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Abstract 

 

Early pathogen exposure detection allows better patient care and faster implementation of public 

health measures (patient isolation, contact tracing).  Existing exposure detection most frequently 

relies on overt clinical symptoms, namely fever, during the infectious prodromal period.  We 

have developed a robust machine learning based method to better detect asymptomatic states 

during the incubation period using subtle, sub-clinical physiological markers.  Starting with high-

resolution physiological waveform data from non-human primate studies of viral (Ebola, 

Marburg, Lassa, and Nipah viruses) and bacterial (Y. pestis) exposure, we processed the data to 

reduce short-term variability and normalize diurnal variations, then provided these to a 

supervised random forest classification algorithm and post-classifier declaration logic step to 

reduce false alarms. In most subjects detection is achieved well before the onset of fever; subject 

cross-validation across exposure studies (varying viruses, exposure routes, animal species, and 

target dose) lead to 51h mean early detection (at 0.93 area under the receiver-operating 

characteristic curve [AUCROC]). Evaluating the algorithm against entirely independent datasets 

for Lassa, Nipah, and Y. pestis exposures un-used in algorithm training and development yields a 

mean 51h early warning time (at AUCROC=0.95).  We discuss which physiological indicators 

are most informative for early detection and options for extending this capability to limited 

datasets such as those available from wearable, non-invasive, ECG-based sensors.  

 

Introduction 

 

We have developed a method for assessing pathogen exposure based solely on host physiological 

waveforms, in contrast to conventional diagnostics based on fever or biomolecules [1] of the 

pathogen itself or the host’s immune response.  Early warning of pathogen exposure has many 

advantages: earlier patient care increases the probability of a positive prognosis [2-5] and faster 

public health measure deployment, such as patient isolation and contact tracing [6-8], which 

reduces transmission [9]. Following pathogen exposure, there exists an incubation phase where 

overt clinical symptoms are not yet present [10].  This incubation phase can vary from days to 

years depending on the virus [11, 12], and is reported to be 3-25 days for many hemorrhagic 

fevers [3, 4, 13, 14] and 2-4 days for Y. pestis [15].  Following this incubation phase, the 
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prodromal period is marked by non-specific symptoms such as fever, rash, loss of appetite, and 

hypersomnia [10]. Fig 1 presents a conceptual model of the probability of infection detection Pd 

during different post-exposure periods (incubation, prodrome, and virus-specific symptoms) for 

current specific and non-specific (i.e., symptoms-based) diagnostics.  We also include what may 

be considered an “ideal” sensor system capable of detecting pathogen exposure even during the 

earliest moments of the incubation period. We hypothesized that quantifiable abnormalities 

(versus a diurnal baseline, for instance) in high-resolution physiological waveforms, such as 

those from electrocardiography, hemodynamics, and temperature, before overt clinical signs 

could be a basis for the ideal signal in Fig 1, thereby providing advanced notice (the early 

warning time, Δt=tfever-tideal) of on-coming pathogen-induced illness.  

 

 
 
Fig 1: Phases following pathogen exposure.   
This notional schematic shows the probability of detection (Pd) for current symptoms-based 
detection (red curve) and an ideal signal (green curve) versus time (viral exposure at t=0), 
overlaid with a typical evolution of symptoms.  An ideal sensor and analysis system would be 
capable of detecting exposure for a given Pd (and probability of false alarm, Pfa) soon after 
exposure and during the incubation period (tideal), well before the non-specific symptoms of the 
prodrome (tfever).  We define the difference Δt = tfever - tideal  as the early warning time. 
 

 

In addition to characteristic clinical presentations, most infectious disease diagnosis is based 

upon identification of pathogen-specific molecular signatures (via culture, PCR/RT-PCR or 
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sequencing for DNA or RNA, or immunocapture assays for antigen or antibody) in a relevant 

biological fluid [10, 16-23].  Exciting new approaches allowed by high-throughput sequencing 

have shown the promise of pre-symptomatic detection using genomic [24, 25] or transcriptional 

[26-28] expression profiles in the host [29].  However, these approaches suffer from often 

prohibitively steep logistic burdens and associated costs (cold chain storage, equipment 

requirements, qualified operators, serial sampling): indeed, most infections presented clinically 

are never definitively determined etiologically, much less serially sampled.  Furthermore, 

molecular diagnostics are rarely used until patient self-reporting and presentation of overt 

clinical symptoms, such as fever. Past physiological signal-based early infection detection work 

has been heavily focused on systemic bacterial infection [30-35], and largely centered upon 

higher sampling rates of body core temperature [35, 36], advanced analyses of strongly-

confounded signals such as heart rate variability [31-33] or social dynamics [37], or sensor data 

fusion from already symptomatic (febrile) individuals [38].  While great progress has been made 

in developing techniques for signal-based early warning of bacterial infections and other critical 

illnesses in a hospital setting [39-42], we are aware of only one prior effort to extend these 

techniques to viral infections or other communicable pathogens in non-clinical contexts using 

wearable sensor systems [43].  

 

Electronics miniaturization has led to a wave of wearable sensing technologies for health 

monitoring [44], and increasingly more processing power is available to consumers to make 

meaningful use of these collected data [45].  Inspired by these developments, we envision a low 

ergonomic profile, robust, wearable, personalized and multi-modal physiological monitoring 

system persistently measuring signals capable of sensitive pathogen exposure and infection 

detection; here we present a pilot investigation into building algorithms that enable this vision. 

Such a system could cue the use of highly specific (but expensive) diagnostic tests, prompt low-

regret responses such as patient isolation and observation, or advise clinicians of fulminant 

complications in already compromised patients. In future, possibly etiologically-specific 

iterations of this approach, knowledge of causative pathogens could inform very early 

therapeutic intervention.  Furthermore, using very feature-limited datasets, such as those that 

could be collected using wearable sensor platforms, would enable this technique to be 
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implemented in non-ideal clinical, athletic, and military environments. Transitioning this 

technology to these contexts is the focus of ongoing work.  

