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Abstract 
Background: A central question in bioinformatics is how to minimize arbitrariness and bias in analysis 
of patterns of enrichment in data.  A prime example of such a question is enrichment of gene ontology 
(GO) classes in lists of genes. Our paper deals with two issues within this larger question.  One is how 
to calculate the false discovery rate (FDR) within a set of apparently enriched ontologies, and the se-
cond how to set that FDR within the context of assessing significance for addressing biological ques-
tions, to answer these questions we compare a random resampling method with a commonly used 
method for assessing FDR, the Benjamini-Hochberg (BH) method. We further develop a heuristic 
method for evaluating Type II (false negative) errors to enable utilization of F-Measure binary classifi-
cation theory for distinguishing “significant” from “non-significant” degrees of enrichment. 
Results: The results show the preferability and feasibility of random resampling assessment of FDR 
over the analytical methods with which we compare it. They also show that the reasonableness of any 
arbitrary threshold depends strongly on the structure of the dataset being tested, suggesting that the 
less arbitrary method of F-measure optimization to determine significance threshold is preferable. 
Conclusion: Therefore, we suggest using F-measure optimization instead of placing an arbitrary 
threshold to evaluate the significance of Gene Ontology Enrichment results, and using resampling to 
replace analytical methods 
Keywords: Gene Ontology; F-measure; False Discovery Rate; Microarray Data Analysis 

 
 
Background 
Gene Ontology (GO) enrichment analysis is a powerful tool to in-
terpret the biological implications of selected groups of genes. 
The gene lists from experiments such as microarrays, are gathered 
into clusters associated with biological attributes, and defined as 
GO terms [1]). The GO terms are arranged in an acyclic tree struc-
ture from more specific to more general descriptions, including 
biological process (BP), cellular component (CC), and molecular 
function (MF) [1]. GO aspires to be both a cross-species common 
language, and means of understanding the uniqueness of each spe-
cies at in the categories or biological process, location in the cell, 
and molecular [1]. Each enriched GO term is then evaluated by its 

significance level, i.e. the probability that the enrichment has not 
occurred by pure chance. 
Enrichment tools have been developed to process large gene lists 
to generate significantly enriched ontologies. Huang et.al (2009) 
summarizes the tools widely used for GO enrichment [2]. Differ-
ent tools emphasize different features. Gorilla [3], DAVID [4], 
g:profiler [5] are web interfaces that integrate functional annota-
tions including GO annotations, disease and pathway databases 
etc. Blast2GO [6] extends annotation of gene list to non-model 
organisms by sequence similarity. GO-Miner [7], Babelomics[8], 
FatiGO[9], GSEA[10], and ErmineJ [11] apply resampling or per-
mutation algorithms on random sets to evaluate the number of 
false positives in computed gene ontologies associated with test 
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sets. DAVID [4] and Babelomics [8] introduced level-specific en-
richment analysis; that is, not including both parents and children 
terms. The TopGO algorithms “eliminate” and “parent-child” 
eliminate or reduce the weight of genes in the enriched children 
terms when calculating parent term enrichment [12]. TopGO [13] 
and GOstats [14] provide R-scripted tools for ease of further im-
plementation.  Cytoscape plugin in BinGO [15] is associated with 
output tree graphs.  
To calculate raw p-values for GO enrichment without multiple hy-
pothesis correction, methods used include hypergeometric distri-
bution, Fisher’s distribution, Binomial distribution, or χ2 distribu-
tion [16]. Rivals et. al. discussed the relative merits of these meth-
ods [16].   
Uncorrected p-values are subjected to multiple hypothesis correc-
tion by the methods of Bonferroni [17], Benjamini-Hochberg 
(BH) [18], or Benjamini-Yekutieli (BY) [19], or recently, a hier-
archical method proposed by Bogmolov et.al.[20]. Bonferroni is 
the most stringent one among these multiple hypothesis correction 
methods. Benjamini-Hochberg has been widely applied in enrich-
ment tools such as BinGO [15], DAVID[4], GOEAST [21], Go-
rilla [3], and Babelomics [8], to name a few. The Benjamini-
Yekutieli method is included in the GOEAST package [21]. GOs-
sip provides a direct analytical estimation of false positives that 
compares well with resampling [22]. In random resampling, a null 
set is constructed by random sampling from the same structured 
database that the test set enrichment is computed from. Because it 
is most directly related to the question of how likely it is that an 
enrichment result may arise by chance, it can be reasonably con-
sidered the most reliable method for estimating false positives 
[22]. Resampling is more computer-intensive than other methods 
[22], but high-throughput techniques have demonstrated that it is 
possible to keep resampling time in a reasonable range [7].  
In applying all the cited methods and tools, it is common to apply 
a threshold boundary between "significant enrichment" and "in-
significance".  Such assignment to one of two classes is an exam-
ple of a binary classification problem. Often such classifications 
are made utilizing an optimum F-measure [23]. Rhee, et.al. (2008) 
have suggested application of F-measure optimization to the issue 
of gene ontology enrichment analysis [24]. In the present work, 
we present an approach to gene enrichment analysis based on F-
measure optimization, which considers both precision and recall 
and provides a flexible reasonable threshold for data sets depend-
ing on user choice as to the relative importance of precision and 
recall. We also compare a resampling method to the Benjamini-
Hochberg and Benjamini-Yekutieli methods for estimation of 
FDR and use with F-measure optimization.  The work suggests 
that resampling is preferable to analytical methods to estimate 
FDR, and F-measure optimization is preferable to an arbitrary 
threshold, in computing enrichment in gene ontology analysis. 

