons across all 2504 samples 

in TGP (MAF<0.02%; Fig 2C). 

Pushing this result further, we par-

titioned our singletons based on the 

global frequency observed in 

>15,000 individuals in the gno-

mAD data set (32). We found that 

31% of our singletons were not re-

ported in gnomAD, despite the fact 

that all TGP samples are included 

in gnomAD. While this could indi-

cate that a large fraction of our sin-

gletons are false positives, recent 

studies have suggested that modern 

SNP calling algorithms are risk-

averse, and have resulted in rare 

variants suffering from a pervasive 

problem of false negatives (33, 34). 

Consistent with this possibility, we 

find that nearly 67% of our single-

ton heritability derives from variants that were not called in gnomAD (indicated by * in Fig 2C), and 85% of 

singleton heritability is contributed by alleles with global MAF<0.02%. Previous work has shown that addition-

ally partitioning common variants by LD resulted in minimal change after partitioning by MAF (5). 

Figure 2D shows how heritability accumulates as a function of MAF for different filtering schemes (with color-

ing as in Fig 2A) as well as when we partition all alleles by global MAF (based on either all of TGP or gno-

mAD). Surprisingly, partitioning variants by global MAF nearly doubles the inferred total heritability compared 

to cohort MAF (ℎ!!"!#$ = 0.165 and 0.153 for gnomAD and TGP, respectively, versus ℎ!!"!#$ = 0.089 for 

GEUVADIS), and that a majority of heritability (52.1% and 50.9% for gnomAD and TGP, respectively) is due 

to globally rare variants (MAF<0.1%). We show analytically and with simulations that these results are con-

sistent with a “singleton-LD” effect (23), which previously has only been reported for common variants (5, 26). 

To investigate the ability of rare variants to capture heritability of common variants (and vice-versa), we refit H-

E regression removing MAF bins from rarest to most common (and vice-versa). We found that while rare vari-

ants could capture some of the heritability of more common variants, common variants could not capture the 

	
Fig 2. Characterizing the genetic architecture of human gene expression. (A) Total heritability 
inferred across genes for different frequency filters (based on minor allele count, MAC, or 
minor allele frequency, MAF). Excluding all low frequency variants (MAF<5%) results in 
substantial “missing heritability”. (B) The proportion of heritability attributed to each MAF 
bin. Singletons represent >20% of the total inferred heritability. (C) Partitioning singletons in 
our data (n=360) by global MAF (based on TGP, n=2505, or gnomAD, n=15k) demonstrates 
that the vast majority of singleton heritability is due to sites that are globally very rare (i.e. 
singletons in all of TGP or not reported in gnomAD, indicated by *). Note that all bins exclu-
sively contain singletons. (D) Cumulative heritability inferred as a function of observed MAF 
for different frequency filter thresholds (brown, orange, purple, green) and as a function of 
global MAF (based on gnomAD, red, or TGP, blue). Including all SNPs and partitioning by 
global MAF (instead of observed MAF) results in a substantially increased level of heritabil-
ity. In all panels, points represent mean across genes, with whiskers and envelops representing 
99% quantile range for 10,000 bootstrap samples.	
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heritability derived from singleton variants (23). This suggests that rare variants have not been indirectly cap-

tured in any published heritability estimates through “synthetic association” tagging (35).  

We performed several analyses to examine possible confounding effects in these data. First, we ranked single-

tons by their reported genotype likelihood as reported for the individual carrying the singleton allele in TGP 

(21), and partitioned them into four equal groups (quartiles). We then ran H-E regression with these four groups 

of singletons (along with 10 PCs). Strikingly, we find that only those singletons with high SNP quality contrib-

ute positively to our inference of heritability (23). Second, since both the DNA and RNA sequencing is based 

on lymphoblastoid cell lines, it is conceivable that difficult to sequence regions of the genome could result in 

correlated errors that confound our inference. To test this, we restricted our analysis to regions of the genome 

passing the TGP Strict Mask (21), and found that our inference of heritability was unchanged. We further 

ranked genes based on the number of exon bases passing the strict mask, and found no difference in the genetic 

architecture of genes having high versus low overlap with the Strict Mask (23). 