 

 

Results 

 

In this pilot study, we use high-resolution (both fast sampling rates and finely quantized 

amplitudes) physiological data from non-human primates (NHPs) exposed via intramuscular 

(IM), aerosol, or intratracheal routes to one of several viral hemorrhagic fevers (Ebola virus 

[EBOV], Marburg virus [MARV], Lassa virus [LASV]), Nipah virus (NiV), or one bacterial 

pathogen (Y. pestis) to build a high sensitivity, low etiological specificity (i.e., not informative of 

particular pathogens) processing and detection algorithm (see Fig 2a).  Physiological data is 

standardized to remove diurnal rhythms, aggregated to reduce short-term fluctuations, and then 

provided to a supervised binary classification (exposed and unexposed classes) machine learning 

algorithm (Fig 2b). Supervised machine learning algorithms learn data characteristics that belong 

to pre-determined classes, then place new, unseen data into the appropriate class based on similar 

characteristics. Here, we define pre- and post-exposure as the two classes since “infection” itself 

is not a discrete event and all exposures in these studies lead to infection and illness. We tested 

and compared several classifiers; random forests had the best positive predictive value (discussed 

below) and were chosen for the rest of our analysis [46].  Random forests were also chosen for 

their high classification accuracy, robustness to many correlated features, and the ability to 

estimate the importance of variables in classification [46, 47]. We chose to grow (train) random 

forests at two post-exposure stages, thus allowing the algorithms to adapt to physiological 

changes between incubation and prodromal phases: one random forest is trained using post-

exposure but pre-fever physiological data, and the other using post-exposure, post-fever data. 

Both random forest training sets include pre-exposure data to build the unexposed class. For 

algorithm evaluation, subject data is separated into various training and testing sets, and every 

testing subject’s data is provided to the random forest model for an exposure prediction every 30 

min.  After using binary integration and a constant false alarm thresholding approach to further 

reduce false alarms (Fig 2c), mean exposure declaration times are found to range from 

32.6±40.5h (for LASV) to 74±37h (for NiV) before the onset of fever (defined as 1.5ºC above a 
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diurnal baseline [48] sustained for two hours). We note that once the random forests have been 

trained, all physiological data is given to both pre- and post-fever models, without regard to 

exposure or fever status; in other words, our approach does not require information on exposure 

or fever times for successful classification and detection.  This approach allows for both flexible, 

multi-modal input features (customizable to the available sensing hardware) and tunable false 

alarm rates, which offers a unique ability to adjust system performance per user needs.  

Additionally, our method leverages supervised classification to learn subtle physiological 

changes, and continuously monitors for signs of pathogen exposure rather than relying on a 

single time ‘snapshot’ of subject data.  
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Fig 2: Overview workflows of our early warning algorithm.   

(a) Overview of our classification approach using random forests, including which data 
comprises the training sets for the two random forest classifiers. (b) Detail on how beat-by-beat 
data is conditioned to remove noise and diurnal cycles, as well as summary statistics 
computation which are the features provided to the two classifiers. (c) A block diagram of a two-
stage detection algorithm to reduce false alarms. The detection scheme comprises two distinct 
stages: after the random forest model score output, an a priori determined threshold (based on a 
desired Pfa) is applied to yield initial detections.  These are then subjected to a binary integration 
step of the past n samples, and the maximum value of the pre- and post-fever models is taken to 
produce a single time series.  A second stage m of n detection is applied, which finally produces 
a final ‘declaration’ of being exposed or not. All example data shown in (b) and (c) are from 
subjects in the MARV aerosol study. See Methods for detailed descriptions. 
 

Data Preprocessing and Detection Algorithm 

Before classification, several data processing steps are required to remove time as an implicit 

feature in our physiological datasets (see Fig 2b).  First, data is standardized and aggregated 

subject-by-subject to eliminate short-term fluctuations and daily diurnal rhythms.  From these 

standardized datasets, mean and quantiles are calculated for each time window; these statistical 

measures are the features provided to the machine learning algorithm (see S2 Table for a list of 

features considered, and S10 Data for the complete dataset).  Windows of length 30 minutes 

were chosen as a tradeoff between computational requirements and algorithm performance (as 

indicated by random forest out-of-bag errors; see S3 Fig for results using different length 

windows). For the rest of our analysis, data from 12h before and 24h after viral or bacterial 

challenge are excluded from performance metrics due to differences in animal handling and 

exposure sedation that resulted in significant physiological deviations from baseline data 

unrelated to pathogen infection (as seen in Figs 4 and 5 during the “Excluded” zone).  Further 

details on data processing may be found in the Methods section.  

 

After data is standardized and aggregated, these features are used to train a random forest 

classifier.  This resultant ensemble is a collection of fifteen binary decision trees which then 

“vote” on whether given new data belongs in the exposed or unexposed class. In our work, more 

than fifteen trees in a random forest did not significantly decrease the out of bag error, which 

measures classification success (see S4 Fig for details). In our final model, two random forests 

are trained to detect the post-exposure class at distinct time epochs: one model is tuned to detect 
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subtle markers during the incubation phase prior to fever, while the second model is tuned for the 

early prodromal phase (i.e., onset of overt febrile symptoms) where temperature-related features 

emerge as powerful discriminants. The training data for the pre-exposure class for both models is 

a subset of baseline data prior to challenge and the quantity of training data has been balanced 

for the negative (pre-exposure) and positive (post-exposure) classes to avoid biasing one class 

over the other. To select the ideal features to put in these final forests, we inspect the feature 

importance metrics given by random forests built consecutively on a reducing feature set. In this 

way, we pick the top ten features selected by results from a cross-validation set (see S4 Fig for 

details), and the final models are built with these features. The output of these random forest 

ensembles, however, is prone to false alarms, and we employ a two-stage detection logic process 

to reduce false positives to a pre-determined target level (we chose a target Pfa=0.01).  Final 

declarations of “exposed” or “unexposed” are the output of this two-stage process, and are 

reported below; further details of this detection logic can be found in the Methods section. 

 

We experimented with several classification methods, including Naïve Bayes [49], k-Nearest 

Neighbors [50], and random forests, and compared each across sensitivity, false alarms, and 

early warning time metrics. All classifiers had positive predictive values (results in S1 Fig), yet 

we chose random forests for several reasons.  Most importantly, random forests do not assume 

statistical independence of features, which is useful given highly correlated physiological feature 

sets [51].  They also provide a quantitative feature importance metric which facilitates post-hoc 

comparison to the known viral pathology sequence, thus providing mechanistic understanding of 

why these physiological anomalies are present, and which sensor types provide the most value.  