Methods 

Enrichment Tool 
For results reported in this study (described below), the TopGO 
[13] package is implemented to perform GO enrichment analysis, 
using the “classic” option.  In this option, the hypergeometric test 
is applied to the input gene list to calculate an uncorrected p-value.  

FDR Calculation 
The empirical resampling and Benjamini-Hochberg (BH) meth-
ods are used to estimate the FDR. The p-value adjustment using 
Benjamini-Hochberg is carried out by a function implemented in 

the R library. http://stat.ethz.ch/R-manual/R-devel/li-
brary/stats/html/p.adjust.html  
The resampling method is based on the definition of p-value as 
the probability that an observed level of enrichment might arise 
purely by chance. To evaluate this probability, we generate sev-
eral null sets, which are the same size as the test set. The genes in 
the null sets are randomly sampled from the background/reference 
list. GO enrichment analysis was carried out on both test set and 
null set. The average number of enriched results in the null sets 
would be the false positives. In all the results shown in this paper, 
100 null sets were used to compute the average.  In the pipeline, 
available for download in Supplementary material, the number of 
null sets is an adjustable parameter.  The ratio of false positives to 
total positives is the FDR. 

F-measure Optimization  
The F-measure is a weighed value of precision and recall (Powers, 
2011). The parameter b is chosen based on the research question, 
whether minimization of type I (false positive) or type II (false 
negative) error, or balance between the two, is preferred, accord-
ing to the equation: 
 

𝐹b = 	 (1 + b') )*+,-.-/0∙2+,344
b5)*+,-.-/062+,344

          Equation 1 

 
The larger the magnitude of b the more the value of 𝐹b is weighted 
towards recall; the smaller the value of b the more the value of 𝐹b 
is weighted towards precision.  To obtain F-measure, precision 
and recall are derived from enrichment results. For an analytical 
method such as BH, we first calculate precision by the equation: 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1 − 𝐹𝐷𝑅. The true positive is derived by 
(𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 	= 	 (𝑇𝑜𝑡𝑎𝑙	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 	 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. On the 
other hand, for the resampling method, the number of enriched 
terms from random set indicates false positives. Therefore, we 
first calculate true positive number by: 
 
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 		 𝑇𝑜𝑡𝑎𝑙	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 −	(𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒). 

 
Then, we calculate the precision: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 H*I+	)/.-J-K+
H/J34	)/.-J-K+

  
 

Recall is defined as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑣𝑒

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠
 

 
“Relevant Elements” is defined by 
 
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

 
In the absence of the ability to calculate “False Negatives” di-
rectly, we estimate the number of relevant elements as the maxi-
mum true positive achieved across the range of possible p-values, 
as shown graphically in Figure 1 for BH method of computing 
false positives, for a gene list to be described in detail later in the 
paper.  In this figure we plot total positives, false positives (False 
Discovery Rate x total positives, and true positives (total positives 
– false positives) vs. uncorrected p-value for the entire range of p-
values from 0 to 1. At very lenient p-values the FDR approaches 
1, resulting in the true positives approaching 0. It is difficult to 
evaluate false negatives and thus assign a number for “relevant 
elements”, since a false negative is an object that escaped obser-
vation, and thus can’t be counted directly.  Yet such estimation is 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2017. ; https://doi.org/10.1101/218248doi: bioRxiv preprint 

