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Summary 

The International Classification of Diseases (ICD) relies on clinical features and lags 

behind the current understanding of the molecular specificity of disease pathobiology, 

necessitating approaches that incorporate growing biomedical data for classifying 

diseases to meet the needs of precision medicine. Our analysis revealed that the 

heterogeneous molecular diversity of disease chapters and the blurred boundary 

between disease categories in ICD should be further investigated. Here, we propose a 

new classification of diseases (NCD) by developing an algorithm that predicts the 

additional categories of a disease by integrating multiple networks consisting of 

disease phenotypes and their molecular profiles. With statistical validations from 

phenotype-genotype associations and interactome networks, we demonstrate that 

NCD improves disease specificity owing to its overlapping categories and 

polyhierarchical structure. Furthermore, NCD captures the molecular diversity of 

diseases and defines clearer boundaries in terms of both phenotypic similarity and 

molecular associations, establishing a rational strategy to reform disease taxonomy. 
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Introduction 

Disease taxonomy plays an important role in defining the diagnosis, treatment, and 

mechanisms of human diseases. The principle of the current clinical disease 

taxonomies, in particular the International Classification of Diseases (ICD), goes back 

to the work of William Farr in the nineteenth century and is primarily derived from 

the differentiation of clinical features (e.g. symptoms and micro-examination of 

diseased tissues and cells)(Council et al. 2011). Despite its extensive clinical use, this 

classification system lacks the depth required for precision medicine with the 

limitations of its rigid hierarchical structure and, moreover, it does not exploit the 

rapidly expanding molecular insights of disease phenotypes. For example, many 

diseases (e.g. cancer, chronic inflammatory diseases) in the current disease 

taxonomies have either high genetic heterogeneity (Bianchini et al. 2016; McClellan 

and King 2010) or manifestation diversity(Arostegui et al. 2014; Jeste and Geschwind 

2014; Mannino 2002), which give little basis for tailoring treatment to a patient’s 

pathophysiology. Furthermore, disease comorbidities (Hu, Thomas, and Brunak 2016; 

Lee et al. 2008; Hidalgo et al. 2009), temporal disease trajectories(Jensen et al. 2014) 

in clinical populations, various molecular relationships between disease-associated 

cellular components and their connections in the interactome (Blair et al. 2013; Goh et 

al. 2007; Barabasi, Gulbahce, and Loscalzo 2011; Rzhetsky et al. 2007; Zhou et al. 

2014), and many successful drug repurposing cases (Li and Jones 2012; Chong and 

Sullivan 2007; Ashburn and Thor 2004; Wu et al. 2016; Evans et al. 2005) altogether 
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demonstrate the vague boundary between different diseases in current disease 

taxonomies. Moreover, the deep understanding of diseases based on the advances in 

disease biology, bioinformatics, and multi-omics data necessitates the reclassification 

of disease taxonomy (Mirnezami, Nicholson, and Darzi 2012). In the past decade, 

efforts to reclassify diseases based on molecular insights have increased with studies 

related to molecular-based disease subtyping in different disease conditions, such as 

acute leukemias(Golub et al. 1999; Alizadeh et al. 2000), colorectal 

cancer(Dienstmann et al. 2017), oesophageal carcinoma(Cancer Genome Atlas 

Research et al. 2017), pancreatic cancer(Bailey et al. 2016), cancer metastasis(Chuang 

et al. 2007), neurodegenerative disorders(Mann et al. 2000), autoimmunity 

disorders(Ahmad, Marshall, and Jewell 2003), multiple cancer types across tissues of 

origin(Hoadley et al. 2014), and a network-based stratification method for cancer 

subtyping(Hofree et al. 2013). Further insights will arise from integrating all types of 

biomedical data with a single framework to exploit disease-disease relationships. Data 

integration methods that utilize multiple types of data, including ontological and 

omics data, have been used to classify and refine disease relationships (Gligorijevic 

and Przulj 2015; Menche et al. 2015; Gligorijevic, Malod-Dognin, and Przulj 2016). 

Despite these efforts, the development of a molecular-based disease taxonomy that 

links molecular networks and pathophenotypes still remains challenging (Menche et 

al. 2015; Hofmann-Apitius et al. 2015; Jameson and Longo 2015). Here, we aim to 

refine a widely used clinical disease classification scheme, the ICD. To achieve this, 
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we first quantify the Category Similarity (CS) among the ICD chapters using 

ontology-based similarity measures and investigate the molecular connections of 

disease pairs in the same ICD chapters. Furthermore, we seek the correlation between 

category and molecular similarity, and check for the heterogeneity of molecular 

specificity and correlated boundary between categories in ICD taxonomy. Finally, we 

construct a new classification of diseases (NCD) with overlapping structures. The aim 

is to provide clear boundaries between distinct diseases belonging to different 

categories using a new disease classification scheme (Fig.1 & Fig. S3). 

Results 

Category similarity of ICD taxonomy 

We curated 1,883 distinct ICD disease codes (Table S1) from the 5-level tree structure 

of 14,292 ICD-9-CM codes, as well as high confidence protein-protein interactions 

consisting of 15,551 nodes and 218,409 edges (Franceschini et al. 2013). We 

compiled 153,277 distinct disease-gene associations between 4552 distinct diseases in 

UMLS codes and 14975 genes reported in the DiseaseConnect database (Liu et al. 

2014) (Fig. S3). Next, by manually mapping the DiseaseConnect identifiers to ICD 

codes, we obtained 160,754 disease-gene records involving 1,883 distinct ICD codes 

and 14,906 genes (Fig. S1-2 and Data S1). 

To evaluate the closeness of two diseases in the ICD tree structure, we applied an 

established semantic similarity algorithm (called Category Similarity, or CS). The CS 

measure, which is a similarity measure based on the information content (IC) 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 14, 2017. ; https://doi.org/10.1101/219089doi: bioRxiv preprint 

https://doi.org/10.1101/219089


 
 

6 

signifying how specific a term is, applies to any categorization scheme that has a 

rooted tree structure, including the ICD-9-CM disease classification. Information 

theoretic measures such as IC have been used in the context of ICD-9-CM 

previously(Dahlem, Maniloff, and Ratti 2015). The CS measure takes as input two 

concepts c1 and c2 and outputs a numeric measure of similarity. If two ICD codes are 

very close (as in having a very specific common parent code) in the taxonomic tree 

structure, then the CS would be ~ 1 (Methods, Supplementary Materials (SM) section 

2.1). We obtained a disease network comprising 1,883 nodes (representing ICD codes) 

and 154,563 links, where the edge weight reflects the CS values. The higher the CS, 

the greater the similarity between diseases whose code positions are adjacent in the 

ICD tree. The CS distribution showed that most disease pairs (135,271, 87.52%) had 

category similarities between 0.2-0.5 (Fig. S4a). Disease pairs within this CS range 

mostly belong to different disease subcategories in the same chapter (e.g. diseases of 

other endocrine glands and disorders of thyroid gland). For example, the disease pair: 

type 2 diabetes (ICD: 250.00) and simple goiter (ICD: 240.0), which is in ICD chapter 

3, has CS 0.37. However, there do exist disease pairs with high category similarities, 

such as type 2 diabetes (ICD: 250.00) and type 1 diabetes (ICD: 250.01) with CS 

0.83. 

