
Energetic Evolution of Cellular Transportomes 

Behrooz Darbani
1
, Douglas B. Kell

2
* & Irina Borodina

1
*   

1The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark 
2School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester 

M1 7DN, United Kingdom 

*Corresponding authors: Douglas B. Kell, Email: dbk@manchester.ac.uk; Irina Borodina, Email: irbo@biosustain.dtu.dk 

Abstract 

Transporter proteins mediate the translocation of substances across the membranes of living cells. We performed a genome-

wide analysis of the compositional reshaping of cellular transporters (the transportome) across the kingdoms of bacteria, 

archaea, and eukarya. We show that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, 

as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. This change has likely 

been important in the development of tissues performing energetically costly cellular functions. The transportome analysis 

also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the 

mitochondrion in eukaryotes, due to the restricted presence therein of clear homologues of modern mitochondrial solute 

carriers. 
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Introduction 

The expansion of life on Earth has involved competition 

among organisms for limited energy resources [1]. 

Arguments have been made in favour of growth rate over 

growth efficiency in organisms competing within a 

specific niche [2], which implies a natural selection 

towards an improved ability to capture and utilize the 

available energy sources for survival and reproduction 

[3,4]. Darwinian evolutionary theory originally covered 

only phenotypic improvements at the organismal level, 

but we nowadays also recognize the importance of 

molecular and cellular events such as the acquisition of 

mitochondria by eukaryotes. This enabled an increase of 

eukaryotic cell size and complexity due to a more 

“efficient” generation of the cellular fuel ATP [5,6]. Cells 

need to allocate considerable resources to energize their 

transportomes. For example, brain neurons account for 

approximately 20% of the basal metabolic rate in 

humans, mostly for the movement of ions across 

neuronal membranes [7]. In general, a metabolic cost of 

up to 60% of the total ATP requirement in organisms is 

estimated for the activity of their transportomes [8,9]. 

Thus, it would be reasonable to hypothesize that an 

improved energetic performance of the transportome 

might be selected for over the course of evolution.  

Despite the importance of cellular transportomes (also 

reported as the second largest component of the human 

membrane proteome [10]), transporters are surprisingly 
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understudied [11]. Additionally, the presence of 

substrate-binding proteins as the partners of a subset of 

membrane transporters [12] makes the cellular transport 

machinery more complicated than if we consider only the 

transporters themselves. The tightening of porous and 

leaky primordial envelopes such that they did not let in 

(and could learn to efflux) all kinds of substances [13,14] 

has been proposed as a turning point for membrane 

transporters to co-evolve together with lipid bilayer 

membranes [15]. Different classes of transporters, each 

including several transporter superfamilies, share a 

common ancestral family of peptides which carry 1-4 

transmembrane domains and form homo- and hetero-

oligomer channels [16–19]. Intragenic duplication and 

triplication have been the major events promoting the 

diversification of transporter proteins [17,19]. Classical 

evolutionary theory on the basis of natural selection 

proposed by Charles Darwin [3,4] explains how the 

random variability of the genome as the diversification 

force has given the chance for specialisation, improved 

performance, and adaptation to the continuously 

changing biosphere with limited energy resources. Here, 

we therefore annotated the cellular transportomes of 

bacteria, archaea and eukarya and analysed their 

composition with a focus on the energetic efficiency. The 

analyses include all the three classes of transporters, i.e., 

ion channels, secondary transporters, and ATP-dependent 

transporters. To translocate substrates, ATP-dependent 

transporters bind and hydrolyse ATP [20], ion channels 

form pores for selective diffusion of ions and small 

molecules, and the secondary transporters shuttle 

substrate molecules across biological membranes either 

through energy independent facilitated diffusion or via 

exploiting membrane electrochemical potential gradients 

through uniport, symport and antiport [21]. 

Results and Discussion 

To study the compositional changes of transportomes, we 

analysed the transportomes of 249 evolutionarily distant 

species (of which 222 were annotated in this study) from 

archaea, bacteria and eukarya. These included 126 

prokaryotic species (from 16 taxonomic phyla and 60 

taxonomic orders), 30 primitive eukaryotes (different 

species from Alveolata, Kinetoplastida and Amoebozoa), 

30 algal and plant species, 30 fungal species, and 33 

animal species (See S1 Data). The transportomes were 

annotated using the Transporter Automatic Annotation 

Pipeline at TransportDB [22]. Notably, the species had 

large differences in the size of both their genomes and 

their transportomes (Fig 1a, b and S1 Data). 

