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Differentiation of multipotent cells is a complex process governed by interactions of 
thousands of genes subject to substantial expression fluctuations. Resolving cell 
state heterogeneity arising during this process requires quantification of gene 
expression within individual cells. However, computational methods linking this 
heterogeneity to biases towards distinct cell fates are not well established. Here, we 
perform deep single-cell transcriptome sequencing of ~2,000 bone-marrow derived 
mouse hematopoietic progenitors enriched for lymphoid lineages. To resolve subtle 
transcriptome priming indicative of distinct lineage biases, we developed FateID, an 
iterative supervised learning algorithm for the probabilistic quantification of cell fate 
bias. FateID delineates domains of fate bias within progenitor populations and 
permits the derivation of high-resolution differentiation trajectories, revealing a 
common progenitor population of B cells and plasmacytoid dendritic cells, which we 
validated by in vitro differentiation assays. We expect that FateID will enhance our 
understanding of the process of cell fate choice in complex multi-lineage 
differentiation systems. 
 
INTRODUCTION 
 
Recent studies utilizing scRNA-seq1–5 and single-cell lineage tracing techniques6–8,  
call into question the traditional view of hematopoietic differentiation as a sequence 
of binary fate choices giving rise to a succession of increasingly fate restricted 
progenitor types9. Evidence from these studies rather suggests early cell fate priming 
starting at the level of multipotent progenitors (MPP) or even within the HSC pool. 
Pronounced heterogeneity of common myeloid progenitors (CMP) was elucidated 
with high resolution1, and an early fate bias emerging in human short term HSCs was 
suggested in a more recent study2. However, heterogeneity of lymphoid progenitors 
has not been well investigated with single-cell resolution. Since lymphoid progenitor 
heterogeneity was previously found by flow cytometry10,11, utilizing distinct sets of cell 
surface markers in combination with differentiation assays, we here perform an 
scRNA-seq analysis to comprehensively elucidate heterogeneity across lymphoid 
progenitors purified from the bone-marrow of adult mice. 
Although a number of methods for lineage reconstruction have been developed12–15, 
these algorithms are not specifically designed to uncover subtle transcriptome 
changes and uniquely assign cells to individual branches without accounting for 
multi-lineage bias. Weak transcriptome modulations also remain undiscovered by 
state-of-the-art clustering methods, which partition cells into groups without 
accounting for the co-existence of fate bias towards multiple lineages within 
individual cells. To elucidate the process of cell fate emergence, we introduce 
FateID, a computational method for the quantification of fate bias, manifested by 
subtle lineage specific transcriptome modulations within a multipotent progenitor 
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population. FateID utilizes prior knowledge to identify committed stages of all 
lineages and tracks differentiation trajectories backward in time by iteratively applying 
a random forests-based classification, in order to predict the likelihood of multipotent 
progenitors to give rise to each lineage. We demonstrate here that FateID reliably 
detects fate bias in various multi-lineage differentiation systems and, in particular, 
elucidates lineage choice of lymphoid-biased hematopoietic progenitors. 
 
RESULT 
 
Heterogeneity of hematopoietic progenitors in the adult bone marrow 
The detection of subtle transcriptome changes reflecting fate biases requires an 
scRNA-seq method that maximizes both sensitivity and accuracy. Recent 
benchmarking has demonstrated that CEL-Seq216 optimized both of these factors, 
but comes with high costs per cell17,18. To enable sensitive transcriptome profiling of 
thousands of cells at low cost, we established an automatized and miniaturized 
version of the CEL-Seq2 protocol on a mosquito® (HTS version, TTP Labtech) 
nanoliter-scale liquid handling robot (Fig. 1a and Online methods; also see 
Supplementary Text 1 and Supplementary Fig. 1). Our Mosquito®-CEL-Seq2 
(mCEL-Seq2) protocol is compatible with single-cell sorting into 384-well plates and 
thus allows simultaneous recording of cell surface marker expression by flow 
cytometry and measurement of single cell transcriptomes by scRNA-seq.  
To investigate the emergence of cell fate bias towards distinct lymphoid lineage we 
sequenced altogether 2,880 hematopoietic progenitors sorted from overlapping 
progenitor populations based on surface expression of Kit and Sca-1 (encoded by 
Ly6a). See Fig. 1b,c and Supplementary Fig. 2.  
With our sorting strategy we expect to purify cells of all major lineages of the 
hematopoietic tree (Fig. 1b,c). We observed a wide distribution of transcript numbers 
per cell ranging from a median of 3,034 in common lymphoid progenitors (CLP) to a 
median of 12,822 in multipotent progenitors (MPP) (Supplementary Fig. 3a). A 
saturation analysis indicated that sequencing was not fully saturated although it 
started to plateau (Supplementary Fig. 3b,c). However, our transcriptome data 
exhibit high sensitivity compared to several recently published datasets on similar cell 
populations 1,2,19 (Supplementary Fig. 3d,e). For further analysis we discarded all 
cells with <2,000 transcripts, leaving us with 1,949 cells. We analyzed the 
transcriptome data with our novel RaceID3 algorithm, a substantially improved 
version of RaceID220 (Online methods). 
A t-SNE map of single-cell transcriptome reveals that Lin-Sca-1hiKithi (LSK) cells and 
lymphoid-primed multipotent progenitors (LMPPs) form a big cloud with CLPs and 
other small clusters in the periphery (Fig. 1d). Cell surface marker expression, 
quantified from intensities measured by index-sorting for a number of discriminative 
markers (Kit, Sca-1, Flt3, Il7r, Ly6d) delineates cells from the distinct sorting gates 
and exhibits moderate correlation with the mRNA level of the respective marker 
(Supplementary Fig. 3f-k). 
To resolve heterogeneity within these populations, including rare cell types, we 
performed clustering analysis with outlier detection using RaceID3. The identified 
clusters discriminate sub-populations expressing marker genes of distinct lymphoid 
and myeloid lineages (Fig. 1e,f and Supplementary Fig. 4). Cluster 6 and 10 
comprise Ebf1-expressing cells of the B lineage, while cells in cluster 12 express 
Siglech, a marker of plasmacytoid dendritic cells (pDCs). The innate lymphoid 
branches were resolved into natural killer (NK) cell (cluster 24), NKT cell (clusters 13 
and 18) and innate helper lymphoid cell (ILC) type 2 progenitors (cluster 31) based 
on expression of Ncr1, Cd3d, and Gata3, respectively. We also identified cells of 
myeloid lineages, in particular, with our alternative sorting strategy (Fig. 1c). Clusters 
8, 9 and 11 express Car2, Gata1, and Hbb-bs at variable levels and thus represent 
different stages of erythroblast maturation. Clusters 16 and 17 comprise neutrophil 
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precursors with elevated levels of Mpo and Elane, while clusters 4 and 19 express 
Irf8 and MHCII components and therefore represent conventional dendritic cells 
(cDC). The central clusters 1, 2, and 3 comprise mainly LSK cells and LMPPs, but 
already exhibit variable levels of distinct lineage markers. For instance, cluster 1 
exhibits up-regulation of Car2 whereas cluster 3 shows increased expression of Mpo. 
While the former is discriminating the erythroid lineage from neutrophils1, the latter 
has been shown to be expressed in neutrophil and monocyte progenitors1. Cluster 7 
contains predominantly CLPs and, consistently, exhibits up-regulation of Il7r and 
Rag1 compared to the other early progenitor clusters 1, 2 and 3. 
The performance of RaceID3 on this dataset was benchmarked against a number of 
alternative methods, i.e. Seurat21,22, SC323, RCA24, ICGS3, based on the expression 
distribution of known lineage markers across clusters. An ideal clustering method is 
expected to maximize the fold enrichment of a marker gene in a particular cluster and 
minimize the spread of the expression domain across clusters and RaceID3 
optimizes both metrics (see Fig. 1g, Supplementary Fig. 5 and Supplementary 
Text 2). 
In conclusion, we recovered progenitors of the main hematopoietic lineages and 
found that the pool of early hematopoietic progenitors segregates into sub-
populations with transcriptome changes indicative of distinct lineages. 
 