While the ICD classification was derived from clinical observations and does not 

necessarily reflect the connections among the molecular components of diseases, it is 

informative to quantify to what extent it carries molecular information. To address 
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this, we investigated the correlations of CS of disease pairs with 1) the degree of 

shared genes and shared clinical phenotypes, 2) GO term (Cell Component, Molecular 

Function, Biology Process) similarity(Mistry and Pavlidis 2008), and 3) topological 

similarity (i.e., minimum shortest path length and molecular module similarity) 

among them (Methods, SM section 2.2).  We found that close disease codes (disease 

pairs with a high CS) actually have higher clinical phenotype similarity (Methods, SM 

section 2.3), which adheres to the construction principle of ICD taxonomy based on 

symptom phenotypes (Fig. S4b, PCC=0.960, 95% CI=[0.854, 1.000], p=2.079e-05). 

Furthermore, we observed strong correlations between higher CS bins compared to 

lower CS bins for molecular profiles (Fig. S4c-i and Table S2. See Methods, SM 

section 2 for detailed information). In particular, we observed that in addition to the 

strongly positive correlations, the percentage overlap of disease pairs with shared 

genes was generally larger than the random controls (Fig. S4c and S4d, see Methods, 

SM section 2.4), particularly in the CS region of [0.6-0.9]. The top 10 disease pairs 

with the largest number of shared genes are all from Chapter 2, which consists of 

cancer types. This might reflect the fact that cancers are the most studied and complex 

disease phenotypes involving various gene mutations (Table S3, see Methods, SM 

section 2 for detailed information). Overall, these findings indicate that diseases in the 

same ICD chapter tend to have a higher degree of shared genes, and the closer their 

positions in the ICD tree, the higher is the degree of shared genes. 

Heterogeneity of molecular specificity in ICD taxonomy 
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We had previously proposed that diseases with diverse clinical manifestations also 

have more diverse underlying cellular networks (Zhou et al. 2014). Thus, we 

measured the maximum betweenness of disease-related genes in the protein-protein 

interaction (PPI) network to quantify the molecular diversity (the inverse of 

specificity) of each disease, as described previously (Zhou et al. 2014) (see Methods, 

SM section 3), where a high maximum betweenness indicates a high molecular 

diversity (MD). While both node diversity (Zhou et al. 2014) and betweenness 

centrality can be used to determine disease diversity, we choose to use the more 

established and well-known of these measures, i.e. betweenness centrality.  For 

example, the MD of Alzheimer’s disease could be represented by the maximum 

betweenness of its related genes (i.e., the betweenness of the APP gene) in the PPI 

network (Fig. S5a). We observed that the MD of diseases in the ICD taxonomy is 

heterogeneous, with MD values varying from 10-8 to 10-2 with a median value of 

8.93e-04 (Fig. 2a and Data S3). The top two disease chapters with the highest median 

MD were Chapter 2 (3.87e-03) and Chapter 1 (1.31e-03) (Fig. 2b). Furthermore, we 

found that neoplasm (Chapter 2) and infectious disease (Chapter 1) categories tended 

to have higher MD compared to their complementary categories (Neoplasms vs. 

Non-Neoplasms p<2.2e-16, Infectious diseases vs. non-infectious diseases p=2.0e-02, 

Fig. S5b-c) and random controls. We also found that disease categories with 

unspecified conditions had higher MD compared to disease categories with specific 

conditions (p=9.75e-03, Fig. S5d, Data S4) and its random control. These results 
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indicate that the molecular diversity of the diseases in neoplasms, infectious diseases, 

and “Other/unspecified diseases” categories is still an elusive issue that should be 

addressed. A detailed discussion of disease cases is offered in SM section 3, Data S5 

& Table S4-S5. 

The blurred boundary between ICD categories 

In the current ICD taxonomy, we observed many instances where there exists a 

significant number of links between diseases in different chapters, comparable to the 

number of links between diseases within the same chapter (Table S6 & Fig. 2d, see 

Methods & SM section 4). For example, strong shared-gene relationships were 

detected between respiratory diseases (Chapter 8) and mental, behavioral, and 

neurodevelopmental disorders (Chapter 5) (Fig. 2c-d, more examples shown in SM 

section 4, Table S7-9). In addition, by calculating the shared molecular connections 

between diseases in the context of chapters, we could detect 768 diseases with a 

significant number of shared genes with diseases other than those in their own 

chapters (Data S6 & SM section 4). To further quantify the molecular boundaries 

between the disease categories in ICD disease taxonomy, we evaluated the modularity, 

a structural measure of the tendency of the network to form close-knit communities 

(see Methods, SM section 2.5) generated by either shared molecular profiles or shared 

phenotypes. When we mapped ICD chapters as grouping annotations on the various 

disease networks (filtered by with appropriate weight thresholds) and calculated the 

modularity, we obtained very low modularity values (Fig. 2e). Since modularity is a 
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widely used measure to validate the quality of partitions/module structures in complex 

networks, this means that the grouping of ICD chapters does not agree with the 

natural topological groupings of their corresponding molecular networks (disease 

modules). This finding gives strong evidence for the blurred disease boundaries of the 

ICD taxonomy. Furthermore, although the modularity of disease networks with shared 

phenotypes (similarity>=0.1) is slightly positive, the weak correlation (PCC=0.08, 

p-value=0.7588) between phenotypic similarity and CS of disease pairs in each 

chapter (Fig. 2f) indicates that ICD taxonomy does not adequately incorporate 

phenotype similarity knowledge into disease category structures. Thus, these 

observations indicate that the strict tree structures in which terms can only have one 

lineage (Cimino 2011) in the conventional ICD taxonomy may be inefficient, given 

contemporary knowledge of disease pathobiology, and, therefore, should be refined to 

be polyhierarchical in structure. 

Polyhierarchical mapping of diseases using molecular module similarity    

It has been proposed that if two disease modules overlap in the molecular interaction 

network, local perturbations in one disease might disrupt the biological pathways in 

the other disease, which results in shared pathobiological characteristics (Menche et al. 

2015). We observed a strong positive correlation between CS and molecular module 

similarity (MS) (see Methods, SM section 5.1) of diseases, which indicates that two 

diseases with higher MS would be more closely localized in the disease category (Fig. 

3a, PCC=0.887, 95% CI=[0.584,0.973], p=6.12e-04; 3b, PCC=0.974, 95% 
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CI=[0.889,0.994], p=2.08e-06). Here, we investigated the feasibility of utilizing the 

MS between disease pairs to predict the multiple categories for diseases. Using 

heuristic rules incorporating the positive correlation between CS and MS, we could 

predict the closeness of the category location (e.g., shared root parent code) of each 

given disease pair with positive MS (see Methods, SM section 5.1). In particular, 

using the 598,420 disease pairs with positive MS values (Data S7), we generated 

2,057 predicted additional category results for 722 out of 1,883 disease codes (38.3%) 

in which each disease code had ~4 categories on average (Data S7&8). We found that 

the number of predicted categories positively correlated with the MD of the original 

disease codes (Fig. 3c, PCC=0.547, 95% CI=[0.514, 0.578], p<4.94e-324; External 

validations see SM 5.2), which indicates that diseases with multiple pathogenic 

pathways could be captured by polyhierarchical mapping. For example, the 20 

diseases in Chapter 8 (i.e. Diseases of the Respiratory System) have been predicted to 

belong to over five additional chapters, such as neoplasms, infectious diseases, and 

diseases of the skin and subcutaneous tissue (Fig. 3d), which is consistent with the 

heterogeneous pathogenesis of COPD and asthma (Grainge et al. 2016; Sharma et al. 

2015). A detailed discussion on the polyhierarchial map of the mental disorders is 

offered in SM section 5.3 (Fig. S8). Furthermore, we found that the predicted 

category framework had higher phenotype similarity than diseases with shared root 

codes in the original ICD chapters (see SM section 5.2, median: 0.0703 vs. 0.0563; 

mean: 0.125 vs 0.109; p <2.2e-16, Fig. 3e. This observation helps to establish that the 
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predicted category results are of higher quality than ICD with respect to their 

phenotype homogeneity. 