https://doi.org/10.1101/218248
http://creativecommons.org/licenses/by/4.0/


Ge et.al. Page 3 of 7 

essential to applying F-measure.  In our case, if we follow the tra-
jectory of the true positives in Figure 1 as the threshold is relaxed, 
we see that at very stringent p-values all positives are true posi-
tives.  As the threshold is relaxed further, more false positives are 
generated, so the total positive and true positive curves start to 
diverge.  At p = 0.2 (a far higher value than would ordinarily be 
used as a cutoff) the true positives reach a maximum, and the num-
ber of true positives starts to decline as p is further relaxed.  We 
utilize this maximum value as the maximum number of GO cate-
gories that can be possibly regarded as enriched in the data set; 
i.e., the number of relevant elements. 
Based on precision and recall at each raw p-value cut-off, we can 
obtain a table and curve of F-measure vs raw p-value. Optimizing 
F-measure provides us a threshold which emphasize precision 
(b<1) or recall (b>1), or balance of both (b=1).   Note that preci-
sion and recall are extreme values of F-measure; that is, Preci-
sion=F0 and Recall=F∞. 

Data Sets 

Environmental Stress Response (ESR) 
First dataset is the Yeast Environmental Stress Response (ESR) 
data [25], a robust data set for a model organism. The ESR set is 
list of genes commonly differentially expressed in response to en-
vironmental stresses such as heat shock, nutrient depletion, chem-
ical stress, etc. Approximately 300 genes are up-regulated and 600 
genes are down-regulated in ESR set [25].  We expect this set to 
be “well-behaved” (give reasonable results with standard methods 
of analysis), since the data come from a very well annotated model 
organism subject to a widely studied experimental intervention.   

Alarm Pheromone (AP) 
The second data set is comprised of human orthologs to the honey 
bee Alarm Pheromone set [26]. The Alarm Pheromone set is a list 
of genes differentially expressed in honey bee brain in response 
to the chemical alarm pheromone, which is a component of the 
language by which honey bees communicate with each other. Pre-
vious studies have shown that the Alarm Pheromone set is en-
riched in placental mammal orthologs, compared to other metazo-
ans including non-social insect orthologs [27]. The Alarm Phero-
mone set is much smaller than the ESR set, with 91 up-regulated 
genes and 81 down-regulated genes. We expect the AP set to be 
not so “well-behaved” compared to the ESR set, as we are using 
model organism orthologs (human) to a non-model organism 
(honey bee) and the organisms diverged about 600 million years 
ago. 

Random Test Sets 
To generate a baseline of the analysis for each data set using dif-
ferent FDR calculation methods, we have applied the pipeline to 
analyze randomly-generated sets as “test” set inputs, where FDR 
should equal to 1 for all uncorrected p-values.  
The BH FDR curves are calculated in the following way: The R 
program p.adjust is applied to generate a list of analytically calcu-
lated FDR (BH) corresponding to uncorrected p-values for each 
“test” sets. Then the lists of FDRs are merged and sorted by un-
corrected p-values. The FDRs are smoothed by a “sliding win-
dow” method: at each uncorrected p-value point, the new FDR is 
the average value of 11 FDRs centered by the uncorrected p-value 
point.  

The Resampling FDR curves are calculated in the following 
way: The output uncorrected p-values are binned in steps of 1E-

4. The counts below the upper bound of each p-value bin for the 
“test” set enrichment categories are the “Total Positives”, and av-
erage counts for the null set enrichment categories are the “False 
Positives”. The process is repeated for the multiple “test” sets, and 
corresponding to each test set, 100 null sets were generated for 
“False Positive” calculation. Then the number of total and false 
positives are averaged, respectively. The FDR would be the quo-
tient of the averaged total and false positives. Then, all the FDRs 
are plotted against the uncorrected p-values. 

 

Results 
In this section, we present the results of applying our methods to 
the two previously published sets of data introduced in the Meth-
ods section, the ESR set and the human orthologs of the Alarm 
Pheromone set. For both above data sets, we show the results 
from analyzing the genes using the biological process (BP) cate-
gory of the gene ontology.   

