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Abstract 28 

During the first weeks of life, microbial colonization of the gut impacts human immune 29 

system maturation and other developmental processes. In premature infants, aberrant 30 

colonization has been implicated in the onset of necrotizing enterocolitis (NEC), a life-31 

threatening intestinal disease. To study the premature infant gut colonization process, 32 

genome-resolved metagenomics was conducted on 343 fecal samples collected during the 33 

first three months of life from 35 premature infants housed in a neonatal intensive care 34 

unit, 14 of which developed NEC, and metaproteomic measurements were made on 87 35 

samples. Microbial community composition and proteomic profiles remained relatively 36 

stable on the time scale of a week, but the proteome was more variable. Although 37 

genetically similar organisms colonized many infants, most infants were colonized by 38 

distinct strains with metabolic profiles that could be distinguished using metaproteomics. 39 

Microbiome composition correlated with infant, antibiotics administration, and NEC 40 

diagnosis. Communities were found to cluster into seven primary types, and community 41 

type switched within infants, sometimes multiple times. Interestingly, some communities 42 

sampled from the same infant at subsequent time points clustered with those of other 43 

infants. In some cases, switches preceded onset of NEC; however, no species or 44 

community type could account for NEC across the majority of infants. In addition to a 45 

correlation of protein abundances with organism replication rates, we found that 46 

organism proteomes correlated with overall community composition. Thus, this genome-47 

resolved proteomics study demonstrates that the contributions of individual organisms to 48 

microbiome development depend on microbial community context. 49 
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Importance 50 

Humans are colonized by microbes at birth, a process that is important to health and 51 

development. However, much remains to be known about the fine-scale microbial 52 

dynamics that occur during the colonization period. We conducted a genome-resolved 53 

study of microbial community composition, replication rates, and proteomes during the 54 

first three months of life of both healthy and sick premature infants. Infants were found to 55 

be colonized by similar microbes, but each underwent a distinct colonization trajectory. 56 

Interestingly, related microbes colonizing different infants were found to have distinct 57 

proteomes, indicating that microbiome function is not only driven by which organisms 58 

are present, but also largely depends on microbial responses to the unique set of 59 

physiological conditions in the infant gut. 60 

Introduction 61 

Infants have high levels of between-individual variation in microbiome composition 62 

compared with adult humans (1, 2). Variation in the infant microbiome exists at both the 63 

species and strain level (3, 4). During the first one to two years of life, the gut 64 

microbiome of infants begins to converge upon an adult-like state (2, 5). However, 65 

aberrations in this process may contribute to diseases such as type 1 and 2 diabetes, 66 

irritable bowel disease, and necrotizing enterocolitis (NEC) in premature infants (6-11). 67 

Because establishment of the microbiome is a key driver of immune system development, 68 

changes in the process of colonization may have life-long implications, even if they do 69 

not result in drastically different microbiome composition later in life (12, 13). 70 
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Infants born prematurely have lower diversity microbial communities compared 71 

with full term infants, and are susceptible to life-threatening diseases such as NEC (4, 14-72 

17). While it has long been thought that bacterial infection may contribute to NEC 73 

pathogenesis, strain-resolved microbial community analysis has not identified a single 74 

pathogen that is responsible for the disease (3). However, it is still likely that microbial 75 

communities play an important role, with the context-dependent metabolism of specific 76 

strains potentially critical to infant health and disease. Recent studies have applied 77 

proteomics and metabolomics to premature infant gut microbiomes to measure functional 78 

profiles in healthy premature infants and those that went on to develop NEC (18, 19). 79 

These studies reported temporal variation in the infant proteome and identified 80 

metabolites associated with NEC. However, further study is required to better understand 81 

the range of functional and developmental patterns during the microbial colonization 82 

process. 83 

To investigate microbial community assembly, and how microbes modulate their 84 

metabolism and replication rate during colonization, we conducted a combined 85 

metagenomics and metaproteomics study of the microbiome of both healthy premature 86 

infants and infants that went on to develop NEC. Microbiome samples were collected 87 

during the first three months of life with the goal of measuring the physiological changes 88 

of dominant and ubiquitous bacterial species. Genomes assembled from metagenomes 89 

enabled analysis of microbial community membership, and tracking of both community 90 

composition and replication rates over time. The availability of genome sequences made 91 

it possible to map protein abundance measurements to bacterial species and strains. 92 

Microbial communities were clustered into distinct types in order to provide context for 93 
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proteomics analyses. Statistical analyses showed that, while species and strain-specific 94 

proteomic profiles correlated with overall community composition, the proteomes of 95 

members of the same species and strain were largely infant-specific. These analyses also 96 

show that bacterial proteome features are correlated with infant development, health 97 

status, and antibiotics administration. 98 

Results 99 

Metagenome sequencing and genome binning 100 

In order to study the developing gut microbiome, stool samples were collected during the 101 

first three months of life for 35 infants born prematurely and housed in the neonatal 102 

intensive care unit at Magee-Womens Hospital at the University of Pittsburgh Medical 103 

Center. Two of the infants in the study cohort developed sepsis (N1_017 and N1_019) 104 

and 14 infants developed necrotizing enterocolitis (NEC; Table 1). To study the gut 105 

microbiome, we analyzed 1,149 Gbp of DNA sequences generated by our laboratory (3, 106 