Integrated disease network for overlapping disease classification 

To extend and redefine disease concepts by discovering additional categories of a 

disease, and thereby generate a novel disease taxonomy, we next constructed an 

integrated disease network (IDN) with:  

(a) Shared clinical phenotypes  

(I) shared symptoms   

and 

(b) Molecular profiles  

(I) shared genes and molecular module similarity  

(II) shortest path lengths in the PPI network 

based on a systematic integration process to filter out possible false positive 

associations (see Methods, SM section 6, Fig. S9 and Fig. S11a), which includes 

1,857 diseases and 35,114 links (Data S9).  

We then applied high performance community detection algorithms to identify 

overlapping community structures in the IDN (see Methods, SM section 7 and Fig. 

S11a). In particular, we first used BigClam (see Methods) since this method is able to 

detect overlapping communities whereby a disease can belong to multiple 

communities, in line with our main premise of creating a molecular based flexible 

disease classification. This resulted in 223 disease sub-categories with overlapping 

diseases as members (Fig. S11a and Data S10), which included 1,797 distinct diseases 
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from the ICD taxonomy. These 223 disease sub-categories contain different numbers 

of ICD codes, ranging from 5 to 168 (Fig. S12), therefore, they represent different 

levels of disease categories similar to ICD chapters and their sub-categories. Next, to 

develop a more unified view of the disease category quality, we used the 

well-established BGLL method, which detects non-overlapping communities, to 

cluster these 223 sub-categories further into 17 non-overlapping, distinct parts, such 

that these represent the 17 new chapter-level categories (called new chapters, or NCs) 

using the shared ICD codes (see Methods, SM section 7.2, Fig. S11b). Overall, this 

clustering order effectively ensures distinct top-level categories that have overlapping 

subcategories. The resulting 17 NCs contain different numbers of sub-categories 

ranging from 4 to 25, or of diseases ranging from 53 to 369 (Fig. S11c). We denote 

the 17 NCs together with their 223 disease sub-categories as our new overlapping 

disease classification (NCD). We can rename each of the 17 NCs using the shared 

features of integrative molecular and phenotypic profiles (SM section 7.4; Fig. S11c 

& Table S12, Data S11-14). For example, NC08 could be denoted as the “limbic 

system development-vision disorders-related diseases” since the most enriched PPI 

module (p=4.9e-324, Relevance ratio=0.7778) of its constituent diseases was mainly 

related to the GO biological process; “limbic system development” (p=1.13e-04), 

along with the fact that 73.84% (127/172) of diseases in NC08 shared the phenotype, 

“vision disorders” (p=4.9e-324) (Table S13-S14). 

New disease categories define diseases with clearer boundaries and balanced 
diversity 
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To confirm the quality of our overlapping disease categories, we compared the 

modularity of NCD with that of the ICD taxonomy. We found that the 17 NCs 

consistently have much higher modularity than the original ICD chapters for all types 

of disease association networks (SM section 7.3; Fig. 4a-h, Fig. S13). This finding 

indicates that the phenotypic and molecular links between the diseases of a category 

in NCD taxonomy are much closer than those in the ICD taxonomy. 

Furthermore, we found that the minimum shortest path lengths (MSPLs) in PPI 

between disease pairs in the same NCD categories had a larger percentage of low 

values (i.e., [0,2]) than those in the ICD (Fig. 4i, 62.86% vs 58.95%, p<4.9e-324;SM 

section 7.3). This result indicates that diseases within an NCD category have a 

significantly higher degree of shared genes (or shorter path lengths) than diseases 

within a category in ICD. On the other hand, the MSPLs between disease pairs in 

different NCD categories had a significantly lower percentage of low values than 

those in the ICD (47.27% vs 54.88%, p<4.9e-324, Fig. 4i &Fig. S14; External 

validations in SM 8.3), which indicates a lower degree of shared genes (or shorter 

path lengths) between diseases from different categories in NCD than in ICD. These 

findings demonstrate that our NCD framework has clearer boundaries between 

distinct diseases belonging to different categories than those in the original ICD 

disease taxonomy. Moreover, to validate the robustness of NCD predictions, we 

calculated the degree of molecular associations among the diseases (in terms of 

network density) in each sub-category of NCD by investigating the overlaps with the 
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disease pairs with shared genes from two independent phenotype-genotype 

association databases, namely GWAS and PheWAS (see Methods, SM section 1.2,1.6 

& 8). We found that for the 223 sub-categories in NCD, network density was 

significantly higher compared to random controls (GWAS: p-value=9.42e-197, Fig. 

4j;PheWAS:p-value=1.31e-14, Fig. 4k). This means that the diseases in the 223 

sub-categories in NCD would tend to have a high degree of shared genes. For 

example, the New Chapter: NC12 in NCD, including 11 sub-categories and 136 ICD 

diseases (belonging to eight ICD chapters), is enriched with respiratory and airway 

diseases (e.g. COPD and asthma). We obtained 37 overlapped diseases from the 

GWAS database, which have a high degree of shared genes with the diseases in each 

sub-category of the NC12 (Fig. 5a). In particular, the sub-categories, such as 

NC12.M06 (p-value=2.53e-30), NC12.M03 (p-value=1.80e-38) and NC12.M02 

(p-value=6.89e-19) have significantly higher density than those of the whole GWAS 

disease network (Fig. S19). Furthermore, we found that the overlapping subcategories 

of the NCD are able to differentiate between different components (i.e. asthma/allergy 

vs. COPD) of the same broad group of diseases (i.e. respiratory diseases) (see Fig. 

S19 for a detailed example).  Indeed, in the NC12 disease chapter chiefly containing 

respiratory diseases, the two sub-categories, namely NC12.M06 and NC12.M07, 

overlap in the underlying molecular interaction network while still containing the 

respective disease (asthma and COPD, respectively) genes separately (Fig. 5a). A 

detailed discussion is offered in SM section 8(with results in Data S21-22, Table 
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S18-19 & Fig. S20-S22). 

In addition, in NCD, a disease can be classified into multiple categories, and the 

number of categories of a disease positively correlates with its molecular diversity 

(Fig. 4l, PCC=0.352, 95% CI=[0.311, 0.392], p-value < 4.94e-324; External 

validations in SM 8.3). For example, we reclassified neoplastic diseases into multiple 

categories due to their high molecular diversity. Two hundred and fifty-eight 

neoplastic diseases in our NCD were divided into 144 sub-categories and 17 NCs (Fig. 

S17 & S18). Thirty-nine out of 144 sub-categories (27.08%) were enriched with 

“neoplasm” diseases (Data S19, p-value = 2.78e-5). There were mainly 4 NCs (i.e., 

NC01, NC06, NC11, and NC16) containing these 32 sub-categories and 188 

“neoplasm” disease codes (Fig. 5b), where 76.06% (143/188) of the neoplastic 

diseases were classified into more than 1 sub-category, ranging from 2 to 15(Data S20 

& Table S17). The neoplasm with the highest MD, “malignant neoplasm of 

connective and other soft tissue” (ICD: 171; MD: 0.035), was reclassified into 15 

sub-categories, and “malignant neoplasms of thyroid gland” (ICD: 193; MD: 0.0028) 

was assigned to 14 sub-categories. Furthermore, related diseases had been reclassified 

together in NCD, such as the well-known disease-correlations among H. pylori 

infection (ICD: 041.86), stomach cancer (ICD: 151), and duodenal ulcer (ICD: 532) 

or peptic ulcer (ICD: 533) (Fig. 5b) (Sitas 2016; Graham 2015).  