FateID quantifies fate bias towards distinct lineages in multipotent 
hematopoietic progenitors 
Our clustering analysis suggested population heterogeneity within the multipotent 
progenitor compartment, correlated with the expression of lineage-specific markers 
(Fig. 1f and Supplementary Fig. 4). However, clustering analysis is insensitive to 
subtle, gradual gene expression changes, potentially indicating the onset of 
transcriptional priming towards distinct lineages within homogenous multipotent 
progenitor populations. Moreover, clustering does not estimate the likelihood of a 
given cell to differentiate towards each lineage. To quantify fate bias of individual 
progenitor cells from single-cell RNA-seq data, we developed FateID, a supervised 
algorithm, which starts from committed cell populations of all lineages emerging from 
a common progenitor, obtained by prior knowledge. FateID iteratively moves 
backward along the differentiation trajectory to infer transcriptome priming towards 
each lineage at earlier differentiation stages. More precisely, FateID utilizes random 
forests25, a supervised learning method known for its robustness to over-fitting, to 
learn the identity of cells in a test set given the training data. FateID starts with target 
clusters of committed cell populations, identified by clustering or marker gene 
analysis.  Cells in the local neighborhood of each of these target clusters are 
selected to build a test set. Next, a defined number of cells from the target clusters, 
most similar to the test set, is used as training set to derive the probability of each 
cell in the test set to belong to any of the target clusters based on random forests 
votes. Cells with a significant bias towards a particular lineage become part of the 
respective target cluster and are utilized for classification in the next iteration. FateID 
proceeds until the fate biases of all cells have been inferred (Fig. 2a and Online 
methods).  
We applied FateID to the hematopoietic progenitors with target clusters given by 
committed states of all lineages as identified by marker genes (Fig. 1f and 2b and 
Online methods) after removing small outlier clusters with less than five cells. We 
compared FateID to the recently published STEMNET algorithm2. Within the early 
progenitor clusters comprising LSK cells, LMPPs, and CLPs (clusters 1,2,3,7), 
FateID could discriminate sub-populations with pronounced fate bias towards B cells, 
pDCs, neutrophils, and erythrocytes (Fig. 2c-f). Neither FateID nor STEMNET could 
identify substantial fate bias for cDCs and NK/NKT/ILCs (Supplementary Fig. 6), 
potentially due to the lack of intermediate progenitor stages of these lineages in our 
datasets. This is expected for cDCs, since they terminally differentiate in peripheral 
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organs26 and our analysis might have picked up recirculating cells. The fate bias, as 
quantified by the fraction of random forests votes for the respective target cluster, 
correlated, within the early progenitor clusters, with the expression of early lineage 
markers (Fig. 2c-f and Supplementary Fig. 7), e. g. Car2 for erythroblasts, Mpo for 
neutrophils and monocytes, Rag1 for B cells, Irf8 for pDCs. The correlation derived 
with FateID was significantly higher than with STEMNET for the majority of genes 
and comparable for the remaining ones (Fig. 2g). Moreover, FateID had in general a 
larger dynamic range than STEMNET (Supplementary Fig. 8). More precisely, while 
STEMNET divided cells bi-modally into cells with high bias and a finite baseline-level 
of >10%, the fate bias derived by FateID covers a continuum ranging from zero to 
one.  While STEMNET and FateID could classify more mature stages equally well, 
STEMNET did not resolve the fate bias in early progenitors as observed by FateID, 
consistent with expression of early markers. The likely reason for this is that 
STEMNET classifies progenitors solely based on gene expression in mature cells, 
while the training set of FateID moves “backward” along the differentiation trajectory 
with the cells to be classified and hence avoids classifying more naïve cells solely 
based on markers expressed at mature stages. 
Finally, FateID permits the extraction of genes with high importance for classification 
in any of the iterations (Online methods). Following the relative importance at 
subsequent iterations, starting from the target clusters, it turns out that markers of 
more mature stages are initially important, but early stages are classified by different 
sets of genes (Fig. 3a and Supplementary Fig. 9a-f), highlighting the relevance of a 
dynamic training set. For example, classification of the B cell lineage (Fig. 3a) starts 
with cells in cluster 10, highly expressing B cell receptor and surrogate light chain 
components (Vpreb1, Vpreb3, Igll1). During initial iterations, these genes are most 
important for classification, while at earlier differentiation stages (later iterations), 
corresponding to proB cells, Pax5, and, even earlier, Ebf1 become important. Finally, 
within common lymphoid progenitors, recombination associated genes, such as 
Rag1 and Dntt become more important for classification. Hence, the feature 
importance as a function of the differentiation progress reveals stage specific 
markers and uncovers the complexity of gene regulatory changes during 
differentiation. 
The importance of the iterative classification strategy of FateID is also evident from a 
comparison to a classification in a single step, where the fate bias distribution across 
lineages within the multipotent compartment becomes largely uniform (Fig. 3b). 
In order to enable purification of lineage-biased progenitors we correlated the FateID 
bias predicted for each lineage to cell surface marker expression measured by index 
sorting (Supplementary Fig. 9g). This analysis confirmed that erythrocyte-biased 
progenitors localize to a naïve KithiSca-1hiFlt3-Il7r- compartment, while neutrophil bias 
increases for KithiSca-1loFlt3intIl7r- cells. Expectedly, B cell lineage bias is enhanced 
for Il7rhiLy6dhi cells while pDC bias correlates with Flt3 surface expression. Although 
these observations are consistent with known sorting schemes, additional markers 
are needed to resolve populations with weak lineage bias. 
 
FateID reveals a common progenitor of B cells and pDCs 
The origin of pDCs and cDCs in the bone marrow is still under debate. While in vitro 
differentiation assays and genetic lineage tracing suggest a myeloid origin of cDCs27, 
pDCs have mixed origin with a substantial fraction (~26%) exhibiting a history of 
Rag1 expression suggesting partial lymphoid origin28,29. A comparison of the fate bias 
for B cells (Fig. 2c) and pDCs (Fig. 2e) reveals that B cells arise from the Rag1hi 
compartment of the CLP while pDCs are predicted to arise from a progenitor pool 
encompassing Il7r+Rag1lo CLPs and Il7r- LMPPs (Supplementary Fig. 3). This 
observation suggests that the pDC lineage serves as a default pathway of Il7r+Flt3+ 
CLP differentiation unless cells are pushed towards the B cell fate by a secondary 
signal, e.g. by sufficiently strong IL7 signalling. To further elucidate branching we 
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visualized the cell population in low dimensions using different algorithms provided 
by FateID (Fig. 4a and Online method). A pseudo-temporal order of cells on the B 
cell, the myeloid, and the pDC differentiation trajectories was inferred by fitting a 
principal curve to all cells with a fate bias >15% for the respective lineage in a 2-
dimensional t-SNE map (Fig. 4a). Topological ordering of z-score-transformed 
pseudo-temporal expression profiles identified stage-specific co-expression modules 
(Fig. 4b and Supplementary Fig. 10a). Known regulators of B cell differentiation, 
e.g., the recombination-activating gene Rag1, the preB cell receptor component Igll1 
and proliferation markers such as Pcna show the expected pattern reflecting heavy 
and light chain B cell receptor recombination with intermittent proliferation (Fig. 4b). 
Pseudo-temporal ordering of dendritic cell progenitors recovers a gradual increase of 
Irf8, already during early progenitor stages, and up-regulation of known lineage 
determining transcription factors, such as Bst2 and Tcf4 at later stages 
(Supplementary Fig. 10a). However, early progenitors up-regulate Il7r to similar 
levels like B cell progenitors, but fail to up-regulate Rag1 to the same extent (Fig. 
4c). On the other hand, B cell progenitors do not express Csf1r, while this receptor is 
expressed in myeloid progenitors, and, more stochastically, in progenitors with 
predicted pDC bias (Supplementary Fig. 10b and Fig. 4c). 
To systematically identify markers of sub-populations with dominating pDC or B cell 
bias, respectively, within the lymphoid progenitor pool (clusters 2 and 7), we 
performed a differential gene expression analysis comparing groups of cells with 
>33% bias towards pDCs and B cells and higher bias towards B cells than pDCs or 
vice versa (Fig. 4d). We found that B cell-biased progenitors already up-regulate 
known B lineage genes (Ebf1, Pax5, Vpreb3, Rag1, Cd79a), while higher levels of 
Runx2, Irf8, Ncf1, Bcl2, and Cd34 were observed in pDC-biased progenitors. The 
increased importance of these genes during random forests-based classification of 
the earlier stages is consistent with this observation (Supplementary Fig. 9b,c). 
Our analysis identifies Cd34 as a cell surface marker that discriminates between B 
cell and pDC bias within Il7r+Flt3+ CLPs (Supplementary Fig. 10b). Reassuringly, 
the previously described marker Ly6d for B cell biased CLPs (BLP)10 did also come 
up in our analysis. However, it is also expressed in more mature pDCs 
(Supplementary Fig. 10b) and therefore not ideal to separate B cell and pDC 
lineage. In conclusion, FateID predicts the existence of a common progenitor of B 
cells and pDCs and suggests the differentiation towards pDCs as a default pathway 
in the lymphoid progenitor compartment. 
To validate FateID on additional datasets we applied the algorithm to published 
single-cell transcriptome data for common myeloid progenitors1 (see Supplementary 
Text 3 and Supplementary Fig. 11,12) and intestinal epithelial cells20 (see 
Supplementary Text 4 and Supplementary Fig. 13-15). In contrast to available 
methods for the inference of lineage trees such as Monocle 230 (Supplementary Fig. 
16), which perform a fixed assignment of cells to unique branches, FateID uncovers 
multi-lineage bias within early progenitors that have likely not yet committed to a 
terminal fate.  
 
