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Aging-related physiological changes are systemic and, at least in humans, are linearly associated
with age. Therefore, linear combinations of physiological measures trained to estimate chronological
age have recently emerged as a practical way to quantify aging in the form of biological age. Aging
acceleration, defined as the difference between the predicted and chronological age was found to
be elevated in patients with major diseases and is predictive of mortality. In this work, we com-
pare three increasingly accurate biological age models: metrics derived from unsupervised Principal
Components Analysis (PCA), alongside two supervised biological age models; a multivariate linear
regression and a state-of-the-art deep convolution neural network (CNN). All predictions were made
using one-week long locomotor activity records from a 2003-2006 National Health and Nutrition
Examination Survey (NHANES) dataset. We found that application of the supervised approaches
improves the accuracy of the chronological age estimation at the expense of a loss of the association
between the aging acceleration predicted by the model and all-cause mortality. Instead, we turned to
the NHANES death register and introduced a novel way to train parametric proportional hazards
models in a form suitable for out-of-the-box implementation with any modern machine learning
software. Finally, we characterized a proof-of-concept example, a separate deep CNN trained to
predict mortality risks that outperformed any of the biological age or simple linear proportional
hazards models. Our findings demonstrate the emerging potential of combined wearable sensors
and deep learning technologies for applications involving continuous health risk monitoring and
real-time feedback to patients and care providers.

INTRODUCTION

Many physiological parameters demonstrate profound
correlations with age. This observation has led to the
growing popularity of “biological clocks”, designed as lin-
ear predictors of chronological age from physiologically
relevant variables, see, e.g., DNA methylation [1], gene
expression profiles [2], plasma proteome [3]. However,
a broader acceptance of the technology will depend on
a better understanding of the observed correlations to
the incidence of specific diseases, improved transferabil-
ity of the models across populations and reduction of
costs of the studies. We note, that large-scale biochem-
ical or genomic profiling is not impossible, but is still
logistically difficult and expensive. Instead, the recent
introduction of low-power and compact sensors, based
on micro-electromechanical systems (MEMS) has led to
a new breed of the wearable and affordable devices pro-
viding unparalleled opportunities for the collecting and
cloud-storing personal digitized activity records in a fully
standardized and controlled way. This tracking is al-
ready done without interfering with the daily routines of
hundreds of millions of people all over the world. More-
over, the analysis of human locomotion has already led
to widely accepted health recommendations, such as the
“10, 000 steps per day” minimum activity advisory [4],
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which is now a basic health recommendation in many
wellness applications. Further, we have recently shown
that a simple set of hand-engineered features, represent-
ing statistical properties of one-week long human phys-
ical activity time series can be used to produce digital
biomarkers of aging and frailty [5].

Deep learning is a powerful tool in pattern recognition
and has demonstrated outstanding performance in visual
object identification, speech recognition, and other fields
requiring hierarchical analysis of input data. Recent
promising examples in the field of biomedical signal anal-
ysis include convolution neural networks (CNNs) trained
to process electrocardiograms showing cardiologist-level
performance in detection of arrhythmia [6], biomarkers of
age from clinical blood biochemistry [7, 8] or electronic
medical records [9], or mortality prediction [10]. Inspired
by these examples, we explored deep learning architec-
tures for Health Risks Assessment (HRA) applications,
to use human physical activity streams from wearable
devices for continuous health risks evaluation. First, we
trained a series of deep CNNs to predict the chronological
age of NHANES participants and obtained a substantial
improvement over a multivariate linear regression fit from
the same signal. By design, every such supervised bio-
logical age estimation aims at minimizing the difference
between the predicted and the actual chronological age
of the same patient. This quantity is referred to as ag-
ing acceleration and is associated with prevalence of dis-
ease [11–14] and mortality [15–17]. Therefore, we found,
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as expected, that any improvement yielding a decrease
in the age prediction error rate often translates into a
reduced ability to differentiate among disease states or
mortality risks.

Thus we conclude that the chronological age of a pa-
tient is not the best target for biological age model devel-
opment. More sensible ways to quantify aging involve the
inclusion of metrics characterizing life expectancy, dis-
ease burden or frailty. Thus, we focused on mortality as
the ultimate health status variable and proposed a novel
technique to train a proportional hazards model in a
form, suitable for an out-of-the-box implementation with
modern deep-learning toolkits. In particular, we used
the death register and raw one-week long time series rep-
resenting physical activity records of NHANES patients
and obtained the best results with a deep CNN architec-
ture, simultaneously and automatically producing the set
of features engineered from the raw physical activity time
series and the most accurate non-linear representation of
the risks function. Our findings demonstrate the emerg-
ing potential of a combination of wearable sensors and
deep learning technologies for future HRA applications
involving continuous health risk evaluation and real-time
feedback to patients and care providers.