More interestingly, some diseases, like viral hepatitis C (ICDs: 070.4, 070.5, 070.7), 

graft-versus-host disease (ICDs: 279.5/279.50), glomerulonephritis (ICDs: 580, 582, 
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582.9), circumscribed scleroderma (ICD: 701.0), systemic lupus erythematosus (ICD: 

710.0), and rheumatoid arthritis (ICDs: 714/714.0), each from different chapters in 

ICD taxonomy, were classified together into a unique NCD sub-category (NC06.M10) 

since 50% (13/26) of these diseases share a PPI module related to immune response 

(SM section 7.4, Fig. 5c, Data S15-16, Table S15-16). In addition, diseases originally 

in the same ICD chapter, such as viral pneumonia (ICD: 480) and influenza (ICD: 487) 

from respiratory system-related diseases (Chapter 8), were reclassified into different 

categories in the NCD (NC12, NC10). Influenza shared more phenotype profiles with 

“episodic mood disorders” (ICD: 296) in NC10.M01, rather than viral pneumonia in 

NC12 (Fig. S15& Data S17), which is in accordance with recent epidemiological 

studies between episodic mood disorders and influenza (Okusaga et al. 2011; Canetta 

et al. 2014), and, furthermore, we also found that influenza shared some molecular 

profiles with “episodic mood disorders” (ICD: 296) in NC10.M01 (Fig. S16, Data 

S18). These findings suggest that NCD offers a promising integrative framework 

incorporating both clinical phenotypes and molecular profiles for disease taxonomy 

that has very practical implications for the precise investigation of disease subtyping 

and etiologies. 

 

Discussion 

Given the molecular network mechanisms (Barabasi, Gulbahce, and Loscalzo 2011; 

Zanzoni, Soler-Lopez, and Aloy 2009), genetic pleiotropy (Solovieff et al. 2013), as 

well as complicated genotype-phenotype associations underlying diseases, the 
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establishment of a molecular-based disease taxonomy with clear boundaries is 

essential but challenging. From the molecular network perspective, we first 

investigated the utility, shortcomings, and inconsistencies of ICD-9-CM, the 

established disease taxonomy for clinical settings. We found that there exist a 

considerable number (~40% of our investigated diseases) of diseases, for example, 

cancer and infectious diseases that have diverse molecular network mechanisms and 

tend to interact more with diseases from other chapters. It is also these molecularly 

diverse diseases that mainly contribute to the blurred boundary of ICD disease 

taxonomy (see Methods, SM section 4&7). As a result of exploring the molecular 

diversity and cross-chapter interactions between diseases, we propose a novel disease 

classification system based on the integration of the clinical phenomic and molecular 

profiles of diseases. In particular, we integrate disease networks taking into account 

molecular and phenotypic connectivity among diseases, predict the multiple disease 

categories that diseases belong to, and finally validate the biological cohesiveness of 

our NCD by network topological measures such as modularity and shortest path 

length. Our findings indicate that although general correlations exist between disease 

closeness in ICD taxonomy and underlying molecular profiles, ICD still displays 

significant limitations with regard to the heterogeneity of molecular diversity and 

clear category boundaries. In our NCD, a disease with a high molecular diversity 

tends to be classified into multiple disease categories, which indicates that there exist 

more disease subtypes for that disease. For example, “malignant neoplasm of the 
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pancreas” was reclassified into 11 sub-categories and 4 NCs, which is consistent with 

a recent study wherein 4 phenotypic subtypes of pancreatic cancer were enriched for 

10 distinct molecular mechanisms (Bailey et al. 2016). Therefore, we believe that the 

new disease classification system may help facilitate precise clinical diagnosis and 

correct prognosis (Jameson and Longo 2015), and does so in alignment with refined 

molecular network diagnostics. Furthermore, the molecular network underpinnings 

and overlapping disease categories of NCD provide a credible relationship map 

between diseases and disease categories that may radically transform our current 

understanding of diseases and relevant treatment paradigms. On the one hand, our 

approach accurately links diseases with all possible underlying mechanisms in the 

molecular interaction network. On the other hand, it presents a promising approach to 

the identification of targeted drugs for the treatment of related diseases. For example, 

breast cancer and influenza (both in NC11.M02) may share potential drug targets 

(Park 2012). As another example, metformin, widely prescribed to treat metabolic 

syndrome (in NC11.M02), could alter the gut microbiome composition and function, 

improve gut microbial dysbiosis (Forslund et al. 2015; Cabreiro et al. 2013), and also 

prevent colorectal cancer (also in NC11.M02) through microbiome-influenced 

immune response modification (Nakatsu et al. 2015). Here, it is important to note that 

while a considerable number of diseases have a strong environmental component, 

here our main focus has been the many diverse molecular determinants. In the future, 

additional environmental factors such as epigenetic changes can be added into the 
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data integration scheme to further refine the classification. 

     A limitation of this analysis is that DiseaseConnect yields an incomplete 

disease-gene database (Menche et al. 2015): only 1,883 ICD diseases could be 

mapped (Table S11), leading to only 1,797 diseases included in the NCD. 

Additionally, our NCD merely delivers a two-level taxonomy framework without 

elaborated hierarchical structures in the same disease categories, which could be 

further refined or optimized through methods like hierarchical clustering algorithms 

(Murtagh and Contreras 2012). In this big-data era, the dramatically increasing 

multi-omics databases, as well as clinical data from electronic health records (EHR) 

involving phenotypic, therapeutic and environmental factors information (Jensen, 

Jensen, and Brunak 2012), should also be incorporated into the new disease taxonomy 

refinement for patient stratification and disease treatment. At this point, a realistic 

assumption is that the translation of this classification to the clinic will need some 

time. That said, while the ICD is originally made “by clinicians for clinicians”, it is 

now widely used by biomedical researchers as well to gain a deeper understanding of 

human diseases. We therefore believe that researchers will be the first and direct 

beneficiaries of our approach. 

In conclusion, our study provides valuable insights into the polyhierarchical 

network-based disease classification beyond the traditional tree structure. Our 

integrated disease network approach is sufficiently powerful to elucidate the tangled 

underpinnings of human diseases and uncover distinct disease boundaries. Our work 
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may provide a new framework for the disease taxonomy reform based on big-data 

fusion, so as to generate further the robust infrastructure needed for precision 

medicine. 
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Figure legends: 

Figure 1. Overview of the new disease taxonomy construction and validation. a. 
Similarity calculation between the disease pairs in ICD taxonomy, including the 
calculation of 1) category similarity; 2) Phenotype similarity (based on ICD-MeSH 
term mapping) and 3) Molecular profile similarities (based on ICD-UMLS term 
mapping) of disease pairs in ICD; b. Module or community annotations of disease 
association network by chapters in ICD or NCD. We generate disease association 
network, in which nodes represent diseases and the link weights represent their 
corresponding phenotype or molecule profile similarities. The module annotations of 
the disease network correspond to ICD chapters or NCD categories; c. Construction 
of integrated disease network (IDN) and generation of NCD. The links of IDN are 
fused from the multiple similarities (e.g. phenotype similarity and shared gene 
similarity). Based on IDN, NCD is generated by community detection algorithms with 
overlapping disease members; d. Quality evaluation and validation of ICD and NCD. 
The molecular specificity (or inverse molecular diversity) and network modularity are 
used for evaluation and comparison of the quality of two disease taxonomies. 
Furthermore, we validate the robustness of NCD with two independent 
phenotype-genotype association datasets, namely GWAS and PheWAS. 