ESR Set (Environmental Stress Response, yeast)  

Benjamini-Hochberg (BH) 
Figure 2 shows the results of F-measure optimization on the ESR 
data based on FDR calculated by Benjamini-Hochberg (BH) 
method.  As expected by their definitions, precision (F0) decreases 
with increasing p-value while recall increases with increasing p-
value.  F0.5 (precision-emphasized), F1 (precision and recall 
equally weighted) and F2 (recall-emphasized) all show relative 
maxima, providing a rational basis for assigning a threshold for 
significance. The horizontal scale is extended far enough to visu-
alize the determination of the number of relevant items.  In the 
case of the up-regulated gene set, maximum F1 occurs at an un-
corrected p-value close to 0.05.  In the case of the down-regulated 
gene set however, it appears that a more stringent cutoff would be 
appropriate.  
 

 
 

Resampling 
Figure 3 shows the results of F-measure optimization on the ESR 
data using resampling to calculate FDR. The false positives are 
calculated by average number of GO categories enriched in ran-
dom sets. All the F-measures optimize at much lower uncorrected 
p-values than do the F-measures calculated by the BH method. 

 

Alarm Pheromone Set (human orthologs)  

Benjamini-Hochberg (BH) 
Figure 4 shows exactly the corresponding results as Figure 2, this 
time on the human orthologs to the honey bee alarm pheromone 
set.  F-measures are maximized at much higher thresholds than 
for the ESR set.  The difference in optimal F-measure is largely 
due to the different shapes of the recall curves.  For the ESR set, 
precision drops significantly more rapidly with increasing uncor-
rected p-value than does the AP set.  Therefore, a higher uncor-
rected p-value can be used for the latter set with essentially the 
same degree of confidence.  
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Resampling 
Figure 5 shows the number of GO categories and F-measures for 
the alarm pheromone set human orthologs using resampling 
method. The resampling method have found more false positives 
than BH, and therefore the precision is much lower than the pre-
cision calculated from BH, and the F-measures are optimized at 
lower uncorrected p-values than the F-measures calculated from 
BH. 
From the above Figures 2-5, we can note the stepped structure in 
the number of enriched GO categories. The stepped structure lies 
in the fact that the number of genes associated with any GO cate-
gory, in the test set or reference set, must be an integer with lim-
ited number of choices. Therefore, the uncorrected p-values cal-
culated would be in a discrete set instead of a continuum. Conse-
quently, the number of positives as a function of p-values in-
creases in a stepped way. As a result, the F-measures derived from 
the number of GO categories have spikes. But as our graphs have 
demonstrated, the optimal F-measures reflect the different 
weights on precision and recall despite the spikes. 

Comparison of FDR (False Positive) Calculation by Benja-
mini-Hochberg (BH) and Resampling 
In the previous section, we have demonstrated how to use F-meas-
ure optimization to obtain a flexible threshold based on require-
ment of the research problem, whether precision or recall is more 
heavily weighted. This section demonstrates how the resampling 
method applies to the F-measure optimization approach by 
providing an alternative way to estimate FDR. We have plotted 
the FDR calculated by BH and Resampling of the randomly se-
lected sets that are same size as the test sets. The random “test” 
sets are selected from the same reference set as the test sets they 
are compared to. Each random “test” set result is averaged over 
50 runs.  
Figure 6 shows that for the ESR set, the BH method and 
resampling estimate similar FDR at low p-value. As the threshold 
increases, the BH method estimates lower false discovery rate, 
and therefore higher precision, than the resampling method at the 
same raw p-value. For the Alarm Pheromone set, the BH method 
estimates lower FDR than resampling.  
To further evaluate the methods, we carried out multiple runs us-
ing random sets as test sets. In this case, the FDR should in prin-
ciple be 1, for any uncorrected p-value. The results of this test are 
shown in Figure 9a, where for each segment of p-values (bin size 
= 0.0001) we show the mean plus/minus the standard deviation. 
The Resampling method passes the test on the average, but the 
results are noisy; and the BH method systematically underesti-
mates FDR. Figure 9b shows that the noise in the Resampling 
method results in Figure 9a are largely due to the variation in the 
random “test” sets, and that the noise level in using random 
resampling for real data is acceptably low. 