In vitro differentiation assay confirms common progenitor of B cells and pDCs 
In order to validate the emergence of pDCs and B cells from a common murine 
lymphoid progenitor population, we sorted Flt3+ Lin-KitloSca-1lo cells and sub-gated 
on Il7r+Cd34-, Il7r+Cd34+, and Il7r-Cd34+ populations (Fig. 5a and Supplementary 
Fig. 17). In addition, we sorted LMPPs as in the original experiment. After 7 days of 
culturing ~400 cells from each of these four populations on OP9 feeder cells in B cell 
and pDC medium, respectively, we analyzed the relative B cell and pDC lineage 
output by measuring surface expression of Cd19 and Siglech (see Online methods). 
In agreement with the FateID predictions (Fig. 2c,e), Il7r-Cd34+ positive cells 
preferentially differentiated into Siglech+ pDCs and Il7r+Cd34+ as well as Il7r+Cd34- 
cells gave rise to Siglech+ pDC and Cd19+ B cells. We did not observe cells positive 
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for both Cd19 and Siglech. In congruence with the FateID prediction, the fraction of 
pDCs was markedly reduced by 66% (37%) for Il7r+Cd34- versus Il7r+Cd34+ cells 
after culturing in B cell (pDC) medium (Fig. 5b,c). We confirmed purity of our input 
populations by single-cell RNA-seq and analyzed these data together with single-cell 
transcriptome data of the cultured cells (Fig. 5d). As expected, the sorted Il7r-Cd34+ 
and Il7r+Cd34- input populations co-clustered with mixed Flt3+ Lin-KitloSca-1lo but 
segregated into sub-populations positive for Il7r and Cd34 mRNA, respectively (Fig. 
5d,e). In contrast, cultured cells were separated into clusters of B cells, pDCs, cDCs, 
and lysozyme expressing monocytes (Fig. 5d,e). The ratio of the numbers of B cells 
and pDCs after culturing as determined from single-cell RNA-seq data was in 
agreement with the flow cytometry data and the FateID predictions, i.e. Il7r-Cd34+ 
only differentiated into pDCs, while Il7r+Cd34+ and Il7r+Cd34- cells gave rise to both 
lineages in culture with twice as many B cells versus pDCs for the Il7r+Cd34- cell 
culture (Fig. 5f). We point out that the sensitivity of the anti-Cd34 antibody is limited 
and thus discrimination of Cd34+ and Cd34- is not strictly quantitative. Moreover, we 
observed that B cell clones grow much more rapidly in culture. Therefore, although a 
strict quantitative comparison is not possible, the assay confirms the FateID 
prediction of a common lymphoid progenitor population of B cells and pDCs. 
 
FateID suggests a common progenitor of B cells and pDCs in human 
In order to compare the mouse hematopoietic progenitor populations to their 
counterpart in human, we re-analyzed data from a recent study2 (Supplementary 
Fig. 18a,b). As one of the core findings, which was extensively validated by in vivo 
and in vitro differentiation experiments, surface expression of CD135 (encoded by 
FLT3) and CD45RA discriminated lymphoid/myeloid- from 
megakaryocyte/erythrocyte-primed progenitors. FateID analysis confirmed this 
segregation, but showed a more pronounced separation of the two groups 
(Supplementary Fig. 18c). Moreover, the correlation of the predicted FateID bias to 
surface marker expression leads to co-clustering of eosinophil/basophil/mast cell 
progenitors with megakaryocyte/erythrocyte progenitors. This finding, which is not 
apparent from the STEMNET predictions, is supported by co-expression of common 
transcription factors (GATA2 and TAL1) and consistent with a recently described 
early bifurcation into Gata1-positive erythrocyte/megakaryocyte/eosinophil/mast cell 
progenitors and Gata1-negative monocytes/neutrophils/lymphocytes in the murine 
system31.  
Moreover, RaceID3 could discriminate two transcriptionally similar lymphoid 
progenitor clusters, i.e. cluster 3 and 8, which specifically up-regulated genes of the 
B cell and pDC lineages, respectively, such as EBF1 and IRF8. Both clusters co-
express lymphoid genes, such as DNTT and IL7R, akin to the common progenitor 
cluster observed in the mouse data. Within this population, FateID discriminated cells 
with more pronounced bias towards either B cells or pDCs, depending on expression 
of IRF8 (Supplementary Fig. 18d-f). Finally, FateID predicted increased B cell bias 
within a more naïve population, coinciding with low expression of the preB cell 
receptor component VPREB1. This remained undetected by STEMNET, which 
showed a more uniform fate bias in early progenitors (Supplementary Fig. 18g,h). 
In summary, FateID analysis supports the existence of a common differentiation 
pathway of B cells and pDCs also in human. 
 
DISCUSSION 
 
Here, we utilized a down-scaled plate-based implementation of the CEL-Seq2 
method, to perform sensitive transcriptome profiling of thousands of lymphoid biased 
murine bone marrow cells at low cost and developed the FateID algorithm for the 
estimation of multi-lineage fate biases. We make all our data publicly available on a 
website (http://hematopoietic-progenitors.ie-freiburg.mpg.de) to facilitate visualization 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 11, 2017. ; https://doi.org/10.1101/218115doi: bioRxiv preprint 

https://doi.org/10.1101/218115
http://creativecommons.org/licenses/by-nc-nd/4.0/


  7 

of gene expression domains and fate bias together with differential gene expression 
analysis.  
Our study reveals that the multipotent hematopoietic progenitor population 
segregates into sub-populations with dominant fate bias towards one of the major 
lineages, consistent with previous studies suggesting an early fate priming1,2,6. A 
principal curve analysis of the multipotent clusters 1,2,3, and 7 (Fig. 6a) suggests 
successive overlapping expression domains of Kit, Ifitm1, Cd34, Cd48 and Flt3 along 
the pseudo-time axis, concordant with the hypothesized order and mutual similarities 
of previously described MPP1-MPP4 populations32,33 (Fig. 6b). This order was also 
confirmed by StemID2 (Supplementary Fig. 19). Our data indicate, consistent with 
prior findings34–36, that cells of megakaryocyte/erythrocyte bias are closest to the 
MPP1/MPP2 compartment, delineated by up-regulation of Ifitm1 and Mki6733, 
followed by cells of neutrophil/monocyte, pDC, and B cell bias (Fig. 6c).  
Although our analysis suggests early priming, we could detect domains of 
overlapping fate bias and validated a common progenitor population for pDCs and B 
cells: concomitant with up-regulation of lymphoid lineage genes such as Flt3, Dntt 
and Il7r, cells acquire increased bias towards the pDC lineage. Progenitors with 
myeloid and pDC biases still express markers of MPPs, such as Cd34. Only upon 
further down-regulation of Cd34 and concomitant up-regulation of Il7r and Rag1, cells 
become more biased towards B cells. A picture emerges where myeloid cells branch 
off first, followed by pDC progenitors, spanning a continuous spectrum ranging from 
cells with alternative myeloid potential to cells with alternative lymphoid bias, and an 
ultimate branching of B cells. This is in line with previous studies suggesting mixed 
myeloid and lymphoid origin of pDCs29,37–40 and could help to resolve this 
controversy. Hence, our study sheds light on the origin of pDCs in the bone marrow, 
adding another piece to the puzzle of pDC versus cDC differentiation, which is still 
subject of intense research37,38,41–43.  
As another example, we note that FateID recovered a recently characterized bi-
potent progenitor of monocytes and neutrophils3 (Supplementary Fig. 20). 
In summary, FateID reveals heterogeneity of multipotent progenitors and links the 
underlying transcriptome modulations to lineage biases. These predictions shed light 
on the early regulators of cell fate choice and permit a functional analysis of fate- 
biased sub-populations if those can be isolated based on de novo identified marker 
genes. We envision that FateID will be a valuable tool for elucidating lineage choice 
in any multilineage differentiation system. 
 
Accession Codes. The GEO accession number for the RNA sequencing datasets of 
murine hematopoietic progenitors reported in this paper is GEO: GSE100037. 
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ONLINE METHODS 
 
Mice. 5-week old male C57BL/6J wildtype mice were purchased from Charles River 
or obtained from in-house breedings. Mice were sacrificed in a carbon dioxide 
chamber and femora and tibiae were collected. All experiments were approved by 
the Institute’s Review Committee and the local Government. 
 