 

Figure 2. Lack of molecular specificity in ICD taxonomy and the blurred 
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boundary between disease categories in ICD taxonomy. a. The distribution of 
molecular diversity of 1,883 ICD diseases; b. The boxplot of molecular diversity of 
17 ICD chapters (ordered by median values); c. The disease network with shared 
genes in which the diseases belong to Chapter 5 and Chapter 8. The ICD codes 295, 
296, in Chapter 5 have dense relationships to the ICD codes in Chapter 8; d. The 
disease category network with shared genes. The nodes indicate the disease chapters 
and the weights of edges represent the edge densities between disease chapter pairs; 
the nodes with same color are considered as a chapter cluster, which is detected by 
community detection algorithm; e. Modularity of disease networks with chapter as 
module annotations; f. The correlation between category similarity and phenotype 
similarity of ICD chapters. 

Figure 3. Polyhierarchical map prediction of ICD taxonomy based on molecular 
module similarity. a. Correlation between mean semantic (category) similarity and 
mean modular similarity of disease pairs; b. Correlation between overlapping edge 
ratio with category similarity and modular similarity of disease pairs; c. Correlation 
between predicted category number and molecular diversity of ICD codes in Chapter 
14 (PCC: 0.438; 95% CI: [0.401, 0.474]; p<2.2e-16); d. Polyhierarchical map of the 
disease codes in Chapter 8, indicating that the 20 disease codes in Chapter 8 have 
significant associations with two disease category clusters: 1) Chapter 1 (infectious 
disease) and Chapter 2 (neoplasms); 2) Chapter 3 (endocrine, nutritional and 
metabolic diseases and immunity disorders), Chapter 5 (mental disorders), Chapter 6 
(nervous diseases), Chapter 9 (digestive diseases), Chapter 12 (skin and subcutaneous 
disease) and Chapter 13 (musculoskeletal system and connective tissue diseases); e. 
The boxplots of phenotype similarity of predicted disease pairs and original ICD 
disease pairs in the same top-level chapters (p<2.2e-16, Wilcoxon test). 
 

Figure 4. Properties of new disease categories (NCD) and comparison to 
conventional ICD classification. a. Modularity of phenotype(symptom)-based 
disease network (NCD vs. ICD); b. Modularity of gene-based disease network (NCD 
vs. ICD); c. Modularity of molecule module-based disease network (NCD vs. ICD); d. 
Modularity of gene ontology (molecular function)-based disease network (NCD vs. 
ICD); e. Modularity of gene ontology (biological process)-based disease network 
(NCD vs. ICD); f. Modularity of gene ontology (cellular component)-based disease 
network (NCD vs. ICD); g. Modularity of shortest path-based disease network (NCD 
vs. ICD); h. Modularity of GWAS shared gene-based disease network (NCD vs. ICD); 
i. Percentage of minimum shortest path lengths within the range [0, 2] of 
intra-category and inter-category (NCD vs. ICD, chi-squared test); j. The number of 
overlapping disease pairs from NCD with shared genes from GWAS, compared to 
random expectation, binomial test; k. The number of overlapping disease pairs from 
NCD with shared genes from PheWAS, compared to random expectation, binomial 
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test; l. The number of predicted NCD categories for ICD codes (i.e. diseases) as a 
function of their molecular diversity. 
 
Figure 5. Biological insights of new disease taxonomy. a. The New Chapter 
containing airway diseases (NC12) consists of 11 sub-categories and 136 ICD 
diseases belonging to 8 ICD chapters. The subcategories overlap in the underlying 
molecular interaction network, while still separately including the disease genes 
(asthma and COPD, respectively) that characterize each subcategory; b. The disease 
network of neoplasms in NCD. The 32 sub-categories significantly representing 
neoplasms are divided into 4 NCs (G1). Helicobacter pylori [H. pylori] (041.86), 
malignant neoplasm of stomach (151), duodenal ulcer (532), peptic ulcer, site 
unspecified (533), which have significant relationships, are clearly clustered into a 
sub-category (NC11. M07) (G2); c. A sub-category (NC06.M10) in NCD, which 
includes diseases from 8 different ICD chapters with shared molecular mechanism 
and phenotypes. Fifty percent (13/26=50%) of the diseases in NC06.M10 share a PPI 
module, the biological function of which is enriched with immune system response, 
while over ninety percent (25/26=96.2%) of the shared common phenotype of this 
module is “Pain”. 

 

Methods 

Basic datasets compilation. In this work, large curation efforts are performed to 

generate the related data sources (details see SM section 1). We obtained the updated 

text version of ICD-9-CM (2011) and extracted the list of ICD codes with their 

hierarchical structures. While we recognize the improvements of the currently used 

ICD-10 over ICD-9, nevertheless, we chose to use ICD-9-CM as the adoption of 

ICD-10 has been slow in the United States(Butler 2014) and since it was still being 

widely used at the time of the data collection for this paper(Blair et al. 2013; Wang et 

al. 2017). Furthermore, although ICD-10 does have more codes than ICD-9-CM, the 

structure is kept almost the same. We obtained the high-quality phenotype-genotype 

associations from DiseaseConnect database (2015 version), leaving out the less 
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reliable text mining entries and focusing only on GWAS, OMIM and differential 

expression evidence types, and manually mapped those diseases to ICD codes. To 

calculate the molecular network and phenotype characteristics related to disease 

phenotypes, a high-quality subset of human protein-protein interactions was filtered 

from STRING V9.0 using the score threshold at >=700, as well as a well-established 

disease-phenotype association dataset (i.e. HSDN) derived from PubMed 

bibliographic records and the gene ontology annotations from NCBI gene database 

are adopted. While we chose to use STRING, which is a widely used protein-protein 

interaction database, to ensure the results are not biased by computational predictions 

that are not as reliable as experimental ones, we have repeated the classification 

pipeline with manually curated PPI networks (Menche et al. 2015) with only 

experimental results and found that the results are robust (SM section 8.3). In addition, 

to validate the robustness of our results from independent data sources, we filtered the 

GWAS and PheWAS data from UCSC Genome Browser(Tyner et al. 2017) and 

PheWAS catalog(Denny et al. 2010) respectively, and performed additional ICD 

mapping task to prepare the data for validation analysis. The GWAS evidence of the 

DiseaseConnect database, which we used to build the disease associations, comes 

from the NHGRI GWAS catalog(Welter et al. 2014), whereas for validation, we used 

the UCSC-GWAS Genome Browser. We have ensured that the GWAS data used to 

build the networks and to validate them have a very small overlap (SM Section 8). 

Evaluating the quality of ICD disease taxonomy. Here, we systematically evaluated 

the consistency of disease categories in ICD taxonomy from both clinical phenotype 
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and molecular profiles (details are in SM section 2). We investigated the quality of 

ICD disease taxonomy by evaluating the correlation between the closeness of disease 

pairs in the disease taxonomy and their underlying molecular connections (and 

phenotype similarities). For example, if two disease pairs have close positions (e.g. 

have a low level common parent disease) in the disease taxonomy, then we would 

expect that those disease pairs might have common genes or shared protein-protein 

interactions or similar phenotypes. We calculated the category similarity between 

disease pairs using a widely used semantic similarity measure (i.e. Lin measure using 

information content) to represent the closeness of disease pairs located in the ICD 

taxonomy. The molecular and phenotype similarity between disease pairs are 

calculated from the perspectives of shared genes and their GO annotations, network 

pathologies and shared phenotypes according to well established similarity measures 

(e.g. Cosine measure and Jaccard measure). In particular, to propose a more robust 

representation of genetic profiles of diseases, we partitioned the STRING network 

into 314 topological modules (Data S2) and used them to construct the relevant 

module vectors of diseases using Odds Ratio (OR) as weighting measure. For 

example, an ICD disease code would be represented with a 314-dimensional vector, 

which has a value of w!" if its related gene is in a module or 0 otherwise. Suppose we 

have N genes in total and m! genes of a module i. Now for a disease d! with n! 

genes, which has k!" overlapping genes with the module i, we calculated the value 

of w!" as the following equation, 

w!" =
!!" (!!!!!")