We found that the sizes of an organism’s transportome 

tends to increase with its genome size, though there are 

considerable intra-kingdom variations (Fig 1a) (see also 

[23]). In particular, primitive eukaryotes have small 

transportomes with 100-500 members, relative to their 

genome sizes of tens of Mb when compared to the 

bacteria with modestly sized genomes (less than 10 Mb). 

Ion channels, secondary transporters, and primary active 

transporters were found in each of the analysed domains 

of life (See S1 Data). This indicates a very early 

appearance for these three classes of transporters, 

possibly in a common ancestor.  

In agreement with previous reports [24,25], the genome 

size had a higher rate of enlargement than did the gene 

number, resulting in a decreased gene density over the 

course of evolution (Fig 1c). The transportome 

enlargement was found to be well correlated with the 

increase in the gene number (r (Pearson) = 0.937) with the 

exception of primitive eukarya, where the transportome- 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 12, 2017. ; https://doi.org/10.1101/218396doi: bioRxiv preprint 

https://doi.org/10.1101/218396


Darbani et al., Energetic evolution of transportomes                                                                                                                                                                           2017 

3 

 

 

Fig 1. Transportomes differ in size among species and evolutionarily distant domains of life. (a) The number of 

membrane transporters per organism in relation to the genome size. (b) The number of membrane transporters per genome 

in relation to the number of total genes. (c) Percentage of transporter-coding genes in relation to gene density.  

 

encoding proportion of genes was the lowest (Fig 1b, c). 

Of most interest, the composition of the transportomes 

changed from prokaryotes to eukaryotes and also among 

the eukaryotic kingdoms along with the transportome 

enlargement (Fig 2a). Specifically, we found higher intra-

genomic frequencies (frequency relative to the total 

number of genes in the genome) of ATP-dependent 

transport classes in prokaryotes than eukaryotes. An 

opposing trend was found for low-energy-demanding 

transport classes. This indicates different rates of gene 

proliferation among the evolved transporter classes; low-

energy-demanding transporter families have expanded at 
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a higher rate. Notably, the transportomes of primitive 

eukaryotes also represent a transition state between 

prokaryotic and higher eukaryotic kingdoms (Fig 2a).  

 

 

Fig 2. The evolutionary dynamics of transportomes composition. (a) Heat-map representation of the changes in the 

number of members of the transporter classes. To calculate the intra-genomic frequencies, the numbers of transporter 

members are normalized to the total number of genes per genome. The heat-map is drawn for each class of ion channels, 

secondary transporters, and ATP-dependent transporters and therefore colors are not comparable between the classes. (b) 

The fraction of ATP-dependent transporters in the transportomes. All of the variations of ATP-dependent transporters and 

ABC superfamily except the difference between bacteria and archaea are significant at 0.1% level. (c) The fraction of 

secondary transporters in the transportomes. Only the difference between bacteria and animals is not statistically significant 

(p = 0.635). (d) The fraction of ion channels in the transportomes. All differences, except among fungi, bacteria and 

archaea, are significant with a p-value less than 0.001. The values on panels b-d are shown as mean +/- t-test based 99% 

confidence intervals. The variations were also confirmed on the arc sin transformed data (See S1 Data). The family 

names of the transporters can also be found in the S1 Data.   
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We further compared the prevalence of secondary 

transporters, ion channels, and ATP-dependent 

transporters within the transportomes of each species, and 

averaged these over the larger taxonomic groups (Fig 2b-

d). In general, we observed compositional changes that 

indicate a positive adaptive selection of the no- to low-

cost-flux equilibrative ion channels and carriers, and 

negative selection of the energetically more expensive 

ABC transporters. More specifically, we found 

significant variations in each of the transporter classes 

(Fig 2b-d). While ca. 27% of all the bacterial and 

archaeal transporters are ABC transporters, this fraction 

decreases to 13% in primitive eukaryotes, 10% in algae 

and plants and a mere 5-6% in fungi and animals (Fig 

2b). On the other hand, an increased contribution to the 

cellular transportome was found for secondary 

transporters in eukaryotes, particularly in fungi (Fig 2c). 