Single cell sort of hematopoietic progenitors. Bone marrow of 5-week old male 
C57BL/6J wildtype mice was isolated from femora and tibiae by flushing using 1x 
MojoSort™ Buffer (BioLegend®, 480017). Bone marrow cells were filtered (sysmex 
CellTrics® 30 µm) and cells were counted (Innovatis CASY® Cell Counter). 
Hematopoietic progenitors were enriched using the MojoSort™ Mouse 
Hematopoietic Progenitor Cell Isolation Kit (BioLegend®, 480004) according to the 
manufacturer’s protocol. After the enrichment cells were counted again and 1-5x106 
cells per 100 µl 1x MojoSort™ Buffer were stained on ice and in the dark for 20 min 
using antibodies against c-Kit/CD117 (BV510, BioLegend®, 135119), Sca-1 (BV421, 
BioLegend®, 108127), Flt3/CD135 (PerCP-eFluor® 710, eBioscience™, 46-1351-
80), CD48 (APC-Cy7, BioLegend®, 103432) or Ly-6C (APC/Fire™ 750, BioLegend®, 
128045), CD27 (PE, BD, 558754) or SiglecH (PE, BioLegend®, 129605), Ly-6D 
(Alexa Fluor® 647, BD, 561147), IL-7Rα/CD127 (PE/Dazzle™ 594, BioLegend®, 
135031) and the lineage markers CD3e (FITC, BD,  553062), Ter119 (FITC, 
eBioscience™, 11-5921-82), B220 (FITC, BD, 553088), Gr-1/Ly-6G (FITC, BD, 
553127), CD11b/Mac-1 (FITC, eBioscience™, 11-0112-85). The cells were sorted on 
a BD Influx™ cell sorter using single cell mode and index information was recorded. 
Cells were sorted into 384-well plates containing 240 nl lysis buffer (see below) and 
1.2 µl of hydrophobic encapsulation barrier (Vapor-Lock, Qiagen, 981611). After the 
single cell sort, the plates were centrifuged at 2200 g at 4˚C for 10 min, snap-frozen 
thereafter with liquid nitrogen and stored at -80˚C until they were processed. 
 
Amplified RNA preparation from single cells. The CEL-Seq2 protocol, as previously 
described16, was adapted for the use with a nanoliter pipetting robot (mosquito® 
HTS, TTP Labtech). The Volumes used in the original protocol were reduced by 5-
fold for the single cell sort of hematopoietic progenitors and all the reagent ratios 
were kept the same. Hematopoietic progenitors were sorted into 384-well plates 
(Corning, PCR-384-RGD-C).  Every well was filled with 240 nl lysis buffer. Lysis 
buffer was prepared using the following reagents with final ratio in parentheses: 10 
mM dNTP (1/12), 1:100000 ERCC mix 1 or 2 (2/12), water with 0.35% Triton® X-100 
(7/12) and 25ng/µl of 1 out of 192 uniquely barcoded polydT primers with UMI (2/12). 
1.2 µl of hydrophobic encapsulation barrier (Vapor-Lock, Qiagen, 981611) were 
added onto the lysis buffer in every well. The sorted plates were incubated at 90˚C 
for 3 min and cooled to 4˚C thereafter. For cDNA first strand synthesis 160 nl of First 
Strand Reaction Mix containing SuperScript™ II Reverse Transcriptase and First 
Strand Synthesis Buffer (Invitrogen, 18064014) and RnaseOUT™ (Invitrogen, 
10777019) was added and the plates were incubated at 42˚C for 1 hour followed by 
heat-inactivation at 70˚C for 10 min. Second strand synthesis was performed at 16˚C 
for 2 h by adding 2196 nl of Second Strand Reaction Mix containing E. coli DNA 
Polymerase I (Invitrogen, 18010025), E. coli DNA Ligase (Invitrogen,  18052019), 
RNaseH (Invitrogen,  18021071) and Second Strand Buffer (Invitrogen,  10812014).  
For cDNA purification, 96 or 192 wells containing uniquely barcoded single cell 
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samples were pooled and 0.8 volumes of Agencourt® AMPure XP beads (Beckman 
Coulter, A63881) were mixed with the pooled samples and incubated for 15 min at 
room temperature. The samples were put on a magnetic stand (96 well format) and 
incubated for 5min, the supernatant was removed and the beads were washed twice 
by adding 180 µl of 80% ethanol and by incubating for 40 s. The beads were dried for 
10 min and resuspended in 7 µl nuclease free water (Invitrogen™, AM9937).  For the 
generation of amplified RNA (aRNA) 1.6 µl from each nucleotide solution (ATP, CTP, 
GTP, UTP), 1.6 µl of 10x Reaction Buffer and 1.6 µl of T7 Enzyme from the 
MEGAscript® T7 Transcription Kit (Invitrogen, AM1334) were added to the eluted 
cDNA and incubated at 37˚C for 13 h. After in vitro transcription 6 µl of Exo-SAP-IT™ 
Express PCR Product Cleanup Reagent (Applied Biosystems™, 75001.1.ML) was 
added and the samples were incubated for another 15 min at 37˚C. Thereafter, 
aRNA was fragmented by adding 2.44 µl 10x RNA Fragmentation Buffer and 
incubating at 94 ˚C for 3 min and fragmentation was stopped by adding 2.44 µl RNA 
Fragmentation Stop Solution (NEB, E6150S). For aRNA purification, 0.8 volumes of 
Agencourt® RNAclean XP beads (Beckman Coulter, A63987) were added to the 
sample and incubated for 15 min at room temperature. After that, samples were 
placed on a magnetic stand and incubated for 5 min, the supernatant was removed 
and the beads were washed three times by adding 180 µl 70% ethanol and 
incubating for 40 s. Ethanol was removed, beads were air-dried for 10 min and 
resuspended in 7 µl of nuclease free water. 
 
Single cell library preparation from aRNA. The aRNA was reversely transcribed in 
order to generate libraries for sequencing, as previously described16. 1 µl of custom 
random hexamer RT primer (GCCTTGGCACCCGAGAATTCCANNNNNN) and 0.5 µl 
of 10mM dNTP were added to the aRNA. The samples were incubated at 65˚C for 5 
min and cooled to 4˚C afterwards. Thereafter 4 µl of First Strand Reaction Mix 
containing SuperScript™ II Reverse Transcriptase and Buffer (Invitrogen, 18064014) 
and RnaseOUT™ (Invitrogen, 10777019) was added and samples were first 
incubated at 25˚C for 10 min followed by incubation at 42˚C for 1 hour. To every 
sample 2 µl of one uniquely indexed RPI index primer and 2 µl of RP1 primer 
(TruSeq Library Prep, sequences available from Illumina), 25 µl of Phusion® High-
Fidelity PCR Master Mix with HF Buffer (NEB, M0531) and 11 µl of nuclease-free 
water were added. PCR was performed using 98˚C for 30 s as initial step, followed 
by 11 cycles of amplification (98˚C for 10 s, 60˚C for 30 s, 72˚C for 30 s) and a final 
extension at 72˚C for 10 min. To each sample 1 volume (50 µl) of Agencourt® 
AMPure XP beads (Beckman Coulter, A63881) was added and the samples were 
incubated at 25˚C for 15 min. The samples were incubated for 5 min on a magnetic 
stand (96 well format), the supernatant was removed and the beads were washed 
twice by adding 180 µl of 80 % ethanol and by incubating for 40 s. Ethanol was 
removed and beads were dried for 10 min at room temperature. DNA was eluted with 
25 µl nuclease-free water and the purification was repeated with an adjusted volume 
of magnetic beads (25 µl). After the final step the samples were eluted in 10 µl 
nuclease-free water. DNA concentration and fragment size were determined using 
the Qubit® dsDNA HS Assay Kit (Invitrogen, Q32854) and the Agilent High 
Sensitivity DNA Kit for Bioanalyzer (Agilent Technologies, 5067-4627), respectively. 
Libraries were sequenced on an Illumina HiSeq 2500 System in high output run 
mode at a depth of ~200,000 reads per cell. 
 
Mouse embryonic stem cell culture. Mouse embryonic stem cells (mESC) were 
cultured in KnockOut™ DMEM (Gibco, 10829018) supplemented with 15% 
KnockOut™ Serum Replacement (Gibco, 10828028), 1x non-essential amino acids 
(Gibco, 11140050), 1mM sodium pyruvate (Gibco, 11360070), 1x GlutaMAX™ 
(Gibco, 35050061), 1x Penicillin/Streptomycin (Gibco, 10378016), 5µg/ml Insulin 
(Sigma, I0516), 100 µM 2-mercaptoethanol (Gibco, 31350010) and 1000 U/ml LIF 
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(Millipore, ESG1107). Medium was changed on daily basis. Confluent cells were de-
attached by incubating with Trypsin-EDTA (Gibco, 25200056) at 37˚C for 5 min. 
mESC were split every 3 - 5 days with 1:30 - 1:50 split ratios. 
 