Furthermore, the most discriminating features can be selectively chosen to re-grow forests and 

allow for better algorithm performance with fewer feature inputs, helpful in addressing the 

dilemma of having many more features than samples or subjects producing them [52]. Finally, in 

empirical comparisons of many machine learning methods, random forests consistently rank 

among the best approaches [53], and we too found them to produce the best outputs among the 

classifiers tested. Though there are numerous other possible classifiers available, the purpose of 

this pilot study is to prove the concept of early detection rather than comparing possible learning 

methods; improved classification approaches are the subject of on-going work. 
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Evaluation: Three-fold Cross-Validation 

 

We developed and tested our machine learning approach with three initial exposure study 

datasets based on MARV IM, MARV aerosol, and EBOV aerosol exposures.  Data from across 

all three studies are aggregated and used to train the random forest model, thus not requiring a 

priori individual baseline data to build the “not exposed” class. (An individual’s baseline data is 

still used to standardize features; see Figure 2b.)  These models are then tested in a three-fold 

cross-validation scheme where each partition is composed of randomly-selected subjects from 

each of the three exposure studies (i.e., the group of subjects in a partition is not the same as a 

cohort in an exposure study; exact partition assignments can be found in S5 Table). In doing so, 

this explicitly varies 5 experimental variables (species and gender of animal, exposure route, 

pathogen, and target dose; see Table 1 below) across the three partitions, which reduces the 

likelihood of biasing the model for any particular condition. Algorithm performance for one 

representative subject (whose early warning time is closest to the studies’ mean) is shown in Fig 

3a.  The blue curve is the combined score output by the algorithm as a function of time, the red 

vertical line the fever time, and the green dashed vertical line denotes the first true positive 

declaration.  Each green circle indicates a declaration, which if found before pathogen exposure, 

represents a false alarm.  Therefore, the early warning time Δt is the time between green and red 

vertical lines.  (However, while Δt is clinically very useful, we note that for our datasets the 

mean early warning time is an unstable performance metric since small changes in the number of 

subjects and detection logic thresholds can have large impacts on Δtmean.)  In this cross-validation 

scenario, we find a system probability of detection Pd=0.80±0.01 (i.e., correctly declaring a 

subject as being exposed after the pathogen challenge), a pre-fever Pd=0.56±0.02, a system 

probability of false alarm Pfa =0.013±0.003 (i.e., incorrectly declaring a subject as exposed 

before the pathogen exposure), and Δtmean=51.0±11.9h based on 9931 decision points and N=20. 

While the value of the pre-fever Pd may seem low, our definition considers all detection 

opportunities (i.e., every 30 min interval) in the pre-fever period, and does not reflect how 

detections evolve with time as the pathogen replicates and the host mounts an immune response. 

As such, we may expect few declarations of exposure immediately following the challenge, since 

the pathogen has not yet prompted a systemic response captured in the physiological data; as the 
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host mounts an increasingly strong immune response, the likelihood of capturing this systemic 

response increases. (Fig 3c, described below, also reflects this time evolution of detection.)  To 

add additional context to the Pd, we present a measure of declaration confidence called “early 

warning purity,” which is a ratio of true positives to detection opportunities that occur between 

the first true positive declaration and before fever, for each subject in S5 Table. This measure 

captures the reliability of a declaration, where values closest to 1.0 indicate no false negatives 

after the first declaration.  
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Fig 3: Algorithm output and performance measures from the three-fold cross-validation.  
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(A) shows the combined score vs. time for a representative subject taken from the MARV 
aerosol exposure study, as well as declarations (green circle overlays) made by our detection 
threshold and binary integration. The combined score remains below the detection threshold 
(dashed horizontal line) before virus challenge, rises sharply around exposure (which is 
excluded) due to anesthesia, then rises again at ~2 days post-exposure when we make the first 
“exposed” declaration (dashed vertical green line). Combined score values below the detection 
threshold after exposure represent false negatives and the time between the first declaration and 
fever is this subject’s early warning time Δt. The declaration purity in this early warning period 
is 91%. (B) presents the ROC curve, indicating nearly perfect performance after febrile 
symptoms, and strong positive predictive power (AUCROC=0.93) before fever.  (C) shows the 
algorithm sensitivity (True Declarations) vs Time before fever for all 20 subjects, as well as the 
mean Δt (vertical dashed lines) for each of the three constituent studies. (All other performance 
metrics may be found in S8 Table.)  We find that half of the subjects are correctly identified as 
exposed 24-36h before fever, regardless of the particular pathogen, exposure route, or target 
dose.  
 

 

We further evaluated algorithm performance for all subjects by characterizing the system Pd 

versus Pfa, known as a receiver operating characteristic (ROC) curve (see Fig 3b)[54].  ROC 

curves describe the sensitivity (Pd) and specificity (1-Pfa, i.e., not informative of the causative 

agent) of a test and can be partially summarized by the area under the curve (AUC, where 

AUC=1.0 refers to a perfectly sensitive and specific detector, and AUC=0.5 indicates a test no 

better than a coin-flip). For this three-fold cross-validation, we find AUC = 0.93 for the pre-fever 

model, and AUC = 0.99 for the post-fever model, indicating strong positive predictive value 

during the “non-symptomatic” incubation period (where early warning is most meaningful) and 

nearly perfect performance during the symptomatic, febrile prodrome. This extremely high 

performance can be understood by considering that the post-fever classifier will dominate after 

febrile symptoms since elevated core body temperature is such a clear data feature with strong 

predictive power (and is how pathogen exposure assessments are most frequently performed).  

The final metric for algorithm performance we consider is shown in Fig 3c, which plots the 

percentage of subjects correctly declared as “exposed” (true positives) vs. early warning time, 

and is a measure of algorithm declaration sensitivity as a function of time given a target 

Pfa=0.01. Each individual exposure cohort is shown as a dashed vertical line, which indicates 

individual differences between pathogens (and exposure study conditions).  Within these three 

studies, we see earliest mean warning time for MARV IM exposure at Δtmean=69h, and the two 
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aerosol exposures, EBOV and MARV, have similar mean values at  Δtmean=33h and Δtmean=39h, 

respectively.   