Furthermore, animals with ≈ 30% and the green domain 

of life including algae and plants with ≈ 13% showed 

higher percentages of ion channels when compared to the 

bacteria and archaea with only 6%-7% (Fig 2d). During 

evolution, and in parallel with the genome enlargement 

and gene pool expansion, each of the three classes of 

transporters had a chance to contribute proportionally to 

the expansion of transportomes. By contrast, our results 

show a preference for the low-energy demanding 

transporters (ion channels and carriers) over the energy-

costly transporter classes (ATP-dependent families, and 

ABCs in particular) in the transition from prokaryotes to 

eukaryotes. We defined the energy usage efficiency of a 

transportome (EUE) as the average required energy per 

single substrate translocation. We calculated the EUE 

values for the transportomes studied (more details in the 

Methods section). The EUE describes the overall 

energetic performance of transportomes at organismal 

level and most importantly it does not indicate the total 

energy consumption by the cellular transportome, 

because the latter depends also on the flux through 

individual transporters that is largely unknown. In 

contrast to the total energy requirements, the EUE is 

therefore not subjected to spatiotemporal variations. 

By comparing the average EUEs of the transportomes 

across the different domains of life, we found that the 

EUE has improved in eukaryotes by reductions of up to 

0.50 ATP in the average ATP consumption per single 

transport event mediated by transporters (Table 1). 

 

Table 1. Improvement in the energy-usage efficiency (∆EUE) calculated as changes in the average ATP-

usage per single transport cycle.  

Domains of life Bacteria Archaea Primitive 

eukaryotes 
Algae and 

plants Fungi Animals 

Bacteria 0 
Archaea -0.03 0 
Primitive eukaryotes -0.16 -0.14 0 
Algae and plants -0.27 -0.25 -0.11 0 
Fungi -0.30 -0.27 -0.13 -0.02 0 
Animals -0.49 -0.46 -0.32 -0.21 -0.19 0 
The changes (∆EUE) are calculated as ATP-usagedomain of life in the matrix-row – ATP-usagedomain of life in the matrix-column (see methods).  

Negative changes represent the reduction in ATP-usage and improved EUE of transportomes. 
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Furthermore, the data suggest that animals have mainly 

relied on the diversification of ion channels, fungi on 

secondary transporters, and finally, algae and plants on 

both transporter classes for the evolution of their 

transportomes (Fig 2b-d). For energetically efficient 

transportomes, organisms therefore adopted different 

strategies, likely due to their specialisations and different 

requirements. The trend of expansion of ion channels and 

secondary transporters at the expense of ATP-dependent 

transporters also holds true for the prokaryotic 

transportomes (Fig 3), even though they did not undergo 

the kind of  intensive developmental specialisation as 

was required in multicellular eukaryotes.  

The analyses also indicate family member expansions for 

secondary transporters (from 60-100 in prokaryotes to 

more than 400 in animals and 600 in plants in average) 

and ion channels (from 10 members in prokaryotes to 

more than 300 members in animals). To find prokaryotic 

and eukaryotic specific families, we further enriched our 

analysis by including the publicly-available data for the 

secondary transporters and ion channels of prokaryotes 

found at the TransportDB 2.0 (http://www. 

membranetransport.org/transportDB2/index.html). This 

extended our prokaryotes to 2637 transportomes (S1 

Table). We also included two eukaryotic transportomes 

from diatoms found at TransportDB 2.0 (S1 Table). 