(!!!!!") (!!!!!!!!!!")
 (1) 

We used the cosine measure to calculate the molecular module similarity between 

disease pairs after the molecular module vector (i.e. OR weighting) of each disease 

was constructed. 

Furthermore, if ICD taxonomy proposes a good category framework for 
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organizing the diseases, there would exist much more molecular interactions or 

phenotype relationships between the diseases of the same chapters than those of the 

different chapters. Therefore, when we consider the ICD chapters as the module 

annotations (i.e. all the diseases in one chapter would be considered as members of a 

same module) for disease association networks (the disease networks with molecular 

or phenotype associations as links), the modularity of the disease association network 

could reflect the quality of ICD disease taxonomy. This means that the higher the 

modularity, the higher the quality of the ICD chapters as a disease category 

framework.  

To evaluate the quality of community structures in complex network, the 

modularity measure (Newman 2006) was proposed to quantify the extent to which the 

connection in communities is above the random expectation in the whole network. Let 

a network have m edges and A!" be an element of the adjacency matrix of the 

network. Suppose the vertices in the network are divided into communities such that 

vertex v belongs to community c!. Then the modularity Q is defined as: 

Q = !
!"

[A!" −
!!!!
!"

]!" δ(c!, c!) (2), 

where the function  δ(i, j) is 1 if i =  j and 0 otherwise, and k! is the degree of 

vertex v. The value of the modularity lies in the range [−1/2,1]. It is positive if the 

number of edges within groups exceeds the number expected on the basis of chance. 

Otherwise, it would be negative. We use it to measure the consistency of disease 

categories (ICD chapter or NCD) as an annotation of topological module (or 

community) structures within disease networks. We suppose that if a disease category 

framework is good enough from the molecule or phenotype profile perspective, then 
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there would be more links existing between the disease members in a category than 

random expectation. 

Measuring the disease specificity. As a quantification of the molecular diversity (or 

the inverse specificity) of a disease, we calculated the maximum betweenness of 

disease-related genes in the PPI network (Data S3). Betweenness(Freeman 1977) is a 

widely used centrality measure to quantify how many shortest paths run through a 

given node. In particular, bridging nodes that connect disparate components of the 

network often have a high betweenness. The betweenness centrality of a node v is 

given by: 

bc(v) = !!"(!)
!!"!!!!!   (3), 

where  n!"(v) denotes the number of shortest paths from s to t that pass through v 

and g!"  is the total number of shortest paths from s to t. We will adopt the 

convention that !!"(!)
!!"

= 0 if both n!"(v) and g!"  are zero. This means that we 

assume the molecular diversity of diseases would largely lie on the related genes with 

maximum betweenness. For example, to quantify the molecular diversity (in terms of 

maximum betweenness) of Alzheimer’s disease (AD), we calculated all the 

betweenness values for the AD-related genes, such as APP, APOE, TNF and NOS3. 

Finally, we considered the molecular diversity of AD as 8.44e-3 since we found that 

APP has the maximum betweenness of 8.44e-3 among those genes (see Fig. S5a). In 

fact, this kind of measurement has been successfully used in a previous study(Zhou et 

al. 2014) to evaluate the diversity of diseases, which indicated that the diversity of 

disease manifestations has a strong positive correlation with the molecular diversity of 

diseases. For disease taxonomy with good quality, we would expect it to have its 
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lowest level diseases (the leaf nodes in the tree-structure disease taxonomy) with 

similar molecular diversities. 

Detection of the significant disease-chapter associations. We calculated the edge 

density to quantify the molecular interactions between ICD chapters. To further detect 

the significant interactions between diseases in different chapters, we find an 

approach to obtain the diseases that have significant interactions with diseases in 

chapters other than their own. Given a disease d! for investigation, we evaluate 

whether the proportion of interactions (i.e. edge density) of d! to the disease set D!! 

of a chapter C! is significantly larger than the average proportion of interactions 

between the diseases in C! (Fig. S6). We use binomial test to filter the significant 

interacting disease-chapter pairs, in which the edge density of the disease to the 

chapter is significantly higher than the average edge density of the diseases in the 

corresponding chapter (details are in SM section 4). 

Multi-category prediction of diseases. The results showing positive correlations 

between CS and molecular similarity, and the high MD of many diseases imply that it 

would be possible to predict the multi-category map for each disease using its 

underlying molecular connections. To demonstrate a pilot method for multiple disease 

category prediction by integrating molecular module and shared gene similarities, we 

provided a novel algorithm to generate the possible associated additional disease 

categories for a given disease with the corresponding molecular association scores. 

(details are in SM section 5, Fig. S7). In this algorithm, we integrated the correlation 
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between category similarity and module similarity with significant disease-chapter 

associations (which are based on the shared gene similarity) to predict the additional 

chapters for a given disease. We divide the disease pairs in the same chapter to three 

subsets, which correspond to those pairs with shared root parents, shared second-level 

intermediate parents and shared third-level intermediate parents, respectively, to help 

predict to what degree a pair of diseases would be located closely in the disease 

taxonomy. The principle of the algorithm adheres to the positive correlation between 

category similarity (or the closeness of position of the disease pairs in ICD disease 

taxonomy) and molecular profile similarity of disease pairs, which means that strong 

molecular profile similarity between disease pairs would indicate close locations of 

them in the disease taxonomy. To ensure detecting the significant disease-chapter 

associations, we next filtered the predicted disease-chapter associations with positive 

association scores by the significant disease-chapter interactions based on shared 

genes. 

Construction of integrated disease network. To integrate disease associations 

derived from both molecular and phenotype features, we performed several sequential 

analytical steps to generate a high reliable disease network with strict filtering 

criterions of the disease links (details are in SM section 6). Firstly, we generated three 

disease association networks (i.e. SGDN with 133,469 links and 1868 nodes, HSDN 

with 1,639,791 links and 1814 nodes and MSDN with 598,420 links and 1744 nodes, 

Fig. S10 & Table S10) according to shared genes, shared phenotypes and molecular 
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module similarity, respectively. To reduce the possible noise and bias of disease 

related data sources, we applied a multi-scale backbone algorithm(Serrano, Boguna, 

and Vespignani 2009) to obtain high reliable disease links (with significantly high 

weights than the random expectations) from the three disease networks. We finally 

obtained 53,241, 8,554 and 134,370 high reliable links for MSDN, SGDN and HSDN, 

respectively and retained most nodes (1,744 for MSDN, 1,782 for SGDN and 1,814 

for HSDN) of these networks. To further reduce the possible weak associations (the 

disease pairs with high module similarity but no direct protein interactions) derived 

from module similarity, we calculated the MSPLs between each disease pairs and 

used it as a filtering criterion (with MSPL<=1) for MSDN, which resulted in a more 

biological meaningful subset of MSDN with 33,611 links and 1,694 diseases.  

SGDN would capture high associations between disease pairs if they have high 

degree of shared genes even their related genes are not forming genetic modules. 