 

An additional output of the random forest models is an easily understood measure of relative 

feature importance; that is, which features provide the most accurate separation between exposed 

and non-exposed classes. The most discriminating features for the pre- and post-fever random 

forest models are identified from a set comprised of four feature types derived from temperature, 

ECG, blood pressure, and respiration measurements.  (See S6 Table for a complete listing of 

most discriminating features in each model partition.) The random forest model reports features 

that follow clinical symptomology, namely that core temperature-based features (mean and 

quantiles of temperature) in the post-fever, prodrome model are the highest ranking in 

importance. Before fever, however, subtle ECG, blood pressure, and temperature derived 

features seem to be the highest ranking in feature importance, as has been reported at the earliest 

stages of sepsis [31-34] (see Discussion below). Among the hemodynamic features, quantiles of 

systolic and diastolic aortic pressure are among the most important. Among ECG-derived 

features, means and quantiles of QT intervals (corrected [55, 56] or not), RR intervals (inverse of 

instantaneous heart rate), and PR intervals are routinely selected as those with the greatest 

predictive capability. That both inter- and intra-cardiac cycle features are selected, and that the 

statistical distributions (rather than just the means) of ECG-based features emphasizes the value 

of high sampling rate waveform analysis, rather than single time point (such as Korotkoff sound 

based blood pressure) or averaged (heart rate based on observed beats per unit time) measures. 

Fortunately, ECG and temperature-based features are among the most consistent predictors 

throughout the six studies considered (since some studies used different monitoring hardware or 

software configurations), and allow us to apply these random forest models beyond the exposure 

studies used to train them.  

 

 

Evaluation: Testing on Independent Datasets  

 

We further tested our algorithm’s extensibility for handling entirely independent data unavailable 

during model training and development. Whereas in the three-fold cross-validations above, 
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models are tested on a held-out subset of data from within the same exposure studies, models can 

be also be trained on exposure study datasets and then be tested against entirely independent 

datasets. These new datasets were collected during studies using different pathogens, animal 

species, target doses, and exposure routes, just as above, and were collected in separate 

experimental protocols by different researchers at different times. To perform this type of 

validation, we train the random forest models using all subject data from the MARV IM, MARV 

aerosol, and EBOV aerosol studies from the previous section (including a mix of subject gender, 

see Table 1), then test the models against unseen data from LASV aerosol, NiV intratracheal, and 

Y. pestis aerosol exposures. Across all three pathogens, we find a system Pd=0.90±0.007 and 

Pfa=0.025±0.004, a pre-fever Pd =0.55±0.03, and a Δtmean =51.0±13.9h. We show one 

representative subject for each pathogen in Fig 4. Even though the classifier was trained only on 

EBOV and MARV, we see significant pre-fever positive predictive value of the model, with an 

AUCROC=0.95 (Fig 5a).  Fig 5a also shows the sensitivity vs. time curve for all subjects in the 

independent datasets, along with mean Δt for each pathogen exposure study.  We find that NiV 

has the longest Δtmean=74h (though NiV subjects also have the longest incubation period, ~5days, 

and often these subjects have mediocre early warning purity values as seen in S5 Table), and that 

LASV and Y. pestis exposure studies have Δtmean=33h and Δtmean=41h, respectively (with a mean 

incubation period ~3.5 days).   

 

Unfortunately for the purpose of building early warning algorithm, the original animal exposure 

studies did not include “sham” animals to investigate the effects of exposure vehicle or animal 

handling. However, to build a synthetic “sham” dataset, we tested our algorithm with un-

exposed, pre-challenge subject data from the EBOV and NiV exposure studies that were 

otherwise excluded per the criteria given in the Methods section.  These data include seven full 

days of measurements from each of nine animals prior to pathogen exposure: 7 subjects from the 

EBOV study (excluded due to therapeutic intervention following exposure) and 2 subjects from 

the NiV study (which developed fever earlier than our exclusion criteria).  Detection results on 

these data from unexposed animals result in a consistently low false positive rate of Pfa = 

0.017±0.005.   
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Fig 4: Representative single subject outputs from each of three independent datasets.  
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Scores and declarations vs. time from the independent dataset validations for: (A) LASV, (B) 
NiV, and (C) Y. pestis. Declarations in the pre-exposure data represent false positives.  
 

 
Fig 5: Algorithm output and performance measures from independent dataset validations.   
ROC and sensitivity vs. time before fever curves using (A) all available features from the 
implantable telemetry system, and (B) using only features derived from the ECG module that 
were common among all available studies (since some studies used different hardware or 
software configurations). Even when all temperature, hemodynamic, and pulmonary features are 
excluded, algorithm performance drops only slightly from Δtmean=51h to 46h, and from pre-fever 
AUCROC=0.95 to 0.91. (All other performance parameters are available in S8 Table.) These 
results indicate that this type of early warning algorithm may possibly be embedded on an ex 
vivo, wearable ECG system such as a Holter monitor.   
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Using these independent validation sets, we find that the random forest models trained on the 

original set of EBOV and MARV exposure studies continue to provide clinically useful early 

warning times with a manageable false alarm rate even against pathogens, exposure routes, or 

animal species that were unavailable during training. This successful extension of an early 

warning classifier trained on EBOV and MARV for a hemorrhagic fever virus (LASV), a 

henipavirus (NiV), and a gram-negative coccobacillus (Y. pestis) suggests algorithm insensitivity 

to particular pathogens, and possible generalization for novel or emerging agents for which data 

has not or can not be collected.  

 

Extending to non-invasive monitoring platforms 

 

Physiological data features provided to our algorithm were collected using surgically implanted 

monitoring devices; such data could never be expected from military service members, health 

care workers responding to an outbreak, hospital patients, or the general public.  As an in silico 

simulation for limiting our dataset to what may be collected using a wearable monitoring device, 

we reduced the considered feature set to include only ECG-derived features such as RR, QT, 

QRS, and PR intervals. Successful use of ECG data as a predictor of physiological compensatory 

potential during shock has been reported [31, 32], and ambulatory Holter monitor devices collect 

exactly this type of data [57], as do even less obtrusive devices for performance athletes. Fig 5 

compares our algorithm’s performance using all available features (Fig 5a) and features derived 

only from the ECG waveform (Fig 5b).  We see only modest performance decreases in Δtmean 

(46.0±14.1h), pre-fever Pd (0.55±0.03), and system Pd and Pfa (0.89±0.008 and 0.026±0.004, 

respectively), even though core temperature, and hence onset of febrile symptoms, is no longer 

an available feature. These results may be expected given the highly correlated nature of 

physiological data, but positively suggests the implementation of this algorithm with non-

invasive, ECG-based monitoring equipment. 