When comparing the organisms for the presence of 

different transporter families, we found that eight 

secondary transporter families were completely lost in 

the passage to eukaryotes (See S1 Data). Additionally, 

we found that five new families of secondary transporters 

had emerged in eukaryotes (See S1 Data). Specifically, 

we did not find any prokaryotic hits in GenBank for these 

eukaryotic families, that must have diverged massively 

[26] from some ancestral genes. In contrary to secondary 

transporters, ion channels have evolved through both 

intra-family expansions and the substantial appearance of 

new families. While there were only seven families 

specific to the prokaryotes, 18 eukarya-specific families 

were found for ion channels (See S1 Data). Importantly, 

the mitochondria-specific solute carriers, i.e., solute 

carrier family SLC25 [27,28], are absent from the 

transportomes of all 143 archaeal species (See S1 Table 

for the list of organisms). Among the bacteria, including 

259 alpha-proteobacteria, of which 69 belonged to the 

order Rickettsiales, we found only seven bacterial 

genomes that encoded members of the mitochondrial 

transporter family. These are Neorickettsia risticii, 

Neorickettsia sennetsu, Legionella pneumophila, 

Legionella longbeachae, Acidaminococcus intestini, 

Cardinium endosymbiont and Butyrivibrio 

proteoclasticus. The presence of the mitochondrial 

transporter family members indicates that these seven 

bacterial species are possible origins of the 

mitochondrion in eukaryotes. The first two species are 

Gram-negative obligatory intracellular bacteria from the 

order Rickettsiales, an order that in previous studies was 

proposed (based on different evidence) as the most likely 

origin of the mitochondrion in eukaryotes [26–29].  

A surprising insight here was related to the five 

evolutionarily younger secondary transporter families 

found only in eukaryotes (See S1 Data): three of these, 

about which we have experimental information, were 

energy-independent and low-energy-demanding 

transporter families for choline, silicate, and vitamin A. 

The last two belong to the 4 TMS multidrug endosomal 

transporter and chloroplast maltose exporter families. 

The choline transporter-like family is involved in choline  
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Fig 3. The compositional changes in the transportomes of prokaryotes with different genome sizes. (a) Comparisson 

between the transportome size and total gene number among prokaryotes including bacteria and archaea. All of the 126 

studied species are clustered into three groups based on the total number of the genes. (b) The fraction of ATP-dependent 

transporters in the transportomes. (c) The fraction of secondary transporters in the transportomes. (d) The fraction of ion 

channels in the transportomes. The values on panels b-d are shown as mean +/- t-test based 99% confidence interval. The 

variations were also confirmed on the arc sin transformed data (See S1 Data). Group I and III differ significantly for all 

of the transporter classes with a p-value of < 0.001. 

 

influx [33]. The ‘birth’ of a cheap and sodium-

independent transporter for choline is important because 

of the broad cellular usage of choline. Choline is an 

essential precursor for membranes and for the 

neuromodulator acetylcholine [34,35]. The silicon 

transporter family is also energetically cheap and has a 

silicate:sodium symport stoichiometry of 1:1 [36]. The 

animal-specific vitamin A receptor/transporter (STRA6) 
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mediates costless influx and efflux of vitamin A 

derivatives by a mechanism not seen in any other 

transporter class [37,38]. Of particular interest, the 

animal visual system is dependent on vitamin A and has 

a substantial energetic cost, e.g., up to 15% of resting 

metabolism in the Mexican fish Astyanax mexicanus 

[39,40]. Such photo-detection involves the single-photon-

triggered isomerization of 11-cis-retinal to all-trans-

retinal, which must be recycled back through efflux and 

influx steps of these isomers between the retinal 

pigmented epithelial and photoreceptor cells [37,41–43]. 

Thus, the evolved energy-independent membrane 

translocation of the vitamin A isomers seems to be an 

adaptive trait for higher energetic performance. This is in 

line with the positive selection reported for STRA6 in 

different mammalian phyla [44]. Additionally, we found 

a higher representation of ion channels in the animal 

kingdom when compared to the other domains of life 

(Fig 2d). The membrane transport of ions is important for 

highly energy-demanding sensory tissues [7,45] and it 

can therefore be hypothesized that the extensive 

diversification of ion channels and the costless transport 

of vitamin A in animals are trade-offs between the 

benefits of the evolved nervous and visual systems and 

their high energy requirements. In conclusion, our results 

provide genome-scale molecular evidence to the 

evolution of the cellular transportome towards an 

improved energetic efficiency. 

Materials and Methods  

The publicly-available membrane transporter data on ion 

channels and secondary transporters were extracted from 

TransportDB (http://www.membranetransport.org/transp- 

ortDB2/) [22]. The transportomes of 126 prokaryotic 

species (78 bacteria and 48 archaea) and 96 eukaryotic 

species (22 primitive eukaryotes, 24 algae and plants, 23 

fungi, and 27 animals) (See S1 Data) were annotated 

using the Transporter Automatic Annotation Pipeline at 

TransportDB [22]. We also included 27 eukaryotic 

species including transportomes of 8 primitive 

eukaryotes, 6 algae and plants, 7 fungi, and 6 animals 

publicly available at TransportDB (See S1 Data). To 

study the compositional changes of transportomes, we 

did not include any transportomes from prokaryotes 

publicly available at the TransportDB. This is due to the 

incomplete information on the ABC transporters. The 

majority of ABC transporters in prokaryotes are coded by 

different genes of an operon, where each gene codes for 

different subunits [46], and these should be excluded 

from the data and considered as single transporter in our 

analyses on the transportome composition. However, this 

information on the ABC coding genes and operons is not 

provided for the publicly-available transportomes of 

prokaryotes.  