RESULTS

Deep learning chronological age from physical
activity records

The “biological age” or “bioage” is a quantitative mea-
sure of aging - and thus an expected lifespan - based on
biological data. State-of-the-art approaches for biological
age evaluation take advantage of the strong association
of physiological variables with age and thus rely on lin-
ear (see, e.g., DNA methylation age [1, 18]) or non-linear
regressions [7, 8, 10] to estimate the chronological age
of a patient directly from the biological data. Following
these examples, we started by building a deep convolu-
tion neural network (CNN) trained to predict the chrono-
logical age of the same NHANES participants from the
raw one-week long physical activity records. We relied
on the CNN to automatically extract relevant features
from time series (see, e.g., [6]) and to unravel the ap-
parent non-linear dependencies between the locomotor
activity variables and age. We trained a CNN_Age with
four convolution and two dense layers (see Materials and
Methods for the details of the CNN architecture). The
model achieved Pearson’s r = 0.75 between the estimated
and the chronological age of the study participants, see
Figure 1A).

To highlight the superior performance of the
CNN_Age, we also characterized a regularized multivari-
ate regression, trained to predict chronological age from
a linear combination of hand-crafted features, represent-
ing statistical properties of the physical activities time
series, borrowed from [5]. The result was the REG_Age

model, which is similar by design to the most com-
monly used biological age metrics, such as, e.g., DNA
methylation clock, a regularized linear regression of DNA
methylation features to the chronological age [1, 18].
REG_Age worked fairly well, but was inferior in accu-
racy to CNN_Age (Pearson’s r = 0.68, see Figure 1B).

In our recent study [5] we observed that Principle
Components (PC) analysis reveals that most of the vari-
ance in the multi-dimensional parameter space spanned
by all NHANES participant representations (same as in
REG_Age model) is associated with chronological age.
Therefore, we proposed the first principal component
score as the unsupervised definition of biological age,
PCA_Age (Pearson’s correlation coefficient of the first
PC score and chronological age r = 0.59, see Figure 1C).
PCA_Age does not change much at first, but increases
approximately linearly with age thereafter, roughly, the
age of 40, and exhibits an excellent correlation with the
negative logarithm of average daily activity [5].

CNN_Age models outperformed any other model
in terms of the chronological age prediction accuracy.
REG_Age and PCA_Age used the same set of physical
activity derived features. Therefore, we suggest that the
CNN produces the relevant set of age-associated proper-
ties of the raw time series in a fully automated way.

Improved chronological age estimation accuracy
undermines the biological age association with

diseases and lifespan

Patients diagnosed with diabetes or hypertension ap-
pear to be biologically older than their healthy peers,
see Figures 1A-C. To find out if the biological age differ-
ence translates into a lifespan change, we used NHANES
death register representing survival data for 7837 partic-
ipants (3750 male, 4087 female, aged 18 − 85, follow-up
time up to 9 years, 701 participants died, in total). Fig-
ures 2A-C is a summary of Kaplan-Meier survival curves
for NHANES participants, stratified into the high- and
the low- risk groups according to the difference between
the estimated biological age of an individual and the av-
eraged estimated age of gender- and age-matched peers.
The procedure is similar in spirit but formally different
from and produces better results than the group separa-
tion according to the sign of aging acceleration. Using the
predicted biological age as the reference naturally offsets
the apparently non-linear relation between the biological
and chronological age.

The unsupervised PCA_Age model fared exception-
ally well and produced significantly different survival
curves (p = 2× 10−7, see Figure 2C). The increasing ac-
curacy of chronological age estimation by each of the two
supervised models, however, came at a price of a signifi-
cant drop in the ability to distinguish the longer- and the
shorter-living individuals. The multivariate regression
REG_Age and the deep CNN_Age models failed to rank
the individuals according to mortality risks (p = 0.08 and
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FIG. 1: The biological age estimation according to deep convolution neural network CNN_Age (A), the multivariate
regression REG_Age (B), and the unsupervised PCA_Age (C) models. The solid lines and the transparent ±
standard deviation bands are color coded as green, blue, and red, representing the whole population, the patients
diagnosed with diabetes by a doctor, and individuals with self-reported high blood pressure, respectively. All the
calculations were produced using the NHANES 2003-2006 cohort wearable accelerometers data, comprising one-week
long activity tracks (1min−1 sampling rate).