4, 20). These sequences were from 343 metagenomes (average of 3.3 Gbp sequencing per 107 

sample; Supplemental Figure 1 and Supplemental File 1a). Metagenomes were 108 

assembled into 6.79 Gbp of scaffolds ≥1 Kbp that represented 92% of all sequenced 109 

DNA. 110 

Scaffolds assembled from metagenomes were grouped into 3,643 bins, 1,457 of 111 

which were ≥50% complete with ≤5% contamination; Supplemental Figure 2, 112 

Supplemental File 2). These genomes were assigned to 270 groups approximating 113 

different bacterial sub-species based on sharing ≥98% average nucleotide identity (ANI) 114 

(Supplemental File 1b). These genomes account for 91% of the total sequencing. 115 
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Genomes suitable for iRep replication rate analysis (≥75% complete with ≤175 116 

fragments/Mbp and ≤5% contamination) were available for 193 genome clusters (21). 117 

Protein quantification by metaproteomics 118 

Across all metagenomes, 5,233,047 proteins were predicted, 897,520 of which were from 119 

a non-redundant set of representative genomes clustered at 98% ANI. Proteins clustered 120 

into 121,746 putative families (Supplemental File 3). Metaproteomics measurements 121 

were conducted on 87 metagenome-matched samples that spanned 16 infants, six of 122 

which developed NEC and one of which was diagnosed with sepsis (N1_019; 123 

Supplemental Figure 1). Conducting metagenomics and metaproteomics on the same 124 

samples was critical for obtaining an appropriate database for matching peptides to 125 

proteins. On average, 71,676 unique bacterial spectral counts were detected per sample, 126 

with an average of 33% of predicted bacterial proteins identified (Supplemental Figure 127 

1, Supplemental File 1b, and Supplemental File 4). 128 

Premature infants were colonized by genetically similar organisms, and microbial 129 

communities clustered into seven primary types 130 

The majority of infants were colonized by Enterococcus faecalis, Klebsiella pneumoniae, 131 

and Staphylococcus epidermidis (Figure 1a,b). Overall, infants that developed NEC were 132 

colonized by organisms genetically similar to those colonizing other infants, and most 133 

genotypes were seen in only one infant. No individual species was strongly associated 134 

with NEC (Supplemental Figure 3). 135 

 The premature infant microbiome was found to be highly variable. In some cases, 136 

samples collected from an infant at subsequent time points were as different from earlier 137 

samples as those collected from other infants (Figure 1c). Communities were clustered 138 
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based on species membership and abundance in order to identify microbial consortia 139 

common during the colonization process. In order to account for both genomic 140 

differences and organism abundance, clustering was conducted based on weighted 141 

UniFrac distances, where the tree used for calculating UniFrac was constructed using 142 

genome ANI. Nine distinct community types were identified, seven of which were 143 

comprised of samples collected from multiple infants and were thus considered primary 144 

types  (Figure 1d, Supplemental Figure 4, and Supplemental Figure 5). Each 145 

community type is characterized by the dominance of different community members 146 

(Supplemental Figure 6). Microbiomes from different infants clustered into the same 147 

community type, and the microbiome of individual infants was found to switch types, 148 

sometimes multiple times, during the colonization process (Figure 2). Although infants 149 

shared community types, overall colonization patterns were not replicated across infants. 150 

Microbiomes associated with infants that did and did not go on to develop NEC were 151 

often classified in the same community type. In some cases, switches preceded onset of 152 

NEC, but no type or switch could explain all cases of NEC. 153 

Microbial replication rates and proteins 154 

iRep is a newly-developed method that enables measurement of bacterial replication rates 155 

based on metagenome sequencing data when high-quality draft genome sequences are 156 

available (21). We applied the iRep method using genomes recovered from metagenomes 157 

sequenced for each infant in the study, and quantified 1,328 iRep replication rates from 158 

330 samples. Sample clustering was conducted based on community iRep profiles, 159 

identifying nine distinct iRep types that were correlated with community type (Mantel 160 

test p-value = 1 x 10-3, Figure 2a). Likewise, analysis of protein family abundance 161 
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clustered samples into four distinct proteome types, which also correlated with 162 

community type (Mantel test p-value = 1 x 10-3, Figure 2b). Interestingly, there are 163 

several cases in which iRep and/or proteome type switched when community type was 164 

constant, or when community type switched but iRep and/or proteome type remained 165 

constant. 166 

Microbiome development 167 

Peptide spectral counts were matched to infant-specific databases containing both human 168 

and microbial proteins. This allowed for the relative proportions of human and microbial 169 

proteins to be determined for each time point. Samples are dominated by human proteins 170 

during the first 10 days of life (DOL), and then microbial proteins become dominant 171 

around DOL 18. Ratios of human versus bacterial protein abundances show that the 172 

premature infant gut microbiome is established over a period of approximately two weeks 173 