Single cell library preparation for different volume reductions. The ratios of reagents 
from the original CEL-Seq2 protocol were maintained for all the volume reductions. 
The protocol for different volume reductions was conducted as described above 
except that the volumes for the lysis buffer plate, first strand synthesis and second 
strand synthesis were adjusted. For every condition 48 wells of a 384-well plate were 
prepared with 1.2 µl , 240 nl, 171 nl or 120 nl lysis buffer corresponding to 1-fold 
(original CEL-Seq2 volume), 5-fold, 7-fold or 10-fold reductions, respectively. Every 
well contained 20 nl of 1:75000 diluted ERCC mix 1. Lysis buffer was covered with 
hydrophobic encapsulation barrier (Vapor-Lock, Qiagen, 981611). mESC were 
harvested using Trypsin-EDTA (see above) and single cells were sorted into each 
well using the BD Influx™ cell sorter. For first strand synthesis the adjusted volumes 
0.8 µl, 160 nl, 114 nl or 80 nl of First Strand Reaction Mix were used for 1-fold, 5-fold, 
7-fold or 10-fold volume reductions, respectively. Second strand synthesis was 
performed using 11 µl, 2196 nl, 1569 nl or 792 nl of Second Strand Reaction Mix for 
the different volume reductions, respectively. The rest of the protocol was performed 
as described above. 
 
Staining and sorting of hematopoietic progenitors for cell culture and single cell 
sequencing. Bone marrow of 5-week old male C57BL/6J wild type mice was isolated 
from ilia, femora and tibiae by crushing using 1x MojoSort™ Buffer (BioLegend®, 
480017). Bone marrow cells were filtered (sysmex CellTrics® 30 µm) and cells were 
counted (Innovatis CASY® Cell Counter). Hematopoietic progenitors were enriched 
using the MojoSort™ Mouse Hematopoietic Progenitor Cell Isolation Kit 
(BioLegend®, 480004) according to the manufacturer’s protocol. After the 
enrichment cells were counted again and 5-7x106 cells per 100 µl 1x MojoSort™ 
Buffer were stained on ice and in the dark for 40 minutes using antibodies against c-
Kit/CD117 (BV510, BioLegend®, 135119), Sca-1 (BV650, BioLegend®, 108143), 
Flt3/CD135 (PerCP-eFluor® 710, eBioscience™, 46-1351-80), CD48 (APC/Fire™ 
750, BioLegend®, 103445), CD34 (PE, BD, 551387), Ly-6D (Alexa Fluor® 647, BD, 
561147), IL-7Rα/CD127 (BV421, BD, 566377) and the lineage markers CD3e (FITC, 
BD, 553062), Ter119 (FITC, eBioscience™, 11-5921-82), B220 (FITC, BD, 553088), 
Gr-1/Ly-6G (FITC, BD, 553127), CD11b/Mac-1 (FITC, eBioscience™, 11-0112-85), 
CD19 (FITC, BioLegend®, 101505), Siglec-H (FITC, BioLegend®, 129603). The cells 
were sorted on a BD FACSAria™ Fusion cell sorter. For cell culture, cells from 
different gates (see sorting strategy) were sorted using 4-way purity mode into 100 µl 
RPMI 1640 medium (complete formulation, Thermo Fisher Scientific, A1049101) 
supplemented with 10% Fetal Calf Serum (Corning BV, 35-016-CV), 1x 
Penicillin/Streptomycin (Gibco, 10378016) and 55µM 2-Mercaptoethanol (Gibco, 
21985023). For single cell sequencing, single cells were sorted using single cell 
mode and index information was recorded. Cells were sorted into 384-well plates 
containing 240 nl lysis buffer (see below) and 1.2 µl of hydrophobic encapsulation 
barrier (Mineral Oil, Sigma-Aldrich, M8410). After the single cell sort, the plates were 
centrifuged at 2200 g at 4˚C for 10 minutes, snap-frozen thereafter with liquid 
nitrogen and stored at -80˚C until they were processed using the down-scaled 
version of CEL-Seq2 (mCEL-Seq2). 
 
Cell culture of sorted hematopoietic progenitors. Sorted hematopoietic progenitors 
were seeded onto Mitomycin C-treated OP9 feeder cells. Approximately 400 cells 
were plated in one well of a 96-well plate and grown in 200 µl of medium at 37 ˚C 
and 5% CO2. For the differentiation of the sorted progenitors towards plasmacytoid 
dendritic cells RPMI 1640 medium (complete formulation, Thermo Fisher Scientific, 
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A1049101) was used and supplemented with 10% Fetal Calf Serum (Corning BV, 35-
016-CV), 1x Penicillin/Streptomycin (Gibco, 10378016), 55µM 2-Mercaptoethanol 
(Gibco, 21985023) and 200 ng/ml FLT3L (BioLegend, 550704).  
In order to differentiate the sorted cells towards the B cell lineage Opti-MEM (Thermo 
Fisher Scientific, 31985062) was used and supplemented with 10% Fetal Calf Serum 
(Corning BV, 35-016-CV), 1x Penicillin/Streptomycin (Gibco, 10378016), 55 µM 2-
Mercaptoethanol (Gibco, 21985023) and 5 ng/ml IL-7 (BioLegend®, 577802), 10 
ng/ml SCF (BioLegend®, 579702) as well as 10 ng/ml FLT3L (BioLegend®, 550704). 
On the following day after sorting 100 µl of medium was removed and replaced with 
fresh medium. Every two days 100 µl of medium was replaced with fresh medium. 
The cells were grown for 7 days and thereafter harvested to perform staining on 
lineage markers and to sort them for single cell sequencing. 
 
Staining of cultured hematopoietic progenitors for flow cytometry analysis and single 
cell sequencing.  Cultured cells were detached by resuspension and washed once 
with 1x MojoSort™ Buffer (BioLegend®, 480017). Staining of the cells was 
performed in 50 µl 1x MojoSort™ Buffer for 40 minutes using antibodies against c-
Kit/CD117 (BV510, BioLegend®, 135119), Sca-1 (BV650, BioLegend®, 108143), 
Flt3/CD135 (PerCP-eFluor® 710, eBioscience™, 46-1351-80), CD34 (PE, BD, 
551387), Ly-6D (Alexa Fluor® 647, BD, 561147), IL-7Rα/CD127 (BV421, BD, 
566377), Siglec-H (FITC, BioLegend®, 129603) and CD19 (APC/Fire™ 750, 
BioLegend®, 115557). Cells were washed with 1x MojoSort™ Buffer and 
resuspended in 1x MojoSort™ Buffer again. Stained cells were analyzed on a BD 
LSRFortessa cell analyzer or sorted using the BD FACSAria™ Fusion cell sorter into 
384-well plates containing 240 nl lysis buffer (see below) and 1.2 µl of hydrophobic 
encapsulation barrier (Mineral Oil, Sigma-Aldrich, M8410) for single cell library 
preparation using CEL-Seq2. 
 
Preparation of OP9 feeder cell layer. OP9 feeder cells were grown in 1x MEM Alpha 
(Gibco, 12561-056) supplemented with 20% Fetal Calf Serum (Corning BV, 35-016-
CV), 1x Penicillin/Streptomycin (Gibco, 10378016) and 55 µM 2-Mercaptoethanol 
(Gibco, 21985023). OP9 cells were grown until 80 - 90% confluency and detached 
using Trypsin-EDTA (Gibco, 25200056) at 37˚C for 5 minutes. Cells were 
resuspended in fresh complete MEM Alpha medium and cell concentration was 
adjusted to seed approximately 40000 - 50000 cells in 100 µl of medium per well of a 
96-well plate. 
 