A B C

FIG. 2: Kaplan-Meier survival curves illustrate qualitatively the performance of the biological age models to distinguish
between the longer- and the shorter-living individuals. Each participant was classified into the “high-” and the
“low- ” risks groups according to the deep convolution neural network CNN_Age (A),the multivariate regression
REG_Age (B), and the unsupervised PCA_Age (C) models. The p-values characterize the survival curves separation
significance.

p = 0.01, respectively, see Figures 2A and B).
The apparent progressive loss of biologically relevant

information by increasingly accurate models, involving a
regression to chronological age, highlights the biological
significance of aging acceleration, a quantity closely re-
lated to the chronological age determination error from
the physiological data.

Biological age contributes to health risk assessment

Health Risk Assessment (HRA) is a systematic ap-
proach to collecting information from individuals that
identifies risk factors, provides individualized feedback,
and links the person with health-promoting interven-
tions, see, e.g., [19]. Biological age acceleration is associ-

TABLE I: Cox-Gompertz parametric proportional haz-
ards model parameters

Covariate Hazard Ratio, 95% CI, p-value
age 1.090, CI[1.082, 1.099] (p=2e-109)
gender 1.503, CI[1.281, 1.765] ( 2.4yr., p=6e-07)
diabetes 1.690, CI[1.401, 2.038] ( 2.2yr., p=4e-08)
smoking 2.300, CI[1.866, 2.836] ( 3.8yr., p=6e-15)
high blood pressure 1.198, CI[1.018, 1.409] ( 1.0yr., p=3e-02)
log(activity) 2.378, CI[2.051, 2.756] ( 4.9yr., p=1e-30)

ated with major diseases, and hence we asked ourselves if
any of the biological age models could provide any useful
additional information and improve health risks evalua-
tion accuracy over standard HRA questionnaires.
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HRA approaches involve capturing demographic (such
as age and gender), lifestyle (including exercise, smok-
ing, alcohol intake, diet), and physiological (e.g., weight,
height, blood pressure, cholesterol) characteristics [19].
To model a HRA we built a Cox proportional haz-
ards model including the most important demographic,
lifestyle and physiological factors, see Table I for the sum-
mary of the model parameters. We then tested the statis-
tical significance of the biological age estimators in asso-
ciation with all-cause mortality using a Cox proportional
hazards model with the corresponding aging acceleration
and the health risk factors taken as covariates, see the
top of Table II for the summary of the results. The bio-
logical age scores were corrected by the health risks fac-
tors in advance to avoid possible fitting instabilities due
to potential collinearity between the covariates. In this
way, we explicitly tested the biological age residual for
the ability to explain the risk function variance that is
not already accounted for by the standard HRA factors.

As in every statistical test so far, the unsupervised
PCA_Age model prediction produced the largest pro-
portional hazards effect, HR = 1.45 ( p < 10−10). The
supervised REG_Age and CNN_Age models achieved
better age predicting accuracy at the expense of bio-
logical significance loss, see the upper-left column in
Table II. The multivariate regression REG_Age pro-
vided a smaller yet significant effect, HR = 1.31 (p <
10−10). The most accurate chronological age estimator
CNN_Age, however, failed to produce any statistically
significant contribution (p = 0.3). Therefore, at least in
our model scenario, two of the biological age estimators,
PCA_Age and REG_Age, produced biological age mea-
sures that substantially improve patient health risk esti-
mation beyond any standard procedure involving HRA
metrics.

On the other hand, the negative logarithm of the aver-
age daily physical activity is a good biological age proxy
[5] and provides a highly significant contribution to the
hazard function (p < 10−10), see Table I. We checked
explicitly and found that none of the biological age mod-
els estimations produced any proportional hazards effect,
once the physical activity level is included as an indepen-
dent HRA variable, see the upper-right column of Table
II, p > 0.05.

Deep learning mortality model improves health risks
assessment

Next, we explored whether we could build a useful
health risks prediction model involving signatures of ag-
ing or diseases beyond biological age. Proportional haz-
ards models (PHM) in Cox- [20] or Cox-Gompertz- [21]
variants are trusted tools for such an analysis and are
readily available as standard software, including a recent
deep learning architecture implementation [22]. We em-
ployed CNN to automate the most relevant features ex-
tracted from the raw time series. Accordingly, we would

need a PHM likelihood as the network cost function in
a form, suitable for an efficient minimization with back-
propagation. Naturally, we expected that the contribu-
tion to the all-cause mortality (or hazard ratio) of fea-
tures, associated with the locomotor activity to be small
on top of the already significant effects of age, gender,
and the other HRA factors. Therefore, instead of im-
plementing a full non-linear likelihood minimization, we
performed a perturbation theory expansion of the Cox-
Gompertz likelihood. The result was a simplified linear
model, closely related to regression to Martingale resid-
uals, or the unexplained risks variance of the model in-
volving the standard HRA factors. More importantly,
the cost function was formally equivalent to a linear re-
gression with sample weights and therefore can be imple-
mented out-of-the-box, with essentially any modern deep
learning software (see Materials and Methods).