(Figure 3a). 174 

The presence of multiple data types (microbial community abundance and iRep, 175 

microbial community proteome composition, and human proteome composition) enabled 176 

tracking of various aspects of human and microbiome development during the first 177 

months of life (Figure 3b,c). All measurements from an infant were stable within the 178 

time scale of a week, but diverged over time. Interestingly, communities from different 179 

infants neither converged nor diverged over time in terms of similarity based on three of 180 

these five metrics. However, we observed that human proteome measurements and 181 

microbial protein family abundances from different infants became increasingly different 182 

when samples with time separations of greater than three weeks were compared. Overall, 183 

the microbial proteome was more variable (higher variance) than community composition 184 
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(Figure 3d,e). After approximately two weeks, both microbial community abundance 185 

and proteome measurements collected from the same infant became as different from 186 

each other as samples collected from other infants. 187 

The majority of human and microbiome features recorded in our analyses were 188 

correlated with one another (Figure 3f). However, an exception is that microbial 189 

community abundance and iRep were not correlated with human proteome composition 190 

(Mantel test p-value >0.01). This is interesting in that it shows that there is no strong 191 

connection between the overall human proteome and either the composition or replication 192 

activity of the microbiome.  193 

As shown in Figure 3g, microbial features were also correlated with a variety of 194 

infant factors, including infant health and development (gestational age and weight), as 195 

well as antibiotics administration (Mantel or permutational analysis of variance, 196 

PERMANOVA, p-value ≤0.01). Notably, whether or not an infant developed NEC 197 

(condition) correlated with several microbiome factors (infant genome inventory, and 198 

both community composition and iRep), but not with proteome measurements. However, 199 

these correlations were in part driven by antibiotics, as only iRep was correlated with 200 

infant condition when excluding samples collected during or within five days of 201 

antibiotics administration. Regardless of the influence of antibiotics on the microbiome, 202 

microbial responses to treatment likely impact infant health.  203 

Different species expressed varying amount of their proteome in the infant gut 204 

Microbes present in the gut environment are not expected to express their complete 205 

complement of proteins at all times. In order to investigate the extent of proteome 206 

expression for different bacteria, we compared depth of proteome sampling for each 207 
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organism to the percent of the predicted proteome that could be detected (Figure 4). The 208 

median proteome detection across all samples was 11%, but this was largely due to low 209 

sampling depth. Higher depth of proteome sampling corresponded with detection of a 210 

larger fraction of the predicted proteins. The median percent of the proteome detected for 211 

organisms with the best detection in each sample was 31% (max. 48%). For several 212 

frequently detected colonists, including Klebsiella pneumoniae, Klebsiella oxytoca, and 213 

members of the genus Enterobacter, maximum proteome expression was ~50%. 214 

However, Propionibacterium sp., Anaerococcus vaginalis, and members of the genus 215 

Bifidobacterium expressed a greater proportion of their encoded genes than other 216 

organisms. We infer that these bacteria may be specifically adapted to environments and 217 

resource availability within the infant gut, whereas other bacteria may maintain capacities 218 

that enable adaption to other environments. 219 

Members of the same bacterial species replicated at different rates during colonization 220 

Across all infants, Streptococcus agalactiae, Pseudomonas aeruginosa, Klebsiella 221 

pneumoniae, and members of the genera Veillonella and Clostridium exhibited some of 222 

the highest replication rates (Supplemental File 1c). iRep values for organisms sampled 223 

in this cohort during or immediately after antibiotics administration were not significantly 224 

different from those at other time points (Figure 5a). This indicates that populations 225 

present after antibiotics administration are both resistant to antibiotics and are continuing 226 

to replicate. Members of several species were replicating quickly during or immediately 227 

following antibiotic treatment (Veillonella sp., Streptococcus agalactiae, Finegoldia 228 

magna, and others). However, we did not detect overall higher iRep values following 229 

antibiotics administration, although this was reported previously (21). Most species were 230 
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found only to be replicating in the absence of antibiotics, consistent with their 231 

susceptibility to the treatment. 232 

Species-specific proteomic profiles are associated with infant and microbiome features 233 

Relative protein abundance levels were determined for each genome and tracked across 234 

samples. This identified population-specific proteome profiles and enabled us to test for 235 

correlations with various human and microbial properties (Figure 3h, Supplemental 236 

Figure 1, and Supplemental File 1d). Veillonella spp., Klebsiella pneumoniae, 237 

Escherichia coli, and Propionibacterium sp. all had infant-specific profiles 238 

(PERMANOVA p-value ≤0.01), indicating that although similar organisms are 239 

colonizing different infants, each population is expressing a different complement of 240 

proteins. K. pneumoniae and Veillonella spp. proteomes also correlated with community 241 

type, as did the Bifidobacterium breve proteome (Mantel test p-value ≤0.01), showing 242 

that populations respond to overall microbial community context. Interestingly, both 243 

Enterococcus faecalis and Propionibacterium sp. exhibited proteomes that were also 244 

correlated with infant development, and the K. pneumoniae proteome correlated with 245 

both iRep and infant health. Although overall microbial proteome correlated with 246 

antibiotics administration, species-specific proteome profiles did not; however, this may 247 

be due to a lack of available data for the same species in multiple samples with and 248 

without antibiotics. 249 

Because of the existence of 35 samples in which ≥10% of the K. pneumoniae 250 

proteome could be detected (max. = 38%, median = 25%), correlations between 251 

individual protein abundances and iRep could be determined. Amongst proteins 252 

positively correlated with iRep were a transcriptional regulator (LysR), proteins involved 253 
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in cell wall biogenesis, and ribosomal proteins (Pearson ≥0.5, q-value ≤0.01, observed in 254 