Threshold comparison summary 
In this section, we show the bar graphs (Figures 10 and 11) of 
number of enriched biological process GO categories associated 
with ESR and alarm pheromone sets, at different thresholds in-
cluding the commonly-used FDR < 0.05, optimization of F0.5, F1, 
and F2, with BH and resampling methods.  This is an alternative 
representation of data already presented in Figures 2-5. 
In Figures 8 and 9, we are comparing the number of enriched GO 
categories found using thresholds calculated by BH and 

Resampling. The leftmost bars in each cluster represents FDR un-
der 0.05, and the next three bars are results from flexible thresh-
olds by F-measure optimization. 
We see that the most widely used method (BH FDR<0.05) is gen-
erally quite stringent. When we weight more on precision by op-
timizing F0.5 using the resampling method, a more stringent 
threshold is calculated for the alarm pheromone set. Maximizing 
F1 would bring back many more terms. Investigation into preci-
sion tells us that sometimes the F1-maximized FDR is too high 
(near 1) for us to tell apart signal and noise, and might not be a 
good threshold. However, whether F1 optimization is reasonable 
depends on the data set. In the ESR set, where precision and recall 
can reach the balance where both are reasonable (precision=0.84, 
recall =0.96 for the up-regulated; precision=0.93, recall=0.94 for 
the down-regulated), the F1 optimized threshold is reliable in the 
sense we can be confident in validity of the large majority of the 
terms that are returned. On the other hand, for the alarm phero-
mone set, precision becomes very low when F1 is optimized (pre-
cision=0.46, recall=0.35 for the up-regulated; precision=0.53, re-
call=0.81 for the down regulated), so the user may wish to use a 
more stringent threshold.  The major point is that the threshold 
will not be arbitrary, but rather based on the scientist’s judgment 
on the relative biological significance of how much weight to give 
precision and recall. 

Conclusions 
In this work, we have addressed two issues with the commonly 
used methods in the GO enrichment analysis: the arbitrariness of 
the threshold for significance, and the relationship between 
resampling vs. Benjamini-Hochberg theory for estimating false 
discovery rate. For the first part, we introduced optimization of F-
measures so that both type I and II errors are considered. Unlike 
arbitrarily applied threshold of BH FDR<0.05 or raw p-
value<0.01 for any data set, the F-measure optimization approach 
provides a flexible threshold appropriate to the nature of the data 
set and the research question. If the data set is high in noise-to-
signal ratio and the penalty for letting in false positive is high, we 
can choose to optimize F-measures weighing more on precision. 
If the data set fails to show much enrichment by commonly-ap-
plied methods, we can relax the threshold and extract the best in-
formation indicated by F-measure optimization. For the second 
part, we introduced resampling approach using random sets to di-
rectly estimate false positives, and consequently derive values of 
FDR, precision, recall, and F-measures. We believe that for the 
GO enrichment analysis, a resampling method is more universally 
applicable than the BH method, because the resampling method is 
a direct algorithmic representation of the false discovery rate; that 
is, the likelihood of getting a positive result by pure chance. Thus, 
results from resampling are independent of the structure of the 
data set, such as parent-child relationships.  
A concern is that, because of the nature of the problem, we were 
forced to use a heuristic (albeit reasonable) method to estimate the 
false negatives, essential for calculating recall.  We judge that this 
concern is more than offset by the advantage of enabling the re-
placement of an arbitrary threshold with F-measure optimization.   
In the supplementary material, we present our automatic pipeline 
integrating TopGO with resampling and analyzing functions to 
carry out the whole process of resampling, enrichment analysis, 
F-measure calculation, and representing results in tables and fig-
ures. The pipeline also includes a GOstats (Falcon and 
Gentleman, 2007) module for easy analysis of under-represented 
terms. As demonstrated, the pipeline can also calculate analytical 
FDR including, but not limited to, the BH method.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2017. ; https://doi.org/10.1101/218248doi: bioRxiv preprint 

https://doi.org/10.1101/218248
http://creativecommons.org/licenses/by/4.0/


Ge et.al. Page 5 of 7 

In summary, we suggest replacing a fixed p-value for assigning a 
threshold in enrichment calculations with an optimal F-measure, 
which incorporates the well-established and well-defined con-
cepts of precision and recall. 
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Figures 

 
Figure 1. Number of positives for the yeast environmental stress re-
sponse (ESR) set over the full range of uncorrected p-values from 0 to 
1. “Total Positives” is the number of Biological Process GO categories 
returned as a function of the p-value threshold for significance.  “False 
Positives” is the number of total positives multiplied by the False Discov-
ery Rate as calculated by the Benjamini-Hochberg formulation.  “True 
Positives” is “Total Positives” minus “False Positives”.  “Relevant Items”, 
necessary to estimate number of false negatives, is estimated as the largest 
number of true positives computed at any uncorrected p-value. 