 

Discussion 

 

Non-biochemical detection of pathogen incubation periods using only physiological data 

presents an enabling new tool in infectious disease care. Previous work has shown that reducing 
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transmission during the viral incubation period is as or more effective an intervention as reducing 

the inherent transmissibility (R0) of the pathogen in controlling emerging outbreaks [9].  

However, there is no existing method to detect this non-symptomatic incubation period that is 

possibly extensible to mobile settings or wearable sensor systems, such as high-resolution ECG.  

We present initial results towards building a multi-modal, supervised machine learning algorithm 

capable of determining this incubation period using only physiological waveforms, based on data 

collected in NHPs infected with several pathogens.  Using the random forest method we avoid 

over-fitting the models, demonstrated by successful testing and training on both different subsets 

of data within the same exposure studies, as well as testing on entirely independent exposure 

datasets.  These cross-validations show the promise of extending this approach beyond a given 

animal model, exposure method, or virus. While we chose a target system Pfa~0.01 that was 

supported by the limited subject numbers in the studies available, this would not lead to an 

acceptable daily false alarm rate of about one declaration every 2 days (for 30min windows).  

We estimate Pfa should be ~10-3  or less, which corresponds to one false alarm approximately 

every 3 weeks of continuous monitoring (again, for 30min windows).  Reducing this critical 

system parameter to more clinically acceptable levels is the subject of on-going work, and will 

require larger sample sizes or more refined processing algorithms. Furthermore, the effect of 

physiological confounders, such as intense exercise, arrhythmias, lifestyle diseases, and 

autochthonous or annual infections has not been explored in this initial study; only with 

promising early warning times across a range of conditions would these more complex studies be 

justified. 

 

We postulate that immuno-biological events of the innate immune system – particularly systemic 

release of pro-inflammatory chemokines and cytokines from infected phagocytes [28, 58-62], as 

well as afferent signaling to the central nervous system [63, 64] – are recapitulated in 

hemodynamic, thermoregulatory, or cardiac signals which may be more easily measured and 

assessed than biomolecule markers for viral infection (via sequencing [24, 25, 29] or 

immunocapture approaches [16, 17]).  For instance, prostaglandins (PG) are up-regulated upon 

infection (including EBOV [65, 66]) and intricately involved in the non-specific “sickness 

syndrome” [67]; the PGs are also known to be potent vascular mediators [68] and endogenous 

pyrogens [69, 70]. Recent work has shown how phagocytic immune cells (macrophages, in 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 13, 2017. ; https://doi.org/10.1101/218818doi: bioRxiv preprint 

https://doi.org/10.1101/218818


 Page 20 of 38

particular) directly modulate electrical activity of the heart [71].  Past work has clarified how 

tightly integrated, complex, and oscillating biological systems can become uncoupled [72-74] 

during trauma [75] or critical illness [34, 76] which would be captured in the comprehensive, 

multi-modal physiological datasets used in our present work. Finding that our algorithm provides 

early warning times for both viral and (albeit limited) bacterial exposures suggests that the 

“exposure signal” found by the random forest models arises from the innate immune system, and 

is a generalized indication of immune activation rather than a specific signal for particular 

pathogens.  Rigorously pursuing this hypothesis would require additional high temporal 

resolution pathogen exposure datasets, including biochemical, immunological, neurological, and 

cardiovascular information. Transitioning this capability into clinical use will also require the 

controlled exposure and monitoring of human subjects, such as during periodic influenza, 

tetanus, or zoster vaccinations.  

 

Previous work on genomic [24, 25] profiles of peripheral blood cells following acute influenza 

infection indicate specific host responses at just ~45h following exposure, corresponding to ~35h 

of early warning time.  Our combined results suggest that the classic understanding of a “non”-

symptomatic incubation phase may be incomplete: during viral incubation, subtle sub-clinical 

cues (genomic, transcriptional, and physiological) can be detectable with sufficiently high-

sensitivity sensor and analysis systems. Better understanding of how biomolecular changes are 

captured in systemic physiological signals during pathogen infection would open further 

opportunities for better therapeutic administration both before and during infection, quarantine or 

isolation, and vaccine development. 

 

Detecting pathogen exposure before self-reporting or overt clinical symptoms affords great 

opportunities in clinical care and public health measures.  However, given the consequences of 

using some of these interventions and the lack of etiological agent specificity in our algorithm, 

we envision this current approach (after appropriate human testing) to be a trigger for ‘low-

regret’ actions rather than necessarily guiding medical care.  For instance, using our high 

sensitivity approach as an alert for limited high specificity confirmatory diagnostics, such as 

sequencing or PCR-based, could lead to considerable cost savings (an “alert-confirm” system).  

Public health response following a bioterrorism incident could also benefit from triaging those 
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exposed from the “worried well.”  Ongoing work focuses on adding enough causative agent 

specificity to discern between bacterial and viral pathogens; even this binary classification would 

be of use for front-line therapeutic or mass casualty uses.  Eventually, we envision a system that 

could give real-time prognostic information, even before obvious illness, guiding patients and 

clinicians in diagnostic or therapeutic use with better time resolution than ever before. 
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Methods 

 

Viruses 

The Marburg Angola isolate used was United States Army Medical Research Institute of 

Infectious Diseases (USAMRIID) challenge stock “R17214” (Marburg virus/H.sapiens-

tc/ANG/2005/Angola-1379c); this was used for both aerosol (rhesus macaques) and IM 

(cynomolgus macaques) studies.  Cynomolgus macaques were exposed to Ebola virus/H.sapiens-

tc/COD/1995/Kikwit-9510621 at a target dose of 100 pfu (7U EBOV; USAMRIID challenge 

stock “R4415”; GenBank # KT762962). African green monkeys were exposed to the Malaysian 

Strain of Nipah virus (isolated from a patient from the 1998-1999 outbreak in Malaysia, provided 

to USAMRIID by the Centers for Disease Control and Prevention). Cynomolgus macaques were 

exposed to the Josiah strain of the Lassa virus challenge stock “AIMS 17294” (GenBank #s 

JN650517.1, JN650518.1).  