We used the proposed linearized version of the Cox-
Gompertz proportional hazards model to train a deep
CNN. The network received raw physical activity streams
and performed considerably better than our reference, a
linear hazard predictor built using the same perturba-
tion theory expansion but with the help of hand-crafted
features from [5] and already used here as descriptors by
REG_Age and REG_Age models. The deep CNN haz-
ard rate model outperformed all the biological age scores
above, see the bottom of Table II. Both the linear and
the CNN hazard rate predictors produced a significant
association with the all-cause mortality after a correction
by age, gender, diabetes, smoking and high blood pres-
sure (p < 1e − 10, see the bottom-left column of Table
II). The correction by the negative logarithm of the av-
erage daily physical activity made the hazard prediction
of the linear hazard model statistically irrelevant. The
CNN hazard rate model predictor remained significant,
HR = 1.15, (p = 0.0003). Assuming proportional haz-
ards model this contribution accounts for, approximately,
1.6 years of life gained or lost at the standard deviation
level. The most significant association of the CNN haz-
ard rate model residual after detrending by the physi-
cal activity level and the major HRA factors with the
NHANES Questionnaire and Laboratory data variables
was the self-reported “general health condition” (labels
“excellent/very good” vs “fair/poor”).

DISCUSSION

We report a systematic investigation of biological ag-
ing acceleration in relation to disease states and all-cause
mortality in a large-scale human study. In particular, we
used the NHANES physical activity records along with
the medical meta-data and the death register to produce
a series of biological age models. The most popular su-
pervised learning examples, such as a multivariate re-
gression and a deep CNN, exploit the apparent linear
dependence of physiological changes with age and hence
were trained to produce a chronological age estimate from
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TABLE II: Association of the biological age- and all-causes mortality -predicting models with all-cause mortality. Two
class of models were evaluated: one including the HRA parameters: age, gender, diabetes, smoking and hypertension
as covariates (the left column) and the other including additionally the negative logarithm of the average daily physical
activity (the biological age proxy, the right column). The corresponding 95% hazard ratio intervals are given along
with the significance p-value and the effect levels, expressed in years of life lost (see the text for details).

HRA Covariates Age,Gender,Smoking,Diabetes,Hypertension Age,Gender,Smoking,Diabetes,Hypertension,Activity
Model Hazard Ratio, 95% CI, p-value Hazard Ratio, 95% CI, p-value
PCA Age 1.45, CI[1.35, 1.55] (4.4yr., p = 10−25) 1.07, CI[0.99, 1.15] (0.8yr., p = 0.08)

REG Age 1.31, CI[1.21, 1.42] (3.2yr., p = 6× 10−12) 1.01, CI[0.93, 1.08] (0.0yr., p = 1.0)

CNN Age 1.05, CI[0.96, 1.15] (0.6yr., p = 0.3) 0.94, CI[0.86, 1.03] (−0.7yr., p = 0.2) (wrong sign)
Hazard Weighted regr 1.27, CI[1.21, 1.32] (2.8yr., p = 2× 10−28) 1.08, CI[1.01, 1.16] (0.9yr., p = 0.03)

Hazard CNN 1.53, CI[1.42, 1.65] (5.0yr., p = 4× 10−29) 1.15, CI[1.07, 1.24] (1.6yr., p = 3× 10−4)

individual locomotor activity time series. Both cases in-
volved a minimization of the biological age acceleration,
the difference between the “physiological” age, estimated
by the model and the chronological age of a patient. Al-
ternatively, we used an unsupervised technique taking
advantage of the intrinsic low-dimensionality of the ag-
ing trajectories, closely related to criticality [5, 23] of the
biological state variables kinetics, and thus presenting
a natural biomarker of age from Principal Component
Analysis.