To predict the transportomes, the proteomes of organisms 

were downloaded from the Genbank and Ensembl 

databases (http://www.ensembl.org/index.html, http:// 

fungi.ensembl.org/index.html, http://protists.ensembl.org 

/index.html, http://plants.ensembl.org/index.html) [47]. 

All proteins with fewer than 100 amino acids were 

excluded. Taken together, we analysed 78 bacterial, 48 

archaeal, 30 primitive eukaryotes, 30 algal and plant, 30 

fungal, and 33 animal transportomes, each representing 

one independent biological replicate (per species). The 

list of organisms with their genome size and total number 

of transporters is shown in S1 Data and S1 Table. The 

annotated transportomes were manually filtered for 

multi-prediction hits as well as the alternative isoforms of 

transport proteins before the analysis. Taken together, our 

analyses on the transporter families included all of the 15 

ATP-dependent transporter families, 51 ion channel 
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families, and 90 secondary transporter families which 

were present in the studied organisms. We used Student’s 

t-test to examine the possible differences among the 

samples, i.e., domains of life. The data were in the format 

of counts and percentages. Therefore, to exclude a 

possible divergence from normality, we also performed 

the analyses on the arc sin √x transformed data. All the 

analyses can be found in S1 Data. 

To make an approximation of the energetic performance 

of the cellular transportomes, we calculated the inter-

transportome changes in energy-usage efficiency (EUE), 

which we defined as the average free energy demand for 

a single transport event. The following assumptions were 

made when calculating EUE values. Equilibrative ion 

channels require no free energy for the transport action. 

While some of the secondary transporters also act in an 

energy-independent manner known as equilibrative 

transport or facilitated diffusion, others exploit the 

electrochemical potential established by ATPases across 

membranes [13,21,48–50]. For active transport, 

secondary transporters are considered to use membrane 

electrochemical potential gradients, coupled to a varying 

stoichiometry (0.5 to 3) of ions per turnover [49,51–72]. 

Considering the stoichiometry of ≈ 2-3 ions pumped per 

ATP hydrolysed by ATPases [73–82], even concentrative 

secondary transporters would not use more than 0.5 ATP 

per substrate translocation across a membrane on 

average. The average of two substrates per ATP tends, 

therefore, to be conservative for secondary transporters 

and a higher rate of substrate translocation can also be 

expected. In contrast, the ATP-dependent members 

belonging to the ABC superfamily, and also the 

mitochondrial protein translocase, the type III secretory 

pathway, the chloroplast envelope protein translocase, 

and the arsenite-antimonite efflux families, generally 

show a 1:2 stoichiometry of substrate:ATP hydrolysis 

[83–89]. To calculate the inter-transportome variations in 

the energy-usage efficiency (∆EUE), we therefore 

applied the equation: 

∆EUE (∆ATP-usage per single transport cycle) = [2ATP × 

∆%ADT+0.5ATP × ∆%ST+ 0.0ATP × ∆%IC]/100 

where ADT, ST, and IC are ATP-dependent transporters, 

secondary transporters, and ion-channels, respectively. 

The F/V/A-type ATPases and ATP synthases were 

excluded from the ATP-dependent transporters. This is 

because they provide the energy as ATP or membrane 

electrochemical potential for the rest of the transporters. 

It is worthy of note that the efficiency of energy usage 

indicates the average energy demand per unit of action. 

So the expression and activity levels of transporters are 

not taken into the account when calculating the EUE. A 

more general example would compare two organisms 

with exactly the same transportome but with differences 

in the expression levels of transportome members among 

them. Here, the EUE of transportome machineries of the 

two organisms are equal since they use exactly same 

transportome machinery. This is thus irrespective of the 

differences in activity levels of transporters, which define 

the total energy demand for the given transportome.  

Abbreviations 

ADT, ATP-dependent transporters; EUE, energy-usage 

efficiency; IC, ion-channels; ST, secondary transporters. 
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included within the article and Supplementary Data 1.  
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