 

Description of Animal Studies 

Dr. William Pratt provided physiological data in NSS format (Notocord Systems, Croissy-sur-

Seine, France) from adult (non-juvenile) non-human primate natural history studies previously 

conducted at the USAMRIID, summarized in Table 1. Research was conducted under an IACUC 

approved protocol in compliance with the Animal Welfare Act, PHS Policy, and other Federal 

statutes and regulations relating to animals and experiments involving animals. The facility 

where this research was conducted is accredited by the Association for Assessment and 

Accreditation of Laboratory Animal Care, International and adheres to principles stated in the 

Guide for the Care and Use of Laboratory Animals, National Research Council, 2011.  Minimum 

number of subjects in MARV and EBOV studies was chosen using a Fisher exact test, with 

100% lethality as the pre-specified effect, and thus all animals became infected following 

exposure. The study statistician randomized subjects for inclusion and pathogen exposure order 

by age, weight, and gender.  No sham control subjects were included in the study design, and 

pre-exposure data was used to build the “un-exposed” class. In each study, remote telemetry 

devices (Konigsberg Instruments, Inc., T27F or T37F, or Data Sciences International Inc. L11: 

see details in Table 1) were implanted 3 to 5 months before exposure, and, if used, a central 

venous catheter was implanted 2 to 4 weeks before. NHPs were transferred into BSL4 
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containment 5 to 7 days before viral exposure, and baseline pre-exposed data collected for 4 to 6 

days before. Subjects were exposed under sedation via either aerosol, intramuscular injection, or 

intratracheal exposure depending on the study, detailed in Table 1.  The exposure time (t=0) 

used in our model is based upon the time of intramuscular injection or intratracheal exposure, or 

when a subject was returned to the cage following aerosol exposure (~20 min).  All subjects 

were monitored until death or the completion of the study. Since these natural history studies 

involved no diagnostic tests or therapeutic interventions, and all subjects were administered 

infectious doses, there is no need for investigator blinding during the data collection phase.  

Since these natural history studies were not designed specifically for the purpose of algorithm 

development, no sham control animals were available, and all baseline unexposed and uninfected 

data were obtained from the pre-exposure period.  Algorithm investigators were blinded to the 

study design until after animal data collection.  The telemetry devices measure several raw 

physiological signals, which were translated to blood pressure (sampling frequency fs = 250Hz), 

ECG (fs = 500Hz), temperature (fs = 50Hz), and pulmonary (fs = 50Hz) features using Notocord 

software. We analyzed six separate exposure studies and used all subjects’ post-exposure data 

that had sufficient fidelity (i.e., no data loss from equipment failure), which developed fever two 

days or less before the studies’ mean (i.e., no possible co-morbid infections or complications), 

and did not receive a post-exposure therapeutic: these criteria led to 13 excluded animals, 2 from 

each the NiV and MARV IM studies, and 9 from the EBOV study (including 7 which received 

therapy).  Some of the excluded EBOV and NiV subject’s pre-challenge data were used in the 

independent dataset validations to estimate thresholds (see below) and reduce the false alarm 

rate. Additional exposure study details for LASV, NiV, and MARV may be found elsewhere [27, 

77, 78].  

 
 
 
 
 
 
 
 
 
 
 

Pathogen Exposure  Subjects  Species Monitoring Target 
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method (male/female) system dose  
EBOV Aerosol 6 (3/3) Cynomolgus  3 subjects with 

ITS T37F 
3 subjects with 
DSI L11 

100 pfu 

MARV [78] Aerosol 5 (3/2) Rhesus ITS T27F 1000 pfu 
MARV  IM 9 (7/2) Cynomolgus ITS T27F 1000 pfu 
NiV [77] IT 5 (5/0) African green 

monkey 
ITS T27F 20000 pfu 

LASV [27] Aerosol 4 (4/0) Cynomolgus ITS T27F 1000 pfu 
Y. pestis Aerosol 4 (4/0) African green 

monkey 
ITS T27F 100 LD50 

 
Table 1: Summary of NHP studies used. The EBOV study compared two different physiological 
monitoring systems but data was combined and treated identically. 
 

Physiological Data Processing 

 

All data processing and modeling was performed in Matlab (MathWorks, Natick MA). 

Physiological data is time dependent (that is, sequential time-series data) and is subject to short-

term fluctuations and diurnal or circadian rhythms. Random forest classifiers, however, assume 

that the statistics of the data are independent of time and subject. To reduce diurnal and subject-

to-subject dependencies from the data, each subject’s data is conditioned individually. The first 

conditioning step is to remove artifacts from motion, poor sensor placement or intermittent 

transmission drop outs by dividing the data into a series of k-minute intervals and omitting the 

top and bottom 2% quantiles for each interval. Next, we estimate baseline diurnal statistics for 

the ith time-of-day interval during the pre-exposure period (i.e., data from several pre-exposure 

days, all corresponding to the same time of day, such as the thirty minute interval from 12:00PM 

to 12:30PM) by computing mean, ��, and standard deviation, �� . The data for the ith time-of-day 

interval is standardized by subtracting the mean and dividing by the standard deviation from each 

data sample xi(j) in the corresponding ith interval, ������ � ���/�� . For a sufficiently short time 

interval of k-minutes, the data statistics are assumed to be approximately constant, therefore 

standardization mitigates diurnal time dependence from the signals.  Then, three summary 

statistics are calculated for an l-minute block: mean and 25% and 75% quantiles. These time-

independent summary statistics are the features for the random forest algorithm. We investigated 

the influence of values for k and l on successful classification, and while k and l do not need to 
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be identical, chose k=l=30 min as a trade off between computational requirements and low 

random forest out-of-bag-errors (see S4 Fig). For example, k=l=30 min for two days of 4 raw 

physiological signals yields 96 time points with 12 data features. Data samples that correspond to 

measurements before pathogen challenge are labeled “0” to denote the pre-exposed class and 

those after challenge are labeled “1” to denote the post-exposure class. 