To date, different forms of regularized multivariate
linear regressions of biologically relevant variables to
chronological age are the most popular technique behind
the recently proposed biological age signatures, such as,
e.g., biological clocks using IgG glycosylation [24], blood
biochemical parameters [25], gut microbiota composition
[26], and cerebrospinal fluid proteome [27]. The “epige-
netic clock” based on DNA methylation (DNAm) levels
[1, 18] appears to be the most accurate and the most ex-
tensively studied measure of aging. The biological age
acceleration, measured by the DNAm clock, explains all-
cause mortality in later life better than chronological age
[15], is elevated in people with HIV, Down syndrome
[11, 12], obesity [13, 14], but is not correlated with smok-
ing [28]. The same biomarker of age is lower for super-
centennial’s offspring [16], and predicts mortality in a
longitudinal twins study [17].

By design, such a supervised methodology involves a
form of minimization of the biological age determination
error, i.e., an attempt of minimizing the difference be-
tween the predicted "physiological" age and the chrono-
logical age of the patient. This is, by definition, the bi-
ological age acceleration, a presumably biologically rele-
vant variable. Therefore, we expected and demonstrated
here that a systematic improvement of the chronological
age determination error minimization leads to an imme-
diate degradation of the biological age acceleration signif-
icance in any test, involving health or risk of death. Our
calculations show that the loss of biological information
can be aggravated if even more powerful machine learning
tools, such as a deep learning architecture, are employed
to unravel complex and possibly nonlinear relations be-
tween the features in the data and produce even more

“accurate” models. The most accurate chronological age
estimation from biological samples could, however, find
applications in forensic research [29].

Diabetes is one of the most significant health risk fac-
tors affecting lifespan by shortening life expectancy up
to 8 years according to some studies [30]. However, the
most popular DNAm clock did not label patients with
diabetes diagnosed by a doctor as “biologically older” in
at least one study [31]. In our studies, the patients
diagnosed with diabetes and hypertension appear to be
significantly older biological-age wise according to the
unsupervised PCA_age model [5]. The multivariate re-
gression REG_age is similar in spirit to DNAm age and
produced a less significant separation between the groups
of patients with the diseases and healthy controls. It re-
mains to be seen, however, which of the interpretations
would be supported with future versions of the DNAm
clock, or, if our findings are specific to the source of the
signal derived from human physical activity time series
properties, known to be associated with both of the dis-
eases.

Physical activity measurements recorded by wearable
devices are, in theory, an ideal data source for building
fully automated HRA systems for continuous health risk
monitoring and real-time feedback to patients and care
providers. The unsupervised PCA_age and a linear mul-
tivariate regression REG_age yielded valuable biologi-
cal age models producing a biological aging acceleration
estimate predictive of all-cause mortality, even after de-
trending by the HRA variables. The more accurate mod-
els, such as PCA_age and the deep CNN_age predictors
explained a lesser degree of the death risk variation, re-
spectively. We also observed, that an explicit addition in
a HRA routine of a variable in high correlation with the
biological age, such as the negative logarithm of the aver-
age daily activity, makes any of biological age predictors
statistically irrelevant.

The idea of identifying patterns in biological signals in
association with phenotypic differences is not new [32].
However, deep CNNs bring the idea to an entirely new
level and are particularly useful for automation of the
most relevant features engineering from the data in rela-
tion to human activity recognition (HAR) [33, 34], spe-
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cific diseases or risks factors [10]. To demonstrate CNN
capabilities for all-cause mortality evaluation from physi-
cal activity records, we introduced a novel way to train a
proportional hazards model effectively. We observed that
since the fundamental HRA factors such as age, gender,
and major disease status already allow for the produc-
tion of an excellent survival model. Therefore, the ex-
pected contribution of any combination of the locomotor
activity derived features, after detrending by the HRA
variables, would be expected to be small. Under the cir-
cumstances, the full mortality can be obtained by iter-
ations, with the zero-order approximation model being
the Cox-Gompertz mortality model, embracing the HRA
descriptors as independent covariates. The first subse-
quent perturbation theory correction is then equivalent to
a regression with sample weights, depending on the zero-
order model parameters (a generalization of the method
for a more generic non-parametric mortality model is also
possible and will be reported elsewhere). The statistical
power of the model is limited by the total number of
death events, see Eq. (3) in Materials and Methods.
In that view, ubiquitous deployment of wearable sen-
sors promises unparalleled opportunities to achieve large
population-wide coverage and thus to make possible the
identification of additional smaller health risk effects at
significance levels in the future.