≥15 samples; Supplemental File 1e). 255 

Infants were colonized by different strains with distinct proteomes 256 

The finding that K. pneumoniae, E. coli, Propionibacterium sp., and Veillonella spp. have 257 

infant-specific proteomes raised the question of whether or not each infant was being 258 

colonized by different strains. Genome sequences ≥50% complete with ≤5% 259 

contamination that were assembled for each species from each infant were compared with 260 

one another, and hierarchical clustering conducted on pairwise ANI values was used to 261 

delineate strains (Supplemental Figure 7). Clustering showed that in most cases each 262 

infant was indeed colonized by distinct strains, which proteomics analysis showed are 263 

functionally distinct. However, there were a few notable exceptions. Twin infants 264 

N2_069 and N2_070, as well as infant N1_003 were all colonized by the same strain of K. 265 

pneumoniae. The proteomic profiles for the strains colonizing N2_069 and N2_070 were 266 

more similar to one another than they were to profiles recovered from other strains; 267 

however, they were still distinguishable (Figure 6). Likewise, the same strain of 268 

Propionibacterium sp. colonized twin infants N2_038 and N2_039. As with shared 269 

strains of K. pneumoniae, their functional profiles clustered together but were still 270 

distinguishable from one another (Supplemental Figure 8). 271 

Analysis showed that few proteins were responsible for distinguishing proteomes 272 

of the same bacterial types in different infants (Figure 6, Supplemental Figure 8, and 273 

Supplemental File 1d). Common amongst these were proteins involved in nucleotide, 274 

amino acid, carbohydrate and lipid metabolism. Also notable were several proteins 275 

produced by K. pneumoniae involved in central carbohydrate metabolism, and both 276 
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galactose degradation and D-galacturonate degradation, indicating different carbon 277 

preferences for strains colonizing different infants (Figure 6). Proteins involved in 278 

bacterial secretion were differentially abundant between K. pneumonia colonizing 279 

different infants, indicating variations  in secretion potential that could affect human-280 

microbe interactions. Relatedly, the abundance of proteins involved in transport of metals, 281 

ions, citrate, and several sugars also differed between infants. 282 

Low microbiome diversity was associated with both antibiotics administration and NEC 283 

Microbiome diversity was lower during or within five days of antibiotics administration 284 

compared with other time points (Mann-Whitney U test, MW, p-value = 2.6 x 10-9; 285 

Figure 7a), and  the microbiome of infants that developed NEC was typically less 286 

diverse compared with healthy infants (MW p-value = 4 x 10-4; Figure 7b). However, the 287 

difference in diversity between healthy and NEC infants was driven by the fact that NEC 288 

infants more frequently receive antibiotics (Figure 2). When comparing within either 289 

periods with or without antibiotics, microbiome diversity for healthy and NEC infants 290 

(pre-NEC diagnosis) was indistinguishable (Figure 7c). When excluding antibiotics 291 

samples, both groups of infants had higher diversity microbial communities later in 292 

development (post GA + DOL 220; Figure 7d). 293 

Microbial community composition was correlated with infant health 294 

Premature infants that developed NEC had different microbial community abundance 295 

profiles (PERMANOVA p-value = 3 x 10-3; Supplemental Figure 4g). Interestingly, 296 

there were a variety of species detected in healthy infants, but never detected in those that 297 

developed NEC; however, the opposite was not true. It should be noted that species 298 

unique to healthy infants were not consistently detected. No species identified five days 299 
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prior to NEC diagnosis showed a significant difference in abundance, or was unique to 300 

NEC infants. 301 

Overall community composition was also correlated with each infant, antibiotics 302 

administration, birth weight, gestational age, and gestational age corrected day of life 303 

(GA + DOL; PERMANOVA or Mantel test p-value ≤0.01; Supplemental Figure 4). 304 

Several species were more abundant members of communities associated with infants 305 

that developed NEC: Enterobacter sp., Propionibacterium sp., and Peptostreptococcus sp. 306 

(edgeR q-value ≤0.01 after excluding samples collected within five days of antibiotics 307 

administration; Supplemental File 1f). Vellonella sp. replicated faster in NEC infants, 308 

while several groups of organisms were replicating faster in control infants, including 309 

members of the genera Anaerococcus, Klebsiella, Actinomyces, Eggerthella, 310 

Streptococcus, Clostridiales, and Bifidobacterium  (MW p-value ≤0.01 after excluding 311 

samples collected within five days of antibiotics administration; Supplemental File 1c). 312 

Several different species were active in control infants, but were not detected in infants 313 

that went on to develop NEC. However, combined iRep values collected from infants that 314 

did and did not go on to develop NEC were not statistically different, even when 315 

considering only samples collected within the five days prior to NEC diagnosis (Figure 316 

5b). 317 

Microbial proteins associated with proteome type, antibiotics administration, and NEC 318 

As described above, we used protein abundance patterns to cluster microbial community 319 

proteomes into functionally distinct proteome types. Statistical analysis identified 3,085 320 

differentially abundant proteins distinguish proteome types (edgeR q-value ≤ 0.01; 321 