 

Random Forest Ensemble 

 

Our model is composed of two random forests built using the TreeBagger class in the MATLAB 

Statistics and Machine Learning Toolbox. One random forest is grown using post-exposure 

training data prior to fever onset (labeled class “1”) and an equal number of randomly chosen 

negative data samples from the pre-exposure period (class “0”). The second random forest is 

trained similarly, but class “1” data corresponds to post-exposure training data after fever onset. 

Test data is always held out until the final evaluation step. Each random forest contains 15 

classification decision trees grown on random subsets of data and features; 15 trees were chosen 

as a trade off between computational resources and successful classification, as indicated by the 

plateau in random forest out-of-bag-errors vs number of trees (see S4 Fig). The trees cast their 

“votes” for class “0” or “1,” and the forest returns a score equal to the proportion of trees that 

voted for the exposure (“1”) class. Random forests also provide feature importance metrics, and 

we use these metrics to find the most predictive features for difficult-to-classify pre-fever days. 

Initially all features are considered for training the random forest models, but once a subset of 

most predictive features is determined within a cross-validation training set, the random forest’s 

are regrown (on the original training dataset) using only the top 10 features to produce the final 

models upon which the corresponding testing set performance results are based. A rank order list 

of top 10 features from each study is provided in S6-S7 Tables. 

 

Detection Logic 

 

We make declarations of exposure using a two-stage detection process (see Fig 2c). In stage one 

of the detection process, random forest model prediction scores (between 0 and 1 for every l=30 

minute interval) are thresholded (i.e., a value of 1 is returned if the random forest model score is 
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greater than or equal to a false alarm rate determined threshold, discussed below) to form a series 

of initial detections for the model every l=30 minutes.  Threshold levels for both pre- and post-

fever random forests are estimated by analyzing false alarm rates (Type I errors) of the initial 

detections versus threshold levels (swept from 0 to 1). The probability of false alarm (or Pfa) is 

defined as  

	�� 
  
# ���� 	��������

# ���� ��������� � # ���� 	��������
 

 

To enforce a desired significance level (we choose Pfa  = 0.01), we estimate the threshold needed 

to achieve a target Pfa using a 3-fold approach similar to that used in random forest model 

training.  For the case of validating performance on an independent test set (NiV, LASV, and Y. 

pestis), we randomly assign the test set subjects into 3 partitions for the purposes of threshold 

estimation.  This approach maintains separation between the partition-under-test and the 

remaining two partitions used for threshold estimation, while providing a sufficient number of 

samples to estimate low rates of false alarms. Detections from the unexposed class of all but the 

partition-under-test are used to select the smallest first-stage thresholds (for pre- and post-fever 

as seen in Fig 2c) that support the desired Pfa.   This approach is repeated for each partition, 

resulting in independent estimates of the threshold pair (pre- and post-fever) for each partition.  

While a significance level of Pfa = 0.01 is targeted, the overall system Pfa may be higher or lower 

due to strict separation between the subjects-under-test and the subjects used to estimate the 

threshold.  

 

These initial detections from each random forest model are subjected to a second-stage detection 

test to further reduce the false alarm rate.  During the second stage, binary integration is 

performed over a sliding window of the past n initial detections. The accumulated detections are 

divided by n, giving a mean score for the pre- and post-fever random forest models.  Next, scores 

are combined by taking the maximum of the pre- or post-fever values to create a single time 

series. At each 30 minute time interval, this combined score is compared to a final declaration 

threshold of m/n, where m ≤ n (we selected n=24 for a system latency of no more than 12 hours 

and selected m=11 which approximates the optimum binary integration threshold for a steady 

signal in noise [79]; performance is relatively insensitive to small deviations in m or n). The 
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algorithm makes a ‘declaration’ that the subject is in the exposed class when the combined score 

is greater than or equal to m/n; if the threshold is not met, the algorithm assigns the subject to the 

‘not exposed’ class for that time epoch.  Note that n samples are required before a declaration 

can be made, so following the start of data collection or the end of an exclusion period (the 24h 

period following the challenge), no declarations are reported in the first k*n minutes (for n=24 

and k=30min, this accumulation period effectively extends the exclusion period to 36 hours post-

exposure). 

 

Model Performance Evaluation: Three-fold Cross-Validation and Independent Dataset Testing 

 

Model performance may be evaluated by strictly separating subjects into testing and training 

sets. To characterize the performance, we conduct two modes of evaluation: 1) an three-fold 

cross-validation, where a collection of exposure studies is used to develop and test the algorithms 

(data includes EBOV aerosol, MARV aerosol, MARV IM, and thus can vary in subject species, 

virus, and exposure route conditions), and 2) an independent validation where models trained on 

the initial set of exposure studies (used in (1) above) are applied to an entirely new dataset with 

pathogens and experimental conditions not seen in the models’ training or tuning.  

 

In the three-fold cross-validation mode of evaluation, subjects from the aggregated collection 

were randomly assigned into three partitions (each partition included animals from each of the 3 

constituent exposure studies), which has been shown to perform better [80] than leave-one-out 

validations for smaller datasets. In turn, subjects from one partition were used to train the 

random forest models, the second partition was used as an independent cross-validation set to 

evaluate effects of tuning the model and algorithm parameters, and the third partition was used to 

evaluate final model performance. Model building and performance evaluation is repeated three 

times such that each partition is evaluated in each role. For mode (2) above, independent dataset 

testing is performed by treating all subjects from the three studies used in the initial set (EBOV, 

MARV IM and MARV aerosol) as a single training set to build and the random forest models 

and select the most important features.  The resulting random forest models are then applied to 

previously unseen subjects from the LASV, NiV, and Y. pestis studies for the final performance 

analysis.  
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To evaluate system-level performance, we define probability of correct declaration Pd   as: 

	� 
  
# ���� 	��������

# ���� 	�������� � # ���� ���������
 

 

and Pfa as above, where the True Positives, False Positives, True Negatives and False Negatives 

are evaluated on the final declaration outputs of Fig 2c. This definition includes all possible 

detection opportunities (every 30 minute interval), and does not retain any temporal information. 