The unsupervised PCA_Age yields an important in-
sight on the dynamics of the physiological state in associ-
ation with age. Biological age turns out to be related to
an order-parameter, associated with the organism devel-
opment and as such, undergoes a random walk on top of
the systematic aging drift [5, 23]. The variance of the bio-
logical age distribution increases with age, which is a sign
of the increasing heterogeneity of the human population.
The effect is a challenge to supervised methods, such as
regressions to biological age and even proportional haz-
ards models. We envision future improvements of mortal-
ity prediction models by taking into account the diffusion
of the biological variables into the likelihood function di-
rectly. Given the success of the unsupervised biological
age model in our study, we further expect a development
of unsupervised deep learning architectures, such as deep
auto-encoders [35] for aging research.

Life and health insurance programs have begun to pro-
vide discounts to their users based on physical activity
monitored by fitness wristbands [36]. We report that a
deep CNN can be used to further refine the risks models
by inclusion of an apparently biological age-independent
risk factor, producing a significant effect on lifespan. We
believe that the result highlights the power and practi-
cal utility of semi-analytic approaches, combining aging
theory with the most powerful modern machine learning
tools. This synthesis will eventually produce even better
health risks models for HRA, to mitigate longevity risks
in insurance, help in pension planning, and contribute to
upcoming clinical trials and future deployment of anti-
aging therapies.

CONCLUSIONS

We performed a systematic evaluation of biological age
models built from the data, representing physical activ-
ity tracks from a large cross-section human study. Our
findings support the biological relevance of aging acceler-
ation, the quantity often minimized in supervised biolog-
ical models. We show that an apparent model accuracy
improvement may come at a price of substantial degrada-
tion of a biological age utility in all applications involving
health or all-cause mortality risks.

We propose a simple and efficient way to train para-
metric proportional hazards models using out-of-the-box
deep machine learning software. We trained and charac-
terized a proof-of-concept deep CNN hazard rate model
to demonstrate fully automated feature engineering from
complex biological signals analysis and produce biomark-
ers of age and mortality at the level of accuracy exceeding
that of the traditional approaches.
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MATERIALS AND METHODS

Data preparation, quantification of locomotor
activity

Locomotor activity records and question-
naire/laboratory data from the National Health
and Nutrition Examination Survey (NHANES) 2003-
2004 and 2005-2006 cohorts were downloaded from
[www.cdc.gov/nchs/nhanes/index.htm]. NHANES
provides locomotor activity in the form of 7-day long
continuous tracks of “activity counts” sampled at
1min−1 frequency and recorded by a physical activity
monitor (ActiGraph AM-7164 single-axis piezoelectric
accelerometer) worn on the hip. Of 14,631 study
participants (7176 in the 2003-2004 cohort and 7455
in the 2005-2006 cohort), we filtered out samples with
abnormally low (average activity count <50) or high
(>5000) physical activity. We also excluded participants
aged 85 and older since the NHANES age data field
is top coded at 85 years of age and we desired precise
age information for our study. The mortality data for
NHANES participants is obtained from the National
Center for Health Statistics public resources (4017 in the
2003-2004 cohort and 3985 in the 2005-2006 cohort). We
excluded days with less than 200 minutes corresponding
to activity states > 0. Only participants with 4 or more
days that passed this additional filter were retained,
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yielding a total of 7454 samples (age, years: 35 ± 23,
range 6− 84; women: 51%). Quantification of locomotor
activity of the subject was carried out in two ways: by
hand-engineered features for all linear analysis and by
CNN (see corresponding sections below).

Statistical description time series representing
physical activity

To calculate a statistical descriptor of each partici-
pant’s locomotor activity we followed the prescription
from [5]. We first converted activity counts into dis-
crete states with bin edges bk, k = 1..K. Activity level
states 1...K − 1 were then defined as half-open inter-
vals bk ≤ a < bk+1, state 0 as a < b1 and state K as
a ≥ bK , where a is the activity count value. In this
study, we defined K = 8 activity states with bin edges
bk = ek − 1, k = 1...7. Thus, each sample was converted
into a track of activity states and a transition matrix
(TM) was then calculated for each participant (see be-
low). To ensure that our analysis dealt only with days
on which a participant actually performed some physi-
cal activity, we applied an additional filter. Transition
matrices (TM) Tij , i = 1...8, j = 1...8 were calculated
as a set of transition rates from each state j to each
other state i (the diagonal elements correspond to the
probability of remaining in the same activity state). We
flattened 8× 8 TM of each sample into a 64-dimensional
descriptor vector and converted the flattened descriptor
to log-scale to ensure approximately normal distribution
for elements of the locomotor descriptor (a useful prop-
erty for the stability of the linear models that we applied
in PCA and Survival analysis). All near-zero elements
(< 10−3, which corresponds to less than 10 transitions
during a week) were imputed by the value of 10−3 before
log-scaling.