 
Figure 2. Number of positives and F-measure values for ESR set, BH-
estimated FDR. a) Shows the number of enriched biological process 
Gene Ontology categories as a function of uncorrected p-value, the Ben-
jamini-Hochberg number of false discoveries, and the projected true pos-
itives, namely the difference between the total positives and the false pos-
itives, for the upregulated ESR gene set. This panel is from the same data 
set at Figure 1.  The number pairs in parenthesis are respectively (uncor-
rected p-value maximizing F0.5, number of true positives at that p-value), 
(uncorrected p-value maximizing F1, number of true positives at that p-
value), (uncorrected p-value maximizing F2, number of true positives at 
that p-value), (uncorrected p-value maximizing true positives, number of 
true positives at that p-value) b) is the same as a) for the downregulated 

gene set. c) shows the F-measures computed from a) and d) the F-measures 
computed from b). Number of relevant items, necessary to calculate recall 
(and therefore (F-measure)), is approximated by (total positives – false 
positives) max. The p-value at which the computed true positives are a max-
imum is 0.19 for upregulated gene list (a) and at 0.104 for downregulated 
gene list. (b) The pairs of numbers in parenthesis in a) and b) indicate the 
p-value and number of returned GO terms at significant markers, specifi-
cally at maximum F0.5 (emphasizing precision), F1 (balanced emphasis be-
tween precision and recall), F2 (emphasizing recall), and Recall where we 
obtain an estimation of relevant elements by maximizing true positive). 

 

Figure 3. Number of positives and F-measure values for ESR set, 
Resampling-estimated FDR. A) Shows the number of enriched bi-
ological process Gene Ontology categories as a function of uncor-
rected p-value, the average number of enriched Gene ontology cat-
egories from the random set as the false positives, and the projected 
true positives, namely the difference between the total positives and 
the false positives, for the up-regulated ESR gene set. The number 
pairs in parenthesis are respectively (uncorrected p-value maximiz-
ing F0.5, number of true positives at that p-value), (uncorrected p-
value maximizing F1, number of true positives at that p-value), (un-
corrected p-value maximizing F2, number of true positives at that p-
value), (uncorrected p-value maximizing true positives, number of 
true positives at that p-value) b) is the same as a) for the down-
regulated gene set. c) shows the F-measures computed from a) and 
d) the F-measures computed from b). Number of relevant items, nec-
essary to calculate recall (and therefore (F-measure)), is approxi-
mated by (total positives – false positives) max. The p-value at which 
the computed true positives are a maximum is 0.038 for upregulated 
gene list (a) and 0.018 for downregulated gene list. (b) The pairs of 
numbers in parenthesis in a) and b) indicate the p-value and number 
of returned GO terms at significant markers, specifically at maxi-
mum F0.5 (emphasizing precision), F1 (balanced emphasis between 
precision and recall), F2 (emphasizing recall), and Recall (where we 
obtain an estimation of relevant elements by maximizing true posi-
tive). 

0.0 0.2 0.4 0.6 0.8 1.0

0
40
0

80
0

uncorrected p−value

Total Positives True Positives False Positives

ESR, Up, BH
N

um
be

r o
f G

O
 T

er
m

s

Relevant Elements

0.00 0.05 0.10 0.15 0.20
0

100

200

300

�

�

�

�

�

Up

uncorrected p-value

N
um

be
r o

f G
O

 T
er

m
s

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0

50

100

150

200

250

�

�

�

�
�

Down

�Total Positives False Positives True Positives

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

max F0.5

max F1
max F2

Up

F−
m
ea
su
re
s

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.0

0.2

0.4

0.6

0.8

1.0

max F0.5

max F1
max F2

Down

Precision F0.5 F1 F2 Recall

N
um

be
r o

f G
O

 T
er

m
s

uncorrected p-value

uncorrected p-value uncorrected p-value

F−
m
ea
su
re
s

(0.19,188)

(0.015,105)

(0.05,137)

(0.141,187)

(0.104,136)

(0.002,96)
(0.011,116)