Supplemental File 1g). Of these, 461 were found to distinguish only one proteome type 322 
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from all others. Notable amongst all of these proteins were those involved in central 323 

carbohydrate metabolism and energy metabolism (Supplemental Figure 9). Proteome 324 

types differ in terms of the amount and variety of carbon degradation enzymes, as well as 325 

the propensity for aerobic versus anaerobic respiration (based on the abundance of 326 

oxidases and reductases). 327 

Samples collected during antibiotics treatment were enriched in 56 different 328 

proteins (identified in more than one treated infant, edgeR q-value ≤0.01; Supplemental 329 

File 1g). Amongst these proteins were those involved in secretion, transcription, and 330 

DNA degradation. Along with iRep results, the findings indicate that a subset of 331 

organisms remain active in the presence of antibiotics. 332 

Although overall community proteome abundance profiles were not correlated 333 

with NEC, microbial proteins from 160 different protein families, many with no known 334 

function, were more abundant in samples from infants that went on to develop NEC 335 

(identified in more than one NEC infant, edgeR q-value ≤0.01; Supplemental File 1g). 336 

Annotated proteins were dominantly involved in transport of ions, metals, and other 337 

substrates, iron acquisition, and both motility and chemotaxis. Among proteins 338 

responsible for iron scavenging was subunit E of enterobactin synthase, a high-affinity 339 

siderophore involved in iron acquisition, which is often used by pathogenic organisms. 340 

Also more abundant was outer membrane receptor FepA, which is involved in 341 

transporting iron bound by extracellular enterobactin. Subunit F of enterobactin synthase 342 

was also identified in NEC infants, as were an iron-enterobactin ABC transporter 343 

substrate-binding protein, and an enterobactin esterase. The abundance of this protein 344 

suggests a possible role for iron acquisition by organisms that may contribute to disease 345 
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onset. Interestingly, 21 K. pneumoniae proteins were correlated with NEC, including a 346 

ferrous iron transporter (family 2834) that was 3.9-fold more abundant in two infants that 347 

developed NEC. The abundance of this protein was also correlated with infant, proteome 348 

type, community type, and antibiotics administration. 349 

Discussion 350 

Most studies to date have focused on the composition of the gut microbiome, typically at 351 

the low-resolution afforded by 16S rRNA gene amplicon methods. We used genome-352 

resolved time-series metagenomics in conjunction with iRep replication rate and 353 

metaproteomics measurements to obtain a more comprehensive view of the colonization 354 

process. The dataset included information about the gut colonization trajectories of both 355 

healthy infants and infants that went on to develop NEC, enabling exploration of 356 

microbiome variability, at both the community composition and organism functional 357 

levels. 358 

Microbial communities were classified into types based on the mixture of 359 

organisms present. Interestingly, most types occurred in multiple infants, a result that 360 

indicates the tendency of gut colonizing bacteria to form networks of interaction, possibly 361 

based on metabolic complementarity. An important factor determining the community 362 

type present may be the specific organisms that are introduced, and the extent to which 363 

they are able to colonize. Other factors that may dictate the community type include 364 

human genetic selection, diet, and antibiotics administration. Within a single infant, 365 

community types often switched several times over the observation period. Given the 366 

lack of evidence for consistent transitions from one type to another across multiple 367 

infants, the high degree of variation in iRep replication rates observed for members of the 368 
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same species, and a lack of convergence of communities in different infants, we conclude 369 

that colonization is a chaotic process. 370 

Overall microbial physiology, as measured by whole proteome abundance 371 

patterns, was more dynamic than community composition. Thus, metagenomics-enabled 372 

proteomic analyses indicate functional flexibility that does not depend on addition or loss 373 

of organisms. Shifts in the importance of specific pathways or metabolisms with 374 

environmental conditions would not be apparent in studies that only use organism 375 

identification or metabolic potential predictions. 376 

It is possible that onset of NEC is due to fast growth rates of potential pathogens 377 

within communities that are imbalanced due to low species richness, ultimately resulting 378 

in overgrowth by a pathogen. For this reason, we compared microbial community 379 

diversity and composition, growth rates, and metabolic features in infants that did and did 380 

not develop NEC. A clear finding of this study, and evident from prior research (17), is 381 

that microbial communities associated with infants that develop NEC are of lower 382 

diversity compared with control infants. However, this was due to the frequency of 383 

antibiotics administration for NEC infants. Regardless of the cause of the lower-diversity 384 

communities, microbial activities throughout the colonization process, including during 385 

periods of antibiotics administration, are likely important to infant health.  386 

Several different species had higher relative abundance in infants that developed 387 

NEC, but none of these species were consistently associated with the disease. The 388 

correlation could be the consequence of the loss of other organisms from the community 389 

rather than their higher absolute abundance. Interestingly, Veillonella spp. were  found to 390 
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replicate more quickly in NEC versus control infants. This may be medically important, 391 

but additional examples are needed to establish a link between rapid growth and NEC. 392 