We find that rare variants are a major source of heritability of gene expression patterns, which we hypothesized 

was due rampant purifying selection acting to restrain the frequencies of large-effect alleles. To test this hy-

pothesis, we performed extensive simulations of human evolutionary history (36, 37), and developed a novel 

model to infer the parameters of an evolutionary model for complex traits (23). Our three-parameter phenotype 

model was previously described (10), and captures the pleiotropy of causal variation (through 𝜌), the scaling 

relationship between effect sizes 

and selection coefficients (through 

𝜏), and the overall strength of selec-

tion (which we capture with 𝜙, a 

mixture parameter between strong 

and weak selection distributions, 

where 𝜙=1 corresponds to strong 

selection). We inferred approxi-

mate posterior distributions for 

each of these parameters by rejec-

tion sampling (38), which compares 

a set of informative summary statis-

tics from genetic data simulated 

under a model of European demog-

raphy (39) and selection (40, 41) to 

the observed data (23). Note that 

Fig 3. Inferring an evolutionary model for the genetic architecture of human gene regulation. 
(A-C) Simulation results showing the accuracy of our rejection algorithm for inferring each of 
our model parameters. (D) The posterior distributions for each model parameter from ob-
served data, suggesting that the effect size that a causal variant has on gene expression corre-
lates (inferred ρ≈0.9) with ~square root of the deleteriousness of its fitness effect in the popu-
lation (inferred τ≈0.5). (E) The cumulative proportion of heritability inferred from the gene 
expression data (dots, dashed line) compared to the expected cumulative proportion based on 
1000 draws from the posterior distribution (grey shades). 
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our inference procedure allows each parameter to vary across genes, but we only seek to infer the mean of ρ, τ, 

and ϕ across genes. We rigorously evaluated the performance of this inference procedure with simulations, and 

found that we can infer ρ and τ with fairly high accuracy, but ϕ (while broadly unbiased) is less informative 

(Fig. 3A-C). 

Applying this model to our data, we find that natural selection has had a major impact on the genetic architec-

ture of human gene expression. In Figure 3D, we plot the posterior distributions of the mean values of 𝜌, 𝜏, and 

𝜙, which suggest that the effect size of causal variants is highly correlated (𝜌 ≈ 0.9) with the square root of 

their selection coefficients (𝜏 ≈ 0.5), implying that larger causal effects tend to be more deleterious (30, 42). 

Moreover, while a wide range of mixture coefficients (𝜙) are consistent with our observed data, much more 

probability mass is centered in the strong selection regime, suggesting that the selective pressure acting on most 

causal variants is likely to be just as strong as selection acting on nonsynonymous variants in coding regions. 

Consistent with this prediction, sites with increased evolutionary constraint exhibit higher heritability estimates 

(23). 

DISCUSSION 

There is substantial interest in characterizing the genetic basis for complex traits to improve our understanding 

of human health and disease, and substantial resources are being spent to collect ever-larger cohorts to investi-

gate the role of rare variants. In this study, we take a different approach. We developed, tested, and applied a 

novel technique for interrogating the role of rare variants in gene regulation using a relatively small cohort of 

n=360 individuals who had whole genome DNA and RNA sequencing performed on their derived lymphoblas-

toid cell lines. We estimate that the total narrow sense heritability of LCL gene expression is 15-16%, and that 

an average of nearly a quarter of all heritability of gene expression can be explained by the rarest of variants in 

our data: singletons, where just one copy of the allele has been observed in our sample of 720 chromosomes 

(MAF=0.0014). Globally rare variants (global MAF<1%) explain 68-78% of this heritability. Our estimate of 

total cis-heritability is larger than the previous estimates of hcis
2 = 0.057 and hcis

2 = 0.055 in blood and adipose 

respectively (43), but lower than recent twin-based estimates of overall narrow-sense heritability h2=0.26, 0.21, 

and 0.16 in adipose, LCLs, and skin respectively (44) as well overall broad-sense heritability H2=0.38 and 0.32 

for LCLs and whole blood (45). It is therefore possible that rare variants account for substantial “missing herit-

ability” in human gene expression, but differences in population, tissue, and/or technology could also explain 

some of these patterns. 