Quantification of transcript abundance. Paired end reads were aligned to the 
transcriptome using bwa (version 0.6.2-r126) with default parameters44. The 
transcriptome contained all gene models based on the mouse ENCODE VM9 release 
downloaded from the UCSC genome browser comprising 57,207 isoforms derived 
from 57,207 gene loci with 57,114 isoforms mapping to fully annotated chromosomes 
(1 to 19, X, Y, M). All isoforms of the same gene were merged to a single gene locus 
and gene loci were merged to larger gene groups, if loci overlapped by >75%. This 
procedure resulted in 34,111 gene groups. The right mate of each read pair was 
mapped to the ensemble of all gene groups and to the set of 92 ERCC spike-ins in 
sense direction. Reads mapping to multiple loci were discarded. The left mate 
contains the barcode information: the first six bases corresponded to the cell specific 
barcode followed by six bases representing the unique molecular identifier (UMI). 
The remainder of the left read contains a polyT stretch and adjacent gene sequence. 
The left read was not used for quantification. For each cell barcode and gene locus, 
the number of UMIs was aggregated and, based on binomial statistics, converted into 
transcript counts45. 
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RaceID3. RaceID3 is an improved version of the previously published RaceID2 
algorithm20,46. In comparison to RaceID2 a number of additional optional steps has 
been implemented. A major change is the availability of a feature selection step. If 
feature selection is enabled, genes will be selected with a variability exceeding the 
baseline variability as inferred by a second order polynomial fit of the expression 
variance of all genes as a function of the mean after log-transformation. Only these 
genes will be used for the computation of the distance matrix used in the k-medoids 
clustering. For the outlier identification step, all genes remaining after expression 
filtering are still used to rescue the identification of cell population that were 
potentially missed due to the feature selection step. A second major change is the 
introduction of a random forest based reclassification: after outlier identification the 
robustness of the resulting partition is tested by random forest classification25 using 
the entire dataset as test set with out-of-bag sampling. The final cluster membership 
is subsequently determined as the cluster with the highest number of random forest 
votes. 
RaceID3 furthermore offers a number of normalization methods. The normalization 
by rescaling to the median transcript count has been replaced by rescaling to the 
minimum total transcript number of all cells that survived the filtering, since the 
previous version led to inflated transcript counts in some cells and, subsequently, to 
false positive outlier cells. This method is now the default mode and preferable over 
down-sampling, since the latter comes with a loss of information. In addition, 
RaceID3 offers alternative normalization schemes, which are described in detail in 
the reference manual. 
The improved algorithm further permits the elimination of unwanted variability. As a 
minimally invasive approach signature genes of unwanted sources of variability, such 
as cell cycle or experimental batch, can be provided and all genes with significantly 
correlated expression to one of these signature genes are removed for clustering and 
outlier identification. 
As a second option, a PCA-based approach has been implemented. Expression data 
are log-transformed prior to PCA and genes in the tail of the loadings distribution for 
each principal component are screened for an over-representation of defined sets of 
signature genes (e. g. annotated cell cycle genes). If a significant overrepresentation 
is detected, the respective principal component is removed prior to back-
transformation. 
A third method eliminates unwanted sources of variability by a linear regression. This 
method is akin to the limma method47 and particularly useful for the correction of 
batch effects. 
To identify signature genes for each cluster, RaceID3 now infers differentially 
expressed genes by utilizing an approach similar to DESeq48, but with a dispersion 
parameter of the negative binomials inferred from the internal background model. 
Finally, we could substantially improve the run time compared to the previous 
version. 
The RaceID3 and StemID2 algorithms are available at github together with a detailed 
reference manual: https://github.com/dgrun/RaceID3_StemID2 
 
StemID2. The logic of StemID2 remains unchanged compared to the original StemID 
algorithm. However, an alternative method for the inference of significant links of the 
lineage tree has been implemented to circumvent to time-intense randomizations of 
the lineage tree and allow for running StemID on datasets with thousands of cells. In 
this approach a large randomized distance matrix (with a number of cells equal to the 
size of the entire dataset) is created only once for each cluster i and, keeping all 
cluster medoids the same as in the non-randomized version, randomized cells are 
projected onto links between the medoid of cluster i and all clusters j ≠ i. The 
average population frequency of each link in the randomized state is now inferred 
from these projections and significant overrepresentation of cells on a link in the 
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original data inferred by a binomial test requiring a minimum p-value. Although this 
approach is much faster it only provides an approximation of the actual significance, 
since the correlation of the population between links is neglected. 
Functions for follow-up analysis of gene expression dynamics have also been 
integrated in StemID3. Pseudo-temporally ordered cells on a differentiation trajectory 
defined as a succession of significant links can be extracted to group the pseudo-
temporal gene expression profiles into co-expression modules by using self-
organizing maps. A similar approach is implemented in the FateID algorithm and 
described in the method section of this algorithm. 
The RaceID3 and StemID2 algorithms are available at github together with a detailed 
reference manual: https://github.com/dgrun/RaceID3_StemID2 
 
RaceID3 analysis of lymphoid cells, myeloid cells, and intestinal cells. Prior to 
processing of mouse lymphoid pogenitors by RaceID3, cells with high expression 
(>2% of all transcripts) of Kcnq1ot1, a previously identified marker of low quality 
cells20, were removed. Moreover, transcript correlating to Kcnq1ot1 or any of the 
genes Gm10715, Gm42418, Gm10800 with a Pearson’s correlation coefficient >0.65 
were also removed. Finally, all reads mapping to ERCC spike-ins were discarded. 
For the analysis of lymphoid progenitors, RaceID3 was run with mintotal=2000, 
minexpr=3, outminc=3, FSelect=TRUE, probthr=10-4 and random forests-based 
reclassification. For the benchmarking, RaceID3 was also run without random 
forests-based reclassification to produce a high resolution clustering with a larger 
number of outliers. In both cases, we initialized CGenes with the following set of 
genes in order to remove cell cycle and batch associated variability: Pcna, Mki67, 
Ptma, Hsp90ab1, Actb, Jun, Fos, Gnas, Hspa8. Batch signature genes were 
identified by a differential gene expression analysis between cells of different 
batches. FGenes was initialized with Malat1 and Igkc, since these genes were highly 
expressed across a number of unrelated cell types. For the myeloid progenitor data, 
we used the published quantification1 and RaceID3 was run after downsampling with 
mintotal=3000, CGenes=Hsp90ab1, minexpr=5, outminc=5, FSelect=TRUE, 
probthr=10-4 and random forests-based reclassification. For the intestinal data, we 
used the published quantification20 and RaceID3 was run with mintotal=2000, 
minexpr=3, outminc=3, FSelect=TRUE, probthr=10-3 and random forests-based 
reclassification. For human progenitors we applied RaceID3 to the published 
quantification2 with mintotal=10000, minexpr=167, outminc=167, FSelect=TRUE, 
probthr=10-3. However, distances were computed with metric=”spearman”, i.e. 
Spearman’s correlation was used instead of Pearson’s correlation. This alleviated the 
effect of enhanced variability of the expression values, which correspond to 
normalized read counts instead of UMI counts for this dataset. Based on the 
saturation behavior of the within-cluster dispersion a cluster number of 14 was 
chosen. CGenes was initialized with the following set of genes in order to remove cell 
cycle associated variability: PCNA, MKI67, MCM5, MCM7. On mouse progenitor 
data from Olsson et al.3, RaceID3 was run with mintotal=3000, minexpr=5, 
outminc=5, FSelect=TRUE, probthr=10-4 and random forests-based reclassification. 
 
Clustering methods for benchmarking of RaceID3. The Seurat algorithm22 was run 
with the same parameters as in the online tutorial. Based on the PC elbow plot the 
first 13 principal components were used for clustering. A high-resolution clustering 
with resolution=2 and a low-resolution clustering with resolution=1 was performed. 
The RCA24 method was run in the SelfProjection mode after changing the 
upper_thresh parameter in the featureConstruct function to upper_thresh = 
max(log10(5), median(x[x > min_val])), since the original value was too large for UMI-
based data.  Clustering was executed in a high-resolution mode 
(deepSplit_wgcna=2, min_group_Size_wgcna=3) and a low-resolution mode 
(deepSplit_wgcna=1, min_group_Size_wgcna=10). SC323 was run with 10 or 20 
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clusters, to obtain low-resolution and high-resolution clustering. ICGS49 was run on 
non-normalized transcript counts with quantile normalization and default parameters 
otherwise. 
 