However, MSDN would give high weights for disease links if the disease pairs have 

similar co-locations on the topological modules of molecular network even they have 

no shared genes. Therefore, MSDN and SGDN are actually two complementary 

molecular association evidences for disease pairs and we finally obtained the union of 

the subset of MSDN and SGDN as the molecular association disease network 

(MADN), which contains 35,389 links and 1,811 nodes with the weights derived from 

the two original networks. Next, we adopted a highly strict criterion to obtain an 

integrated disease network (IDN) from the fusion of MADN and HSDN links, which 
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contains 35,114 disease links and 1,857 nodes. 

Overlapping category detection from integrated disease network. Finding the 

overlapping disease categories could be transformed to the task of detecting the 

overlapping communities (i.e. modules) from the IDN. BigClam(Yang and Leskovec 

2013) is a state-of-the-art overlapping community detection algorithm based on a 

variant of non-negative matrix factorization, which achieves near linear running time 

and comparable high quality community results. We used the BigClam algorithm, 

which is packaged in SNAP complex network software (http://snap.stanford.edu/snap/) 

to automatically detect overlapping communities from IDN network. Finally, we 

obtained 223 overlapping disease communities with 1,797 distinct ICD disease codes. 

These 223 disease subcategories contain different numbers of ICD codes, ranging 

from 5 to 168 (Fig. S12 &Data S10). 

To obtain a top-level category framework of diseases corresponding to the 

chapters in ICD taxonomy, we calculated the overlapping degree of the 223 disease 

sub-categories by using Jaccard similarity to measure the common number of diseases 

held by two given disease categories. This generated a disease category network with 

2,685 links representing shared ICD codes (a link is established if two disease 

categories share at least an ICD code and the weights of links correspond to the 

Jaccard similarity) and nodes representing disease categories. After that, we clustered 

the 223 disease sub-categories additionally by a widely used non-overlapping 

community detection algorithm (considering the link weight and setting the resolution 

parameter as 0.5) into 17 top-level categories (which corresponds to the number of 

original chapter-level categories in ICD, which we named as New Chapters, NCs) 

using the shared ICD codes (Fig. S11c & Data S10). The modularity of these 17 

top-level categories (this makes a good comparable partition with ICD chapters) in the 

network of 223 sub-categories is 0.426, which means a rather good partition of the 

network. These 17 NCs contain different numbers of sub-categories ranging from 4 to 
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25 or of diseases ranging from 53 to 369 (Fig. S11c & Data S10), covering diseases 

from all of the 17 chapters of ICD taxonomy (Table S11). These 17 NCs would still 

contain overlapping disease codes since the 223 disease sub-categories have 

overlapping disease codes. Therefore, 17 NCs with 223 disease sub-categories form a 

disease taxonomy consisting of two hierarchical levels with polyhierarchical 

categories although with a limited number (1,797) of disease members. 

Statistical validation of NCD from external data. To validate the robustness of 

NCD, we obtained two external phenotype-genotype data sources (i.e. UCSC-GWAS 

and PheWAS catalog), which have not been integrated yet for generating NCD for 

further investigation. By measuring whether the disease members in the 

sub-categories in NCD tend to incorporate the associations of shared genes from these 

two data sources, we would be able to validate the quality of NCD. If the diseases in 

such NCD sub-categories would tend to involve shared genes, then the diseases would 

be more likely associated with one another than other diseases. To test this hypothesis, 

we obtained the overlapping disease codes (ODC) in both NCD and the two external 

phenotype-genotype association databases and evaluate the degree of these ODC 

disease links in each NCD sub-category when considering two diseases linked if they 

share common genes. In detail, we firstly obtained the common disease codes 

involved in both NCD and UCSC-GWAS or PheWAS database. Then we generated a 

disease network with shared genes derived from the two datasets, in which two 

diseases linked if they shared at least one common gene. After that for each NCD 

sub-category, we generated a complete disease network with the ODC diseases in it 
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and overlaid the network on the disease network with shared genes. Finally, the 

overlapping percentage of disease links would be calculated for evaluating the degree 

of molecular associations involved in diseases in each NCD sub-categories (details 

are in SM section 8, Fig. S20-S22). 

Statistical analysis. We use R 3.1.0 as the main statistical tool in our work. The 

comparison of two percentages was calculated by Binomial test or Chi-squared test. 

Wilcoxon rank sum test was used for compare two independent list of values (e.g. two 

types of molecular diversities and two groups of MSPLs). All the correlations 

between two variables were calculated by Pearson's product moment correlation 

coefficient. Due to the incompleteness and bias of disease-related data (i.e. 

disease-gene associations and disease-symptom associations), we need to distinguish 

the information from the background noise. Therefore, for comparison with random 

expectation, we reshuffle  (100 random permutations) the symptom features and the 

related genes of each disease using the Fisher-Yates method (Fisher and Yates 1948). 

The calculations from random permutations were used for the correlation between CS 

and molecular similarity, as well as phenotype similarity. In addition, this was used 

for detection of the disease categories with high molecule diversity. 

SUPPLEMENTARY MATERIALS 

Supplementary Text 

Figures S1 to S22 

Tables S1 to S19 
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Data files S1 to S22 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 14, 2017. ; https://doi.org/10.1101/219089doi: bioRxiv preprint 

https://doi.org/10.1101/219089


C1862596: Familial Hypobetalipoproteinemia
C0020623: Hypolipoproteinemia
C0000744: Abetalipoproteinemia
C0039292: Tangier disease
C0023195: Lecithin Acyltransferase Deficency

Alzheimer’s 
disease
(331.0)

Ulcerative colitis
(556)

ADS

CMD1V NBPF1 PSEN2

APP

APOE

LPP APOB ABCA1

MT1B

Molecular profile 
similarity
Shared genes 
(Jaccard similarity)

Shortest path length
(Single linkage)

Topological module similarity
(Cosine similarity)

Gene ontology term similarity
(Cosine similarity)

Phenotype similarity
Symptom similarity
(Cosine similarity)

Category similarity
Semantic similarity

ICD to UMLSICD to MeSH

Disease genes via DiseaseConnect

300

311

298

030 296

496
493

570

162

084205
487

153

151

046

556

555

530
480

008

070

D1

D2

D3

D4

D5

D6

D7
D8 D9

Shared protein-protein 
interaction modules

Shared genes

Shared symptoms

Integrated disease network (IDN)
to generate overlapping new 
disease categories (NCD)

Quality evaluation and validation

Lipoprotein
deficiencies 

(272.5)

Loss of appetite
Nausea
Abdominal pain
Vomiting

Constipation
Anemia
Weight loss
Loss of appetite
Nausea
Abdominal pain

C1864828: Alzheimer disease-10
C1853360: Alzheimer disease-11
C1970209: Alzheimer disease-12
C0002395: Alzheimer disease-10
C1843013: Alzheimer disease,Familial, Type 3

ICD-9-CM disease
category tree

Human interactomeSymptoms via Human
Symptoms-Disease
 Network (HSDN)

a

b

d

c

Disease association network 
(with phenotype or molecular profile similarity)

ICD Chapter 9
(Digestive diseases)

ICD Chapter 1
(Infectious diseases)

ICD Chapter 2
(Neoplasms)

ICD Chapter 5
(Mental disorders)

ICD Chapter 8
(Respiratory diseases)

Module annotations

Disease and category diversity to show the
molecular specificity of disease phenotypes

Network modularity to evaluate the association 
density of disease phenotypes in disease categories

NCD disease 
category

GWAS or PheWAS
diseasome

Disease overlap with GWAS and PheWAS 
data to validate the robustness of NCD

Disease 1
Low diversity

Human interactome

Disease 2
Moderate diversity

Human interactome

Disease 3
High diversity

Human interactome

Low density Moderate density High density

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 14, 2017. ; https://doi.org/10.1101/219089doi: bioRxiv preprint 

https://doi.org/10.1101/219089


-8 -7 -6 -5 -4 -3 -2
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 

 