Age predicting models

We compare three age-estimating models. CNN_Age
is a convolution neural network (CNN) model trained
to predict the age of an individual based on input raw
activity counts track (the details of CNN architecture
are described below).

The remaining models, REG_Age and PCA_Age, es-
timate age in response to the vector of hand-crafted
features representing statistical properties of the phys-
ical activity time series and borrowed from [5]. We
trained the models using the activity records of 7186
NHANES participants aged 18 − 85. REG_Age is a
l2−regularized multivariate regression trained with 5-fold
cross-validation using RidgeCV package from scikit-learn
python library.

PCA_Age is based on principal component (PC) anal-
ysis of the same set of features with the help of SVD fac-
torization from numpy python library. We retained the

first principal component score as the biological age met-
ric and reported either the raw PC score or a variable
scaled to age by a univariate linear regression.

Cox-Gompertz proportional hazards model

According to the Gompertz law [37], the mortality
rate in human populations increases exponentially start-
ing at the age of about 40. Therefore an accurate es-
timation of a hazard rate, or mortality, for each par-
ticipant can be obtained with the help of a parametric
Cox-Gompertz proportional hazards model adapted from
[21]. The model predicts the mortality rate in the form
M(tn, xn) = M0 exp(Γtn) exp(β, xn), where tn is the age
of a participant n, xn is a vector of independent predic-
tor variables (covariates), such as the participant’s gender
and any set of physical activity related descriptors. The
variables Γ and M0 stand for the Gompertz exponent
(inversely related to the mortality rate doubling time)
and the initial mortality rate, respectively. The unknown
parameters along with the vector of quantities β are to
be fitted using the experimental data by minimizing the
negative of the following log-likelihood function:

logLH =
∑
n

M0

Γ
exp(βxn)fn+

+
∑
n

δn (logM0 + (βxn) + Γtn2 ) (1)

where the summation occurs over all the study partici-
pants, fn = exp(Γtn1 ) − exp(Γtn2 ), and tn1 is the age of a
participant when locomotor activity measurements were
carried out. The second time variable, tn2 , is the age at
death, if the patient died during the follow-up time or the
age of the last observation if the individual was alive, re-
spectively. The indicator δn = 1 if a patient n is dead at
tn2 and δn = 0 otherwise. The log-likelihood can be fur-
ther regularized by adding a proper term depending on a
norm of the vector β (L2− regularization in our study).
The optimization with respect to the scalar variables Γ,
M0 and the vector β can be performed using any con-
venient technique, including Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm or a batched stochastic gradi-
ent descent (SGD).

Perturbation theory expansion in a Cox-Gompertz
model

We start assuming there’s a well-defined minimum de-
fined by a set of the best fit variables Γ,M0 and β̄. Let us
now see how the model can be improved if we are allowed
to add a set of additional variables ξ to improve the haz-
ard rate model. Once the new parameters are plugged in
the likelihood function (1), then, the position of the min-
imum of the likelihood function (1) also changes. If the
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corrections to the model parameters δΓ, δM0, δβ are suf-
ficiently small, the solution of the minimization problem
can be obtained by iterations. In typically small cohorts
of human subjects, the modifications of the Gompertzian
variables δΓ and δM0 are poorly constrained [38]. There-
fore the variation of each one of the parameters can be
arbitrary set to zero. We choose to fix Γ and without fur-
ther derivation provide the final expression for the pro-
portional hazards effect:

βξ = C−1
ρ

∑
n

ξn(δn −Ndρn). (2)

Here ρn = fn exp(β̄xn)/
∑
n fn exp(β̄xn), Nd =

∑
n δ

n is
the total number of the death events in the dataset, and
〈(...)〉ρ ≡

∑
n ρn(...)n stands for averaging with the sam-

ple weights ρn. By definition the sample-weighted vari-
ance Cρ = Nd〈δξT δξ〉ρ = Nd(〈ξT ξ〉ρ − 〈ξT 〉ρ〈ξ〉ρ). The
effect estimation error can also be obtained analytically,

σ2
βξ

=
1

Nd〈δξ2〉ρ
, (3)

and depends explicitly on the number of death events,
rather than on the total number of individuals, in the
study.