(0.030,124)

a) b)

c) d)

ESR, BH

0.00 0.01 0.02 0.03 0.04
0

50

100

150

�

�

�
�

�

0.000 0.005 0.010 0.015 0.020 0.025
0

20

40

60

80

100

120

140

�

�

�
� �

�Total Positives False Positives True Positives

0.00 0.01 0.02 0.03 0.04
0.0

0.2

0.4

0.6

0.8

1.0

max F0.5

max F1
max F2

0.000 0.005 0.010 0.015 0.020 0.025
0.0

0.2

0.4

0.6

0.8

1.0

max F0.5

max F1
max F2

Precision F0.5 F1 F2 Recall

Up

uncorrected p-value

N
um

be
r o

f G
O

 T
er

m
s

Down

N
um

be
r o

f G
O

 T
er

m
s

uncorrected p-value

a) b)

Up

F−
m
ea
su
re
s

Down

uncorrected p-value uncorrected p-value

F−
m
ea
su
re
s

c) d)

ESR, Resampling

(0.038,112)
(0.0081,90)

(0.0193,106)

(0.038,112)

(0.018,122)

(0.0032,99)

(0.01,116)
(0.018,122)

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2017. ; https://doi.org/10.1101/218248doi: bioRxiv preprint 

https://doi.org/10.1101/218248
http://creativecommons.org/licenses/by/4.0/


Ge et.al. Page 7 of 7 

Figure 4. Number of positives and F-measure values for Alarm 
Pheromone set, BH-estimated FDR a) shows the number of en-
riched biological process Gene Ontology categories as a function of 
uncorrected p-value, the Benjamini-Hochberg number of false dis-
coveries, and the projected true positives, namely the difference be-
tween the total positives and the false positives, for the upregulated 
alarm pheromone human orthologs gene set. The number pairs in 
parenthesis are respectively (uncorrected p-value maximizing F0.5, 
number of true positives at that p-value), (uncorrected p-value max-
imizing F1, number of true positives at that p-value), (uncorrected 
p-value maximizing F2, number of true positives at that p-value), 
(uncorrected p-value maximizing true positives, number of true pos-
itives at that p-value) b) is the same as a) for the downregulated 
gene set. c) shows the F-measures computed from a) and d) the F-
measures computed from b). Number of relevant items, necessary to 
calculate recall (and therefore (F-measure)), is approximated by (to-
tal positives – false positives) max. The p-value at which the com-
puted true positives are a maximum is 0.385 for upregulated gene 
list (a) and at 0.312 for downregulated gene list. (b) The pairs of 
numbers in parenthesis in a) and b) indicate the p-value and number 
of returned GO terms at significant markers, specifically at maxi-
mum F0.5 (emphasizing precision), F1 (balanced emphasis between 
precision and recall), F2 (emphasizing recall) and Recall (where we 
obtain an estimation of relevant elements by maximizing true posi-
tive). 

Figure 5. Number of Positives and F-measure values for AP set, 
Resampling-estimated FDR. The figure shows the number of enriched 
biological process Gene Ontology categories as a function of uncorrected 
p-value, the average number of enriched Gene ontology categories from 
the random set as the false positives, and the projected true positives, 
namely the difference between the total positives and the false positives, 
for the up-regulated alarm pheromone human orthologs gene set. b) is the 
same as a) for the down-regulated gene set. c) shows the F-measures com-
puted from a) and d) the F-measures computed from b).   Number of rele-
vant items, necessary to calculate recall (and therefore (F-measure)), is 
approximated by (total positives – false positives) max. The p-value at 
which the computed true positives are a maximum is 0.475 for upregulated 
gene list (a) and at 0.048 for downregulated gene list. (b) The pairs of 
numbers in parenthesis in a) and b) indicate the p-value and number of 
returned GO terms at significant markers, specifically at maximum F0,5 
(emphasizing precision), F1 (balanced emphasis between precision and re-
call), F2 (emphasizing recall), and Recall (where we obtain an estimation 
of relevant elements by maximizing true positive). 
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Figure 6. False discovery rate comparison. False discovery rate esti-
mated by Benjamini-Hochberg (solid curve) and Resampling (dashed 
curve) for the ESR set and Alarm Pheromone set. Figure 6 compares the 
number of false discovery rate calculated by Benjamini-Hochberg (solid) 
and Resampling (dashed) in each set: a) up-regulated ESR, b) down-reg-
ulated ESR, c) up-regulated Alarm Pheromone set, and d) down-regulated 
Alarm Pheromone set. Generally, resampling has found higher false dis-
covery rate than Benjamini-Hochberg. At low p-values, the BH and 
resampling methods get similar estimation of false discovery rate for the 
ESR set. 