Surprisingly, whether or not an infant developed NEC was not correlated with 393 

overall proteome composition. However, there were specific proteins that were associated 394 

with NEC, notably several involved in iron scavenging. Given that this is an important 395 

process often associated with pathogenesis, it is possible that increased activity of iron 396 

scavenging pathways could contribute to organism proliferation and onset of NEC. In 397 

addition, the Klebsiella pneumoniae proteome was correlated with NEC, including a 398 

protein involved in transport of iron. This is intriguing considering the prior finding that 399 

supplementation of lactoferrin, an abundant breast milk protein involved in modulating 400 

iron levels in the gut, decreases risk of developing necrotizing enterocolitis (22, 23). 401 

Overall, these findings indicate that fine-scale, species-specific proteins are important for 402 

understanding disease onset. Although the microbial community, and specific microbial 403 

proteins were correlated with NEC, no individual organism or protein was significantly 404 

more abundant in all cases. This finding supports the hypothesis that NEC is a 405 

multifaceted disease with multiple routes that lead to onset. 406 

Although species-specific proteome profiles were correlated with community 407 

composition, they were largely infant specific. This is an interesting observation because 408 

it implies a feedback between human physiological conditions in the gut, which likely 409 

vary substantially from infant to infant and over time, and microbiome function. 410 
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Methods 411 

Sample collection and metagenome sequencing 412 

Samples were collected, processed for metagenome sequencing, and sequenced as part of 413 

three prior studies (accession numbers in Supplemental File 1a) (3, 4, 20). Stool 414 

samples were collected from infants and stored at −80°C. DNA was extracted from 415 

frozen fecal samples using the MO BIO PowerSoil DNA Isolation Kit, with 416 

modifications (4). DNA libraries were sequenced on an Illumina HiSeq for 100 or 150 417 

cycles (Illumina, San Diego, CA). All samples were collected with parental consent. 418 

Metagenome assembly and genome binning 419 

We re-assembled and analyzed metagenomes generated as part of a prior study, referred 420 

to as NIH1 (4). The data were processed in a manner consistent with the two other prior 421 

studies analyzed, referred to as NIH2 (20) and NIH3 (3). All raw sequencing reads were 422 

trimmed using Sickle (https://github.com/najoshi/sickle). Each metagenome was 423 

assembled separately using IDBA_UD (24). Open reading frames (ORFs) were predicted 424 

using Prodigal (25) with the option to run in metagenome mode. Predicted protein 425 

sequences were annotated based on USEARCH (–ublast) (26, 27) searches against 426 

UniProt (28), UniRef100 (29), and KEGG (30, 31). Scaffold coverage was calculated by 427 

mapping reads to the assembly using Bowtie2 (32) with default parameters for paired 428 

reads. 429 

Scaffolds from NIH1 infants were binned to genomes using Emergent Self-430 

Organizing Maps (ESOMs) generated based on time-series abundance profiles (15, 33). 431 

Reads from every sample were mapped independently to every assembly using SNAP 432 

(34), and the resulting coverage data were combined. Coverage was calculated over non-433 
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overlapping three Kbp windows. Coverage values were normalized first by sample, and 434 

then the values for each scaffold fragment were normalized from zero to one. Combining 435 

coverage data from scaffolds assembled from different samples prior to normalization 436 

made it possible to generate a single ESOM map for binning genomes assembled 437 

independently from each sample. ESOMs were trained for ten epochs using the Somoclu 438 

algorithm (35) with the option to initialize the codebook using Principal Component 439 

Analysis (PCA). Genomes were binned by manually selecting data points on the ESOM 440 

map using Databionics ESOM Tools (36). Binning was aided by coloring scaffold 441 

fragments on the map based on BLAST (37) hits to the genomes assembled in the prior 442 

study. 443 

As part of the NIH2 and NIH3 studies, scaffolds were binned based on their GC 444 

content, DNA sequence coverage, and taxonomic affiliation using ggKbase tools 445 

(ggkbase.berkeley.edu). Genome bins from all three datasets were classified based on the 446 

consensus of taxonomic assignments for predicted protein sequences. Genome 447 

completeness and contamination were estimated for all genomes using CheckM with the 448 

taxonomy_wf option (38). Genomes with extra single copy genes, but with ≤175 449 

fragments/Mbp (normalized for contamination) that were estimated to be ≥75% complete 450 

were manually curated based on scaffold GC content and coverage. 451 

Clustering genomes into sub-species groups 452 

Genomes were clustered into sub-species groups based on sharing ≥98% average 453 

nucleotide identity (ANI), as estimated by MASH (39). Representative genomes were 454 

selected for each cluster as the largest genome with the highest expected completeness 455 
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and smallest amount of contamination. Genomes were classified based on the lowest 456 

possible consensus of taxonomic assignments for predicted protein sequences. 457 

Taxonomic assignments for representative genomes were checked manually based 458 

on hits to ribosomal protein S3, or visual inspection of protein taxonomic assignments. In 459 

order to identify cases in which the same bacterial strain was present in multiple samples, 460 

sub-species groups were further analyzed with the ANIm algorithm (40) implemented in 461 

dRep (41). 462 

Measuring microbial community abundance and replication rates 463 

In order to achieve accurate abundance and replication rate measurements from read 464 

mapping, databases of representative genomes were created for each sample. Each 465 

database was constructed in order to include a representative genome from important sub-466 

species groups. Priority was given to high-quality draft genome sequences reconstructed 467 

from the same sample. Genomes were classified as high-quality draft based on the 468 

requirements for iRep replication rate analysis 469 

(https://github.com/christophertbrown/iRep): ≥75% complete, ≤2.5% contamination, and 470 