Up to the appearance of sample-weighted average in
the definition of the covariance matrix, Eq. (2) is a
regression of independent variables ξ to the martingale
residual of the Cox-Gompertz model. The latter is the
difference between the actual survival, represented by the
indicator variable δn, and the model mortality, integrated
over the duration of the follow-up time for the same pa-
tient,

∫ t2
t1
dtM(t, xn) = Ndρn. What is more important,

the solution can now be obtained by minimization of an
extremely simple cost function

L =
∑
n

ρn(βξξ
n −Rn)2. (4)

This is nothing else but a sample-weighted regression of
ξn against the properly selected target function Rn =
1− δn/(ρnNd). This form of the likelihood optimization
can be easily done with any modern software library and
hence is far more convenient for machine learning appli-
cations than the original Cox-Gompertz likelihood (1).

Significance of locomotor hazards and bioage in
all-cause mortality evaluation

We first tested the age and hazard predicting mod-
els for the significance of their association with all-
cause mortality with the help of a Cox proportional
hazards model. Every test included the model predic-
tion for each NHANES participant along with the age
(data field RIDAGEMN), gender (RIAGENDR), dia-
betes (DIQ010), smoking (SMQ040), and hypertension
(high blood pressure) (BPQ020). Also, the same test

was carried out after including two additional covariates
in the form of the average number of activity counts per
day and the logarithm of this number, calculated from
the physical activity recording tracks. Each covariate
except for age were subsequently linearly detrended by
all the other covariates and then standardized to zero
mean and unit variance. After these preprocessing pro-
cedures, the significance for association was tested using
Cox proportional hazards model yielding the effect, its
95% confidence intervals (CI) and p-value. The effect was
further transformed into the corresponding difference in
life expectancy by dividing the effect by the Gompertz
exponential coefficient 0.085 yrs−1.

The Cox model parameters and the significance p-
values are summarized in Table II and were obtained
using survival [39, 40] package implemented in R [41].
Alternatively, we obtained the same p-values as proba-
bilities of the effect deviations from zero using the ana-
lytically expressions for the effect and the effect determi-
nation error given by Eqs. (2) and (3).

Convolution neural networks for biological age and
risks of death predictions

FIG. 3: Architecture of convolution neural network

We trained a convolution neural network to convert
each physical activity record, a vector of 10080 val-
ues, representing subsequent activity counts per minute
records (7-day-long recording sampled at 1min−1 fre-
quency), into a single value of estimated age or hazard
rate. The network architecture was similar for both tasks
and is shown in Figure 3. We identified an optimal ar-
chitecture for this deep learning model empirically, after
exploring a range of combinations of layer depth and size.
Before feeding data into convolution network, we apply
Batch Normalization [42]. The network consisted of four
convolution layers with ReLU activation each followed by
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Max Pooling. The results were imported into two fully
connected layers with ReLU activation. We applied the
dropout [43] to regularize the dense layers. We used the
RmsProp [44] optimizer with learning rate per sample
set to 10−7, minimal learning rate 10−17 and momentum
0.9. Dropout rate is set to 0.5 after first 9 epochs, and no
dropout was used during these 9 epochs. Finally, output
of the last layer is fed into a single linear neuron (a linear
regression to the network target) producing the resulting
value of age prediction.

The convolution layers and output dense layer weights
were initialized with Glorot uniform initializer [45]. We
used a gaussian initializer for the two internal dense lay-
ers weights. For CNN_Age model we scaled the weights
of the output dense layer by the factor 85 to match the
range of the possible output values.

To produce a deep CNN for mortality prediction using
the linearity log-likelihood (4), we started by building the
simplest "zero-order" Cox-Gompertz PHM including the
participant’s age and gender as independent covariate. In
spite of the very small number of death cases in the data,

the Gompertz exponent Γ = 0.088 was compatible with
the currently accepted mortality rate Γ = 0.085, corre-
sponding to doubling time of 8 years [46]. The initial
mortality rate was M0 = 3 × 10−5 yrs−1, and therefore
the model predicted 90.02 years of life expectancy, on av-
erage (gender contributed 5.2 years of the life expectancy
difference).

A CNN trained to predict the linearized proportional
hazards model target Rn from the raw physical activity
tracks generated the best locomotor activity features ξ
(output of the last hidden CNN layer) and identified the
projection vector βξ (weights of last linear layer). The
valuesRn were inverse normal transformed and standard-
ized to zero mean and unit variance with custom R [41]
script. We tested the CNN output for significance by
feeding it to a Cox model along with age, gender, and ma-
jor risk factors: smoking, diabetes, high blood pressure
and, optionally, average daily activity. We observed that
a progressive training of the CNN reaches a plateau in
significance for mortality prediction starting from train-
ing epoch m2500 (data not shown).
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