 
 

 

    Molecular diversity of ICD codes (log10)

P
er

ce
nt

ag
e 

of
 IC

D
 c

od
es

a  

 

 
 

 

 

0.120
0.118
0.116
0.114
0.112

0.110

0.020

0.000

C02
C01

C08
C04

C10
C07

C13
C03

C05
C12

C16
C06

C09
C14

C15
C11 C17

ICD Chapters

M
ol

ec
ul

ar
 d

iv
er

si
ty

 o
f I

C
D

 c
od

es

b

c1.001-139

c5.290-319

c8.460-519

c9.520-579 c12.680-709

c13.710-739

c17.800-999

c2.140-239

c3.240-279

c4.280-289

c7.390-459

c10.580-629

c15.760-779

c16.780-799

c11.630-679

c6.320-389

c14.740-759

295.3

295.9
295.90

314.9

295.30

296.80

314

312.9

314.00
314.01

299.00

296.5 296.6

296.3

296.4

296.1296.2

296.0296.7

296.8

296

300.4

298

299

299.0313

290.1

310.9
294.2

290.0

302.7

302.9

302.74

302.72

302.70

295

307.4

307.47

300

300.01

300.02

300.21

301

301.9

303

304

290

515

518.89

516.31
516.3

493.2

493.9

496

495
494

482.9

487

486

485

484

483

482

480

481
491

492

493491.2

490

508.1

Disease association types
Shared genes(>= 1 shared genes) -5.77E-03

Molecular module similarity(>=0.1) 6.22E-04

Gene Ontology similarity(Function, >=0.1) -2.09E-02

Gene Ontology similarity(Process, >=0.1) -1.85E-02

Gene Ontology similarity(Cell component>=0.1) -2.58E-02

PPI shortest path length(<=2) -3.64E-02

5.45E-03Clinical phenotype similarity(>=0.1)

ICD Chapter 5[C5.290-319]

ICD Chapter 8[C8.460-519]

ICD Chapter 5[C5.290-319]

ICD Chapter 8[C8.460-519]

 

Av
er

ag
e 

ph
en

ot
yp

e 
si

m
ila

rit
y 

of
 IC

D
 c

ha
pt

er
s

Average category similarity of chapters

PCC=0.0804964 p-value = 0.7588f

c

d e

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.25 0.30 0.35 0.40 0.45 0.50 0.55

Modularity

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 14, 2017. ; https://doi.org/10.1101/219089doi: bioRxiv preprint 

https://doi.org/10.1101/219089


C
h

1

C
h

2

C
h

1
2

C
h

1
6

C
h

7

C
h

1
7

C
h

1
5

C
h

1
4

C
h

1
1

C
h

4

C
h

1
0

C
h

5

C
h

6

C
h

9

C
h

3

C
h

1
3

491.2

493.2

494

490

491

496

492

495

487

486

485

484

483

482.9

482

480

481

516.1

493

493.9

0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.30

0.35

0.40

0.45

0.50

0.55

0.60

 

 

S
e
m

a
n
ti
c
 s

im
il
a
ri

ty
 o

f 
d
is

e
a
s
e
 p

a
ir

s

Modular similarity of disease pairs

 Observed

 Expected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 

 

O
v
e
rl

a
p
 e

d
g
e
 r

a
ti
o
 w

it
h
 c

a
te

g
o
ry

 s
im

il
a
ri

ty

Modular similarity of disease pairs

 Observed

 Expected

1 2 3 4 5 6 7 8-11

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.12

0.14

 

 

 

M
o
le

c
u
la

r 
d
iv

e
rs

it
y
 o

f 
IC

D
 c

o
d
e
s

Number of predicted categories

       

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.8

1.0

 

 

P
h
e
n
o
ty

p
e
 s

im
il
a
ri

ty
 b

e
tw

e
e
n
 d

is
e
a
s
e
 p

a
ir

s

Predicted ICD category associations ICD associations in same chapter

 Observed  Expe

 Observed  Expe

a b e

c d

Observed             Expected

Observed             Expected

b e

c d

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 14, 2017. ; https://doi.org/10.1101/219089doi: bioRxiv preprint 

https://doi.org/10.1101/219089


0.0 0.2 0.4 0.6 0.8 1.0
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 

 

N
et

w
or

k 
m

od
ul

ar
ity

(m
ol

ec
ul

ar
 m

od
ul

e 
sim

ila
rit

y)

Similarity threshold

 ICD(17 chapters)
 NCD(17 new chapters)

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

 

 

N
et

w
or

k 
m

od
ul

ar
ity

(s
ha

re
d 

ge
ne

s)

Similarity threshold

 ICD(17 chapters)
 NCD(17 new chapters)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 

 
N

et
w

or
k 

m
od

ul
ar

ity
(p

he
no

ty
pe

 s
im

ila
rit

y)

Similarity threshold

 ICD(17 chapters)
 NCD(17 new chapters)

a b c

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

 

 

Ne
tw

or
k 

m
od

ul
ar

ity
(G

O
 c

el
l f

un
ct

io
n)

Similarity threshold

 ICD(17 chapters)
 NCD(17 new chapters)

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

 

 

N
et

w
or

k 
m

od
ul

ar
ity

(G
O

 c
el

l p
ro

ce
ss

)

Similarity threshold

 ICD(17 chapters)
 NCD(17 new chapters)

fe

d

i

hg

450 525 600 675 750 825 900 975 1050 1125 1200 1275
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

 

 

Pe
rc

en
ta

ge

Number of overlapping disease links

1262pvalue=9.42e-197

Number of overlapping disease links(NCD&GWAS)

678pvalue=1.31e-14

450 500 550 600 650 700 750 800
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

 

 

Pe
rc

en
ta

ge

Number of overlapping disease linksNumber of overlapping disease links(NCD&PheWAS)

0 1 2 3 4 5 6 7 8 9 10 11

-0.045

-0.040

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

 

 

N
et

w
or

k 
m

od
ul

ar
ity

(M
SP

L)

Similarity threshold(<)

 ICD(17 chapters)
 NCD(17 new chapters)

MSPL(<=2)
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

 

 

Pe
rc

en
ta

ge

Minimum shortest path length between diseases

 Inter-categories(NCD)
 Inter-categories(ICD)
 Intra-categories(NCD)
 Intra-categories(ICD)

p<4.9E-324

p<4.9E-324

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

 

 

Ne
tw

or
k 

m
od

ul
ar

ity
(G

W
AS

 s
ha

re
d 

ge
ne

s)

Similarity threshold

 ICD(17 chapters)
 NCD(17 new chapters)

j k
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 

 

N
et

w
or

k 
m

od
ul

ar
ity

(G
O

 c
el

l c
om

po
ne

nt
)

Similarity threshold

 ICD(17 chapters)
 NCD(17 new chapters)

1 category
2 categories

3 categories
4 categories

5 categories

6& more categories

1E-4

1E-3

0.01

0.10

0.12

 

 

M
ol

ec
ul

ar
 d

ive
rs

ity
 o

f I
CD

 c
od

es

Number of predicted categories for ICD codes

l

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 14, 2017. ; https://doi.org/10.1101/219089doi: bioRxiv preprint 

https://doi.org/10.1101/219089


Infectious and parasitic 
diseases

Neoplasms

Endocrine, nutritional and metabolic 
diseases, and immunity disorders
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New Chapter (NC) 12: Respiratory and airway diseasesa
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