≤175 scaffolds per Mbp of sequence (21). Genomes were selected to represent sub-471 

species groups using the following priority scheme: 1) high-quality draft genome 472 

assembled from the same sample, 2) high-quality draft genome from the same infant, 3) 473 

high-quality draft genome representative of sub-species group from any infant (if group 474 

had ≥5 representatives), 4) best genome from infant (if a genome was available). iRep 475 

was conducted using reads that mapped to genome sequences with ≤1 mismatch per read 476 

sequence. In cases where iRep values were ≥3, coverage plots were inspected and values 477 

were removed if there was evidence of strain variation. 478 
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We considered bacterial sub-species to be present in a sample if ≥97% of the 479 

genome was covered by an average of ≥2 reads. Abundance and iRep measurements were 480 

compared across samples by linking sample-specific representative genomes to sub-481 

species groups. Relative abundance measurements for each sub-species group were 482 

calculated by converting DNA sequencing coverage values to a percentage. UniFrac (42) 483 

analysis was conducted based on rarefied abundance data and a tree constructed based on 484 

pairwise genome ANI values measured using MASH (-ms 5000000). 485 

Metaproteomics analysis 486 

Metaproteomics sequencing was conducted on 0.3 g of stool as previously described (18). 487 

Each sample was suspended in 10 mL cold phosphate buffered saline. Samples were 488 

filtered through a 20 µm size filter to enrich for microbial cells and proteins. Microbial 489 

cells were collected by centrifugation, boiled in 4% sodium dodecyl sulfate for 5 minutes, 490 

and sonicated to lyse cells. The resulting protein extract was precipitated with 20% 491 

trichloroacetic acid at -80°C overnight. The protein pellet was washed with ice-cold 492 

acetone, solubilized in 8 M urea, reduced with 5 mM dithiothreitol, and cysteines were 493 

blocked with 20 mM iodoacetamide. Then sequencing grade trypsin was used to digest 494 

the proteins into peptides. Proteolyzed peptides were then salted and acidified by 495 

adjusting the sample to 200 mM NaCl, 0.1% formic acid, followed by filtering through a 496 

10 kDa cutoff spin column filter to collect tryptic peptides. 497 

Peptides were quantified by BCA assay and 50 µg peptides of each sample were 498 

analyzed via two-dimensional nanospray LC-MS/MS system on an LTQ-Orbitrap Elite 499 

mass spectrometer (Thermo Scientific). Each peptide mixture was loaded onto a biphasic 500 

back column containing both strong-cation exchange and reverse phase resins (C18). As 501 
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previously described, loaded peptides were separated and analyzed using a 11-salt-pusle 502 

MudPIT protocol over a 22-h period (43). Mass spectra were acquired in a data-503 

dependent mode with following parameters: full scans were acquired at 30 k resolution (1 504 

microscan) in the Orbitrap, followed by CID fragmentation of the 20 most abundant ions 505 

(1 microscan). Charge state screening and monoisotopic precursor selection were enabled. 506 

Unassigned charge and charge state +1 were rejected. Dynamic exclusion was enabled 507 

with a mass exclusion width of 10 ppm and exclusion duration of 30 seconds. Two 508 

technical replicates were conducted for each sample. 509 

Protein databases were generated for each infant from protein sequences predicted 510 

from assembled metagenomes. The database also included human protein sequences 511 

(NCBI Refseq_2011), common contaminants, and reverse protein sequences, which were 512 

used to control the false discovery rate (FDR). Collected MS/MS spectra were matched to 513 

peptides using MyriMatch v2.1 (44), filtered, and assembled into proteins using IDPicker 514 

v3.0 (45). All searches included the following peptide modifications: a static cysteine 515 

modification (+57.02 Da), an N-terminal dynamic carbamylation modification (+43.00 516 

Da), and a dynamic oxidation modification (+15.99). A maximum 2% peptide spectrum 517 

match level FDR and a minimum of two distinct peptides per protein were applied to 518 

achieve confident peptide identifications (FDR <1%). To alleviate the ambiguity 519 

associated with shared peptides, proteins were clustered into protein groups by 100% 520 

identity for microbial proteins and 90% amino acid sequence identity for human proteins 521 

using USEARCH (26). Spectral counts were balanced between shared proteins, and 522 

proteins were considered to be present if ≥2 unique peptides were identified.  523 
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Identification of putative protein families 524 

Putative protein families were identified in order to track the presence and abundance of 525 

different protein types across samples. ORFs were first pre-clustered at 95% identity 526 

using USEARCH (-cluster_smallmem -target_cov 0.50 -query_cov 0.95 -id 0.95), and 527 

then all-versus-all protein searches were conducted (–ublast -evalue 10e-10 -strand both). 528 

Protein families were delineated from within the all-versus-all network graph using the 529 

MCL clustering algorithm (-I 2 -te 10) (46). The most common annotation observed 530 

across all protein sequences in the group was selected as the annotation for the putative 531 

protein family. Proteins were also grouped based on sharing 97% amino acid identity 532 

using USEARCH (-cluster_smallmem -target_cov 0.50 -query_cov 0.95 -id 0.97).  533 