Figure 7. Comparison of different FDR calculation method on accu-
racy and convergence. a) Comparison of BH and Resampling on random 
“test” sets.  At each p-value (p-values binned at intervals of .0001), the 
mean and standard deviation are calculated and plotted as shown.  The 
random test sets consist of 281 yeast genes, against the background of the 
entire yeast genome. For each of the methods 50 test sets were used and 
the mean plus/minus standard deviation plotted as shown. Resampling hits 
the mark on the average but with substantial noise, while BH systemati-
cally underestimates FDR. b) Evaluation of resampling convergence on a 
real data set, ESR upregulated considered in this paper.  This set is run 
against five different ensembles of null sets, each ensemble containing 100 
null sets.  The mean and standard deviation are plotted and compared to 
the results from the random test sets.  It is seen that the noise of the 
resampling method on a real data set is acceptable. 

Figure 8. Number of GO categories obtained at different thresholds 
including: FDR<0.05, F0.5 optimization, F1 optimization, and F2 opti-
mization, using Benjamini-Hochberg (BH) and Resampling.  Calcu-
lated FDR for the ESR set, up- and down-regulated. BH-estimated F0.5, F1, 
and F2 optimization gives 120, 188, and 331 GO terms for up-regulated 
ESR set respectively, and 98, 129, 161 terms for down-regulated set re-
spectively. Resampling-estimated F0.5, F1, and F2 optimization gives 98, 
126, and 148 terms for up-regulated ESR set respectively, and 100, 124, 
140 terms for down-regulated set respectively. As more emphasis is 
placed on recall, the threshold would increase and more terms would be 
recovered. The F-measure optimization thresholds estimated by BH is 
more relaxed by resampling and consistently brings back more terms. The 
FDR<0.05 threshold is more stringent for the up-regulated set than F0.5 
optimization, but less stringent for the down-regulated set than F0.5 opti-
mization. For both up- down- regulated sets, the most stringent thresholds 
given by BH and resampling are close to each other (FDR<0.05 for up-
regulated, and F0.5 optimization for down-regulated), indicating BH and 
resampling estimates similar FDR at the most stringent thresholds for the 
ESR set, but then deviates as thresholds increase.  
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Figure 9. Number of GO categories obtained at different thresholds 
including: FDR<0.05, F0.5 optimization, F1 optimization, and F2 opti-
mization, using Benjamini-Hochberg (BH) and Resampling – calcu-
lated FDR for the AP set, up- and down-regulated. BH-estimated F0.5, 
F1, and F2 optimization gives 790, 1218, and1363 GO terms for up-regu-
lated AP set respectively, and 453, 767, 799 terms for down-regulated set 
respectively. Resampling-estimated F0.5, F1, and F2 optimization gives 86, 
211, and 941 terms for up-regulated AP set respectively, and 45, 136, 143 
terms for down-regulated set respectively. As more emphasis is placed on 
recall, the threshold would increase and more terms would be recovered. 
The F-measure optimization thresholds estimated by BH is more relaxed 
by resampling and consistently brings back more terms. The FDR<0.05 
threshold is more stringent for the up-regulated set than F0.5 optimization, 
but less stringent for the down-regulated set than F0.5 optimization. In-
creasing the thresholds to optimize F0.5, an F-measure which includes the 
effect recall but still emphasize on precision, brings in many more terms. 
Therefore, for the alarm pheromone set a cutoff of FDR<0.05 might leave 
out too many possible candidates. 
 

 

 
 
 
 
 
 
Additional Files 
Additional file 1 --- pipelinemanual .docx  
“A TopGO- and GOstats-based automated pipeline for GO enrich-
ment analysis using F-measure optimization based on resampling 
and traditional calculation”  
This is a word document giving detailed description of how to run 
the pipeline for resampling or analytical FDR calculation and obtain 
thresholds maximizing F-measures  

 
Additional file 2 --- pipeline.gz 
This file contains source codes of the pipeline and the ESR and AP 
data sets for demo runs. 
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