FateID. The FateID algorithm performs an iterative calculation in order to infer fate 
bias in multipotent progenitors, starting from cells within committed states of the 
distinct lineages arising from a common progenitor. These states are addressed as 
target states and it is expected that cells within each of these states do not exhibit 
mixed lineage signatures anymore. To run FateID, an expression matrix of all genes 
in all cells and a partitioning of cells into cell states or types are required. These cell 
states are expected to comprise all target states and at least one common state for 
all the remaining cells. However, finer partitions of the entire cell pool are also 
permitted, e. g. as obtained from a clustering algorithm. In this case, the set of target 
states has to be defined as a subset of the partition. FateID also offers the possibility 
to infer target states based on the expression of a list of marker genes, with an 
arbitrary number of markers for each lineage. In this mode, FateID will compute the 
aggregated mean expression of the markers in the top n cells, and select all cells 
with an aggregated marker gene expression greater than this threshold. This 
selection step is optionally followed by an initial random forests reclassification to test 
if any of the remaining cells can be classified with high confidence as one of the 
target states. This step can also be used to perform feature selection by importance 
sampling (see explanation below). 
Starting from the target states, FateID will proceed backward in differentiation time to 
iteratively learn progenitors of the target states by using random forests 
classification25. Briefly, random forests is an ensemble learning method constructing 
a multitude of decision trees during learning and returning the mode of the classes 
for each instance across all trees. Due to the inherent bootstrapping strategy 
(bagging) combined with random selection of features, random forests are robust 
against overfitting. The only adjustable parameter to which the results of random 
forests are somewhat sensitive is the number of features 𝑚  sampled at each node. 
This number is kept constant across all decision trees and was also kept constant 
across FateID iterations. In this implementation it was set to the default value 𝑀 
where 𝑀 is the number of features (i.e. genes). 
The FateID algorithm utilizes random forests in the following way: in a given iteration, 
the training variables are the cells within the target states with transcript counts for all 
expressed genes as features. A prior feature selection for the entire data set, e. g., 
by extracting strongly variable genes, might enhance the performance of the 
algorithm. The response variable is the partition of the target states. Now, a fixed 
number of m cells in the neighborhood of each of the k target states are selected. For 
target state i, these cells are the m cells with the smallest median distance to the cells 
in state i, as measured by 1- Pearson’s correlation of the transcript count vectors of 
two cells. Alternatively, arbitrary distance matrices can be provided for this selection 
step. The set of k x m cells represents the test set for the random forest iteration. For 
the random forest classification, the training set can be reduced to the number of h 
cells for each target state with the shortest distance to any of the cells in the test set 
selected for this target state. After classification, cells from the test set with a 
significant fate bias towards a given target state i, i. e. significantly more votes for 
state i than for any other state (with P<0.05 based on random counting statistics) are 
assigned to this target state for the next iteration. The algorithm proceeds this way 
until all cells have been tested. 
By this strategy, cells populating early stages of differentiation are not classified 
solely based on markers expressed in mature stages, but rather based on markers of 
immediate subsequent stages of differentiation. 
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The number m of cells to be selected for testing in each round and the number h of 
cells from each target state are the two main parameters of the algorithms and 
should be chosen dependent on the coverage of the dataset. Larger values of h 
provide higher confidence of the classification but also diminish the influence of the 
local neighborhood. Large datasets with sufficient coverage of all differentiation 
stages permit larger values of h.  
The test set size m should be selected based on similar consideration: large values 
decrease the running time, but could lead to a decrease in specificity when early 
progenitors are tested against distant mature stages. In practice, with datasets of 
hundreds to few thousands of cells presented in this manuscript we use m=5 and 
h=20, but FateID was found to be very robust to changes in these parameters. 
 
Extracting feature importance from FateID. The features that are relevant for 
classification within each random forest iteration are informative and comprise 
marker genes either enriched or depleted during progenitor stages of a given target 
state. The random forest classification is performed with importance sampling and 
thus returns for each gene the mean decrease in classification accuracy upon 
permutation of this gene within each out-of-bag sample, and its respective standard 
deviation. FateID extracts all genes with importance greater than a defined threshold 
and an importance z-score (mean importance/standard deviation of importance) 
exceeding another defined threshold. These genes are grouped by hierarchical 
clustering and displayed as a function of the iteration number, starting at the initial 
target state and ending at the most naïve state. This strategy of interrogating the data 
reveals the role of different gene sets during subsequent stages of differentiation. 
The fate bias for each cell is quantified by the fraction of votes for each of the target 
states and can thus be interpreted as a probability. We note that this probability is 
likely to be highly correlated to the actual probability of differentiating into the 
corresponding lineage, but will not be identical to this value, since external signals 
might modify a pre-existing bias. 
The FateID algorithm is available as an R package from github with an extensive 
vignette: https://github.com/dgrun/FateID. 
 
Running FateID and STEMNET on hematopoietic progenitors, myeloid progenitors, 
and intestinal cells. For the mouse hematopoietic progenitors and the myeloid 
progenitors, FateID was run with minnr=5 and minnrh=20. For the intestinal data and 
the human hematopoietic progenitors, we chose minnr=10, since the size of the 
dataset was smaller, comprising only few cells for some of the lineages. Intestinal 
target clusters were inferred by FateID, using the following list of marker genes: Alpi 
(enterocytes), Clca3 (goblet cells), Lyz1 (Paneth cells), Dclk1 (tuft cells), Chgb 
(enteroendocrine cells). Target clusters for human hematopoietic cells were inferred 
by FateID, using the following list of marker genes: EBF1 (B cells), IRF8 (pDCs), LYZ 
(monocytes), ELANE (neutrophils), LMO4 (eosinophils/basophils/mast cells), HBB 
(erythrocytes), ITGA2B (megakaryocytes). For the mouse hematopoietic progenitors 
and the myeloid progenitors we selected the respective RaceID3 clusters as target 
clusters.  STEMNET2 was initialized with the same target clusters as FateID and run 
with default parameters. For data from Olsson et al.3 target clusters were inferred by 
FateID, using the following list of markers: Pf4 (megakaryocytes), Epor 
(erythrocytes), Cebpe (neutrophils), Ly86 (monocytes); FateID was run with minnr=5 
and minnrh=20. 
 
Visualization of fate bias. FateID allows visualization of the data structure by a 
number of dimensional reduction representations, i. e. t-SNE50, classical 
multidimensional scaling, locally linear embedding, and diffusion maps12. These 
representations can be computed for dimensional reduction to an arbitrary number of 
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dimensions k. For k=2 or k=3, these representations can be inspected directly, while 
for higher dimensions FateID permits visualization after projecting on a subset of 
dimensions. Within these representations FateID can highlight the partition, the 
expression of genes, or the fate bias to facilitate inspection of the results. 
 
Inference of pseudo-temporal order and co-expression modules. To inspect gene 
expression dynamics during differentiation, FateID performs a topological ordering of 
pseudo-temporal expression profiles by self-organizing maps (SOM) as utilized 
previously20. To obtain a pseudo-temporal order, all cells with a significant fate bias 
towards a given unique target state, or, alternatively, all cells with a fate bias towards 
this state larger than a defined threshold, are selected. These cells can be pseudo-
temporally ordered by FateID using principal curve analysis within a selected 
dimensional reduction representation, which best reflects the differentiation dynamics 
indicated by a gradient in the fate bias. The weight of the cells in the initial target 
cluster is increased tenfold to enforce that the principal curve traverses this set of 
cells, and an optional starting cluster can be provided to initialize the inference with a 
principal curve connecting this cluster with the initial target state. Alternatively, other 
methods such as diffusion pseudotime12 can be used. FateID has implemented a 
direct interface to diffusion pseudotime ordering. To identify modules of co-expressed 
genes along a differentiation trajectory to a defined target states the expression 
levels in the pseudo-temporally ordered cells are smoothened by local regression 
after z-score transformation. These pseudo-temporal gene expression profiles are 
topologically ordered by computing a one-dimensional self-organizing map (SOM) 
with 1,000 nodes. Due to the large number of nodes relative to the number of 
clustered profiles, similar profiles are assigned to the same node. Only nodes with 
more than 5 assigned profiles are retained for visualization of co-expressed gene 
modules. Neighboring nodes with average profiles exhibiting a Pearson’s correlation 
coefficient >0.9 are merged to common gene expression modules. These modules 
are depicted in a final map. 
 
Differential gene expression analysis. Differentially expressed genes between two 
subgroups of cells were identified similar to a previously published method48. First, 
we infer a negative binomial distribution reflecting the gene expression variability 
within each subgroup based on a background model for the expected transcript count 
variability computed by the same strategy as in RaceID220. Using these distributions 
a p-value for the observed difference in transcript counts between the two subgroups 
is computed as described DESeq48. These p-values were corrected for multiple 
testing by the Benjamini-Hochberg method. We implemented a function to perform 
this calculation, with the alternative option to output the results of a DESeq251 
analysis. 
 
Running Monocle2 on lymphoid progenitors. Monocle 230 was run on non-normalized 
transcript counts with min_expr=3 and num_cells_expressed >= 5. Cell types of the 
B cell, pDC, erythrocyte, neutrophil, cDC, and innate lymphoid lineage were assigned 
based on expression of Ebf1, Siglech, Gata1, Elane, Cd74, and Thy1 require a 
minimum expression of 5 for all cell types but cDC. For cDC, at least 50 transcripts of 
Cd74 were required. For subsequent clustering, differentially expressed genes (qval 
< 0.01) were identified for each cell types and the top 100 genes for each cell type 
were selected. Clustering was performed with 8 clusters. Dimensions were reduced 
using the same set of genes as used for clustering with max_components=2, 
norm_method = 'log'.   
 