To provide some temporal context, Pd can also calculated for pre- and post-fever time epochs.  In 

this case, the True Positives count is restricted to detection opportunities before and after fever, 

respectively. When reporting Pd and Pfa for a study and exposure condition, we include the 95% 

confidence interval based on normal distributions since the number of trials per study is large 

(>500 declaration points per class). Although some correlation is likely within a binary 

integration window of k*n minutes, we assume independence for trials separated by at least k*n 

minutes. We generate receiver operating characteristic (ROC) curves to measure system 

performance by calculating Pd vs Pfa at a series of threshold values (sweeping the first-stage 

detection threshold but holding the second-stage m/n threshold constant) and quantify the system 

performance with the ROC area under the curve (AUC), where an AUC=1.0 indicates perfect 

performance and AUC=0.5 indicates that the model is no better than a coin toss.  Sensitivity (Pd) 

is expected to be highest after febrile symptoms are apparent.  To distinguish the sensitivity of 

the system during the pre- and post-fever epochs, Pd is calculated independently before and after 

the onset of fever.  The result is two ROC curves and corresponding AUCs: one evaluated on 

positive data restricted to pre-fever time samples and the other restricted to post-fever time 

samples.  The negative data and two-stage detection process are identical for both ROC curves.   

 

In a clinical early warning system, it may be desirable to calculate Pd and Pfa on a per-device, 

per-subject, or per-day basis.  However, for this proof-of-concept study, the limited pool of 

subjects available (N=33 total) necessitates calculating Pd and Pfa across all 30-minute test points 

that are not in the exclusion window (12h before and 24h after exposure).  This approach 

includes false negatives that may occur after an initial early warning declaration is made, and 

thus provides a conservative estimate of the device sensitivity which we predict will further 

increase with larger sample sizes and more refined processing algorithms. 
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Another important measure of system performance is the mean early warning time.  The early 

warning time for an individual subject is defined as the time of the first true declaration 

(excluding data from the 24 h interval immediately following the challenge) minus the time of 

fever onset (defined as 1.5ºC above a diurnal baseline [48] sustained for two hours).  Early 

warning times vary across subjects in a study, so the mean value is calculated across all subjects 

to characterize the early warning time afforded by the system.  Since the number of trials (equal 

to the number of subjects) for this performance metric is relatively small, we bound the mean 

early warning time with a 95% confidence interval based on a t-distribution, and note that mean 

Δt is an unstable performance metric when evaluating small subsets of the data, such as on a per-

pathogen level. 

 

Model tuning, including feature selection and other classifier and detection parameters, may also 

be performed using an independent cross-validation testing set.  A sweep over detection 

parameters m and n is provided in S9 Fig and illustrates some of the algorithm design trade-offs 

in selecting a short enough evaluation interval to allow for early warning while enforcing a long 

enough interval to maintain low false positives and high detection sensitivity prior to fever. 
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Supplementary Materials Legends 
 
 
 
 
 
S1 Fig: ROC curves showing performance comparison of three different classifiers. Random 
Forests, Naïve Bayes, and k-Nearest Neighbors methods were compared using the three-fold 
cross validation dataset. Shading around the ROC curves indicates 95% confidence intervals. 
 
S2 Table: Feature titles (prefixes and suffixes) and their descriptions. 
 
S3 Fig: Determining optimal values for data processing parameters. In the aggregated 3-fold 
cross-validation, sweeping values for the standardization (k) and aggregation (l) length versus RF 
out-of-bag error show a balance between computation intensity (higher for shorter windows) and 
RF classification errors.  We chose k=l=30min (red box) as a compromise between these two 
system requirements.  The total pre-classifier data processing time per subject per day on a Dell 
desktop computer (with two Intel Xeon E5607 processors and 12GB RAM) is significantly less 
than the individual standardization windows length itself.   
 
S4 Fig: Justification for choice of number of features (10) and trees (15) in our RF models. 
The Pfa (A&B) and Pd (C&D) plateaus around 10 features for both pre- and post-fever models.  
Choosing the fewest features allows us to reduce processing time.  (E) shows the RF out-of-bag-
error plateaus around 15 trees used in the forest models.  Choosing the fewest number of trees is 
one method to avoid over-fitting the model to the data. 
 
S5 Table: Declaration performance for each subject in all validation experiments. Here, 
False Declarations refers to the number of false positives, Data Samples (unexposed class) is the 
sum of true negatives and false positives, True Declarations is the number of true positives, Data 
Samples (exposed class) is the sum of true positives and false negatives, and EW Purity is the 
ratio of True Positives to Data Samples between the first declaration and fever.  The final rows 
detail model performance using only ECG-derived features in the independent dataset 
validations.   
 
S6 Table: Ranked feature importance for each partition in the aggregated three-fold 
validations before and after fever. 
 
S7 Table: Ranked feature importance for the independent dataset validations before and 
after fever. 
 
S8 Table: System performance metrics for all validations. The aggregated three-fold cross-
validation includes data from each of the three exposure studies in its training set. This same 
classifier is used to test independent LASV, NiV, and Y. pestis exposure study datasets including 
pre-exposure data from excluded subjects (see exclusion criteria under Description of Animal 
Studies subsection).  The detection parameters for each study are m=11, n=24 and thresholds are 
estimated a priori for system Pfa = 0.01.  The broad distribution in Δt values both within and 
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across pathogens can be understood both from the limited number of subjects for each pathogen 
(NLASV = Ny.pestis =4 and NNiV=5) and different lengths of each pathogens incubation and onset of 
prodromal periods. 
 
S9 Fig: Performance evaluation across different detection logic parameters m and n for a 
target system Pfa = 0.01.  The theoretical optimal value (see Ref 77 in manuscript) of m for a 
given n and Pfa is indicated by the dashed line, and our operating point is indicated by the 
asterisk. (A) shows that small values of n promote earlier warning times (Δt) by limiting the 
evaluation interval for a declaration. (b) The theoretical optimal value of m for a given n and Pfa 
(dashed line) aligns with a relatively flat region of high Pd. (c) shows that the actual system Pfa is 
a few percent higher than the target system Pfa of 0.01, but is relatively insensitive to the choice 
of m and n (except for very small ratios m /n). (d) Overall detection performance as measured by 
ROCAUC improves with larger values of n. 
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