While it might at first seem logical to genotype some (or all) of these singletons in a larger panel of individuals 

to statistically identify the causal ones, our analysis uncovered a major challenge with this approach: our results 

can only be explained if the causal alleles driving heritability are evolutionarily deleterious, with effect sizes 

scaling with the square root of the strength of selection acting on them. This means that the alleles that have the 
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greatest impact on gene expression are likely to be extremely rare in the broader population, and may be unlike-

ly to exist in more than a few unrelated individuals across the world. This is consistent with a recent finding that 

a large fraction of individuals with outlier expression for a gene also tend to have a globally rare variant in the 

vicinity (8). We push this result further to quantify the overall impact that rare variants have on gene expression 

across a population. Indeed, we find that globally rare variants are the predominant source of heritability for 

gene expression. Our analysis shows that 85-90% of the singleton heritability derives from alleles that are not 

carried by any of the other 2504 individuals in TGP (and are either not reported or have MAF<0.02% in the 

n>15,000 samples in gnomAD). We therefore conclude that identifying causal variation for transcriptional vari-

ation will likely require the incorporation of new biological information, possibly including large-scale experi-

mental testing of singleton variants to improve functional predictions.  

Our results suggest that one cannot capture the heritability of rare or low frequency alleles by analyzing addi-

tional common alleles. This implies that “synthetic associations” (35, 46) are uncommon for gene expression 

data. A broader consequence is that, when rare variants matter, approaches that rely on genotyping large sam-

ples followed by imputing missing genotypes from reference populations may not successfully reconstruct the 

true impact of rare variants (especially when the reference panel is smaller than the test sample). This is because 

both genotyping and imputation require the variant to be present at a reasonable frequency in the reference pop-

ulation, which is highly unlikely for strongly deleterious alleles (indeed, we found that 67% of our singleton 

heritability was attributable to variants not reported in gnomAD). Instead, whole genome sequencing of large 

cohorts may be necessary (though the actual sample size required will depend on several factors that have not 

yet been elucidated). 

As the number of samples with detailed phenotype data and whole genome sequencing data increases, it will be 

possible to apply the approach we have developed here to characterize the genetic architecture of additional 

complex traits. By integrating such methods with functional genomic data, we may also learn more about the 

biology of causal variants, which could enable improved identification of clinically actionable variants in some 

cases. However, it is not clear that the hope of a priori risk prediction from genomic data for a most diseases 

will be feasible for an otherwise healthy individual with limited family history information. Population genetic 

theory tells us that rare variants will only be a significant source of heritability when causal alleles are evolu-

tionarily deleterious. But the biology of human health and disease is complex. While not all human diseases will 

themselves impart a strong fitness effect, extensive pleiotropy resulting from tightly interconnected networks of 

interacting proteins experiencing cell-specific regulatory mechanisms could. Indeed, under the omnigenic mod-

el of disease, variants that affect any one of these components could contribute to an individual’s risk for any 

disease involving any downstream pathway (47).  
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We developed an approach to examine the heritability of singleton variants, and the results have important im-

plications for future genetic studies. We rigorously evaluated the performance of our inference procedure using 

extensive simulations and multiple types of permutations (23). While we employed several approaches to test 

for the presence of confounders from population structure, genotyping/mapping error, and cell line artifacts, 

there may be other unknown confounders that have biased the results of this study (23). We conservatively used 

quantile normalization on the expression phenotypes to enforce normality, and this often reduces the overall 

heritability estimates (23) by diminishing the impact of outliers (8). There are several other contributors to 

broad sense heritability that we have not attempted to model and may also account for some of the heritability 

estimated in family-based studies, such as gene-gene interactions, gene-environment interactions, and other 

non-additive components.  
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