Data availability and software. Primary read data and processed count files for the 
single-cell RNA-seq datasets of murine hematopoietic reported in this paper can be 
downloaded from GEO (accession number GSE100037). We make all our processed 
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expression data publicly available on a website (http://hematopoietic-progenitors.ie-
freiburg.mpg.de) to facilitate visualization of gene expression domains and fate bias 
together with differential gene expression analysis.  
Accession codes for the myeloid progenitor1 and the intestinal epithelial20 single-cell 
transcriptome data can be found in the referenced studies. RaceID3, StemID2 and 
are available on the github repository: https://github.com/dgrun/RaceID3_StemID2. 
The FateID algorithm is available as an R package from github with an extensive 
vignette: https://github.com/dgrun/FateID. 
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FIGURE LEGENDS 
 
Figure 1 Elucidating transcriptome heterogeneity of multipotent hematopoietic 
progenitors by single cell RNA-seq.  (a) Workflow of robotic CEL-Seq2 implemented 
on a mosquito® (HTS version, TTP Labtech) nano-liter pipetting robot. The approach 
enables index-sorting to simultaneously measure single-cell transcriptomes and cell 
surface marker expression. The robotic approach allows up to 10-fold volume 
reduction; sensitivity and accuracy were compared to the original CEL-Seq2 protocol 
for 5-, 7-, and 10-fold reduction (Supplementary Fig. 1a-e) (b) The left panel shows 
the sorting scheme of multipotent Lineage- (Lin-) Sca-1hiKithi (LSK) progenitor cells 
and KitloSca-1lo common lymphoid pogenitors (CLP). The right panel shows the same 
sorting scheme after gating on Flt3hi cells to enrich for lymphoid-primed multipotent 
progenitors (LMPP) and Flt3hi CLPs. (c) Sorting scheme for enrichment of Lin- 
progenitors of all lineages using a tiling window approach on Kit and Sca-1 
expression. All populations were divided into Flt3+ and Flt3- cells. The percentage of 
the entire cell population is indicated for each window in (b) and (c). (K: Kit, S: Sca-1) 
Cells in (b) and (c) were sorted from n=2 mice each. (d) t-SNE map derived by 
RaceID3 based on transcriptome correlation showing the gate of origin for each cell. 
Compare legend to (b,c). (e) t-SNE map showing clusters of cells with similar 
transcriptomes derived by RaceID3. (f) Heatmap of log2-transformed averaged 
normalized expression of known marker genes across clusters. The cluster number 
and color are indicated on the right. Only clusters with >3 cells were included. A 
hierarchical clustering dendogram is shown on the right margin. (g) Benchmarking of 
RaceID3 by comparing to the published Seurat21, SC323, RCA24, and ICGS3 methods. 
Top: Barplot showing the maximum log2-transformed fold-enrichment of a given 
lineage marker gene across all clusters. Bottom: Barplot showing the entropy of the 
distribution of average mean expression across clusters for lineage marker genes. To 
compute the probability used for the entropy calculation, the sum of mean 
expressions across clusters was normalized to one. Results for the high-resolution 
settings are shown. See Supplementary Text 2 and Supplementary Fig. 5f for low-
resolution settings. 
	
  
Figure 2 FateID quantifies lineage bias within multipotent progenitor popuations. (a) 
Pictorial representation of the algorithm. FateID starts with a training set of target 
clusters of all lineages, comprising more mature stages of differentiation. The 
algorithm iteratively classifies cells in proximity of the training set (test set) by random 
forests and thereby expands the training set. To avoid classification of more naïve 
multipotent cells by genes expressed at more mature stages, the training set in each 
iteration only comprises cells in the neighborhood of the cells to be classified. See 
Online methods for details. (b) t-SNE map based on transcriptome correlation after 
the removal of small outlier clusters and populations of mature and potentially 
recirculating B cells. The target cluster corresponding to each lineage is highlighted. 
(c-f) The fate bias, corresponding to the probability of a cell to be assigned to a given 
lineage, is color-coded in the t-SNE map. The fate bias predicted by FateID (left) and 
STEMNET (middle) is shown along with log2-transformed aggregated normalized 
expression of two lineage markers. Fate bias and marker gene expression is shown 
for the B cell (c), the myeloid (d), the pDC (e), and the erythrocyte (f) lineage. (g) 
Barplot comparing Spearman’s correlation coefficient between the expression levels 
of lineage markers and fate bias computed by FateID and STEMNET. Error bars and 
p-values were derived by William’s test statistic (*P < 0.05, **P < 0.001). 
 
Figure 3 Importance of genes for lineage classification depends on the differentiation 
stage. (a) Importance of genes during each iteration of the random forests 
classification of the B cell lineage. The heatmap shows genes with a random forests 
importance measure >0.02 and a ratio between the absolute importance and its 
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standard deviation >2 for at least a single iteration. Iterations are depicted on the x-
axis with the first iteration to the left and the final iteration to the right. Early iterations 
correspond to more mature stages while late iterations correspond to more naïve 
stages. A hierarchical clustering dendogram is indicated on the left margin. (b) 
Comparison of the FateID approach to classification by a single random forests 
classification of all remaining cells using the target clusters as training set. Examples 
are shown for the B cell (left), the pDC (center), and the neutrophil (right) lineage. A 
direct comparison of fate bias estimate for the two approaches reveals saturation at a 
non-zeo probability in the 1-step classification. 
 
Figure 4 FateID identifies a common progenitor population of B cells and pDCs. (a) 
Different dimensional reduction representations. Shown are a two-dimensional t-SNE 
map representation (t-SNE, left), locally linear embedding (LLE, middle), and 
classical multidimensional scaling representation (CMD, right). Principal curves fitted 
to cells with a fate bias >0.15 are shown for the B cell, pDC, and myeloid lineages. 
(b) Self-organizing map of z-score-transformed pseudo-temporal expression profiles 
along the B-cell developmental trajectory derived from the t-SNE map in (a). Example 
profiles are shown for four genes dynamically expressed during B cell differentiation. 
The black line indicates a local regression. The bottom panel shows an overlay of the 
profiles with known stages of B cell differentiation. (c) Gene-to-gene scatter plots of 
lymphoid (Rag1, Il7r) versus myeloid (Csf1r) lineage markers, highlighting B cell (left) 
or pDC (right) lineage bias. (d) MA plot showing differentially expressed genes 
between cells with larger bias towards the B cell or the pDC lineage. Only cells of 
cluster 2 and 7 with >0.33 fate bias towards the B cell or pDC lineage were included. 
Differentially expressed genes with a Benjamini-Hochberg corrected false-discovery 
rate (FDR) < 0.1 are highlighted in red. 
 
Figure 5 In vitro differentiation assay confirms predicted lymphoid progenitor of pDCs 
and B cells. (a) Sorting scheme for the purification of Il7r+Cd34-, Il7r+Cd34+, and 
Il7r-Cd34+ populations from Flt3+ Lin-KitloSca-1lo cells. The experiment was 
performed in five biological replicates. Error bars indicate the standard deviation. 
(b,c) Lineage output of the B cell and the pDC lineage measured by surface 
expression of Cd19 and Siglech, respectively, after 7 days of culture in pDC (b) and 
B cell (c) medium for the three sub-populations and LMPPs. The log2-ratio of the 
fraction of B cells and pDCs is shown to the right. (d) t-SNE map of a RaceID3 
analysis of single-cell transcriptomes of cells sequenced for the sub-populations in 
(a) plus unselected Flt3+ Lin-KitloSca-1lo cells (mixed) and for cells after culture in 
pDC medium. Expression of lineage-specific marker genes is shown in the t-SNE 
maps to the right. (e) t-SNE map highlighting the population of origin. (f) Left: Bar 
graph showing the relative fraction of cultured cell corresponding to B cells, pDCs, or 
cDCs/monocytes for the three sub-population sorted from Flt3+ Lin-KitloSca-1lo shown 
in (a). Right: Ratio of B-cell and pDC lineage output for same three sub-populations. 
 
Figure 6 Revised model of hematopoietic differentiation. (a) t-SNE map with a 
principal curve fitted to all cells within the progenitor clusters (1,2,3,7). (b) Heatmap 
of z-score transformed pseudo-temporal expression profiles of a number of 
multipotency and lineage marker genes. Cells were ordered along the principal curve 
in (a) and profiles were smoothened by a local regression. The bottom panel depicts 
a local regression of the fate bias using the same temporal ordering. Successive 
expression of multipotency markers Kit, Ly6a, Ifitm1, Cd34, Cd48, and Flt3 is 
consistent with the ordering of multipotent progenitor (MPP) stages MPP1 to MPP4 
as previously inferred by bulk measurements32,33. Lineage markers comprise Gata2, 
Car2, Gata1, Pf4 for the erythrocyte/megakaryocyte lineage, Cebpa, Csf1r, Mpo for 
the granulocyte and monocyte lineage, Itgax for the conventional dendritic cell 
lineage, and Irf8, Tcf4 for the plasmacytoid dendritic cell lineage, and Il7r, Rag1, 
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Ebf1, Dntt for the B cell lineage. (c) Pictorial representation of the derived lineage 
tree.  
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