Tracking human and bacterial protein abundances 534 

Human and bacterial protein abundances were normalized using the weighted trimmed 535 

mean method from EdgeR (47). Species-specific proteomic profiles were normalized as 536 

the percent of total balanced spectral counts.  537 

Sample clustering and statistical analyses 538 

Sample clustering was conducted based on microbial community abundance and iRep 539 

profiles, and bacterial protein family abundance profiles. In each case, the number of 540 

clusters was determined using the gap statistic (48), and then samples were grouped into 541 

the appropriate number of clusters using hierarchical clustering (average linkage method). 542 

Microbial community data was clustered based on weighted UniFrac distances, and 543 

protein data using Bray-Curtis distance. EdgeR was used to calculate statistically 544 

significant differences between conditions using quasi-likelihood linear modeling 545 

(glmQLFTest). 546 
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Figures 561 

Figure 1 | Premature infant gut microbial communities associated into seven 562 

primary types. Genomes reconstructed from metagenomes were clustered into sub-563 

species groups based on sharing 98% average nucleotide identity (ANI). a, The number 564 

of genomes assigned to each group and b, the number of infants with a reconstructed 565 

genome from the group. Shown are groups comprised of five or more genomes. c, 566 

Pairwise weighted UniFrac distances calculated between all microbiome samples based 567 
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on genome sequence ANI and abundance. d, PCoA clustering of samples based on 568 

weighted UniFrac distances. Samples are colored based on community type assignment. 569 

Figure 2 | Microbial colonization patterns for preterm infants. Samples were 570 

clustered into types based on microbial community composition (“community type”), 571 

bacterial iRep profiles (“iRep type”), and overall bacterial proteome composition 572 

(“proteome type”). Microbial community type is shown along with iRep (a) and  573 

proteome (b) types. Infants are arranged based on hierarchical clustering of unweighted 574 

UniFrac distances calculated based on the set of genomes recovered from each infant 575 

(Supplemental Figure 3). Antibiotics administration is indicated with pink bars and 576 

NEC diagnoses with red bars. DOL stands for day of life. 577 

Figure 3 | Microbiome stability and correlations. a, The relative contribution of human 578 

and bacterial proteins to overall proteome composition during development of the 579 

premature infant gut. b, Similarity measurements for microbiomes sampled either from 580 

the same infant or c, from different infants. Comparison of similarity measurements 581 

calculated between samples collected either form the same or different infants based 582 

either on weighted microbial community UniFrac (d), or weighted microbial proteome 583 

BrayCurtis (e) measurements. Human proteome and microbial community correlations 584 

calculated between one another (f), with infant metadata (g), and determined based on 585 

microbial species (h). Shown are PERMANOVA or Mantel test p-values (f-h). Microbial 586 

proteome “family” refers to protein family analysis, and “group” refers to analysis of 587 

proteins clustered at 97% amino acid identity.  588 

Figure 4 | Proteome detection for species colonizing premature infants. Depth of 589 

proteome sampling for organisms in each sample is compared against the percent of 590 
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predicted proteins that could be detected. Data point sizes and histograms are scaled 591 

based on organism abundance as determined by metagenome sequencing. 592 

Figure 5 | Replication rates for bacteria colonizing premature infants. a, Replication 593 

rates for bacteria sampled during periods with or without antibiotics administration and b, 594 

associated with infants that did and did not go on to develop NEC. Statistically 595 

significant differences between replication rates observed for individual species under 596 

different conditions are indicated with an asterisk (MW p-value ≤0.01). Shown are all 597 

species with at least five observations. 598 

Figure 6 | Klebsiella pneumonia proteins with infant-specific abundance profiles. 599 

Hierarchical clustering was conducted on all K. pneumonia protein families, showing that 600 

strains colonizing different infants have distinct proteomic profiles. Infant and species 601 

metadata are shown for each sample. Metadata significantly correlated with the K. 602 

pneumonia proteome are indicated with an asterisk (PERMANOVA or Mantel test p-603 

value ≤0.01). Protein families that correlated with at least one infant are shown in the 604 

heatmap (edgeR q-value ≤0.01). Samples colonized by the same K. pneumonia strain are 605 

shown with red text. 606 

Figure 7 | Microbial community diversity. Shannon diversity measurements for 607 

microbial communities associated with infants during periods with or without antibiotics 608 

administration (a), and between infants that did and did not go on to develop NEC (b-d). 609 

Significant differences are indicated with an asterisk (MW p-value ≤0.01). “Early” 610 

samples were collected prior to GA + DOL 220. Samples collected after NEC diagnosis 611 

were excluded from c and d. 612 
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Tables 613 

Table 1 | Infant medical information. 614 

infant campaign sex delivery mult. gest. 

gestational 
age 

(weeks) 
birth 

weight  (g) feeding  condition 

NEC 
diagnosis 

(DOL) 
N1_003 NIH1 F C-section Single 26 822 Breast control n/a 

N1_004 NIH1 F C-section N1_005 32 1450 Formula control n/a 
N1_008 NIH1 F Vaginal Single 32 1230 Formula NEC 9 
N1_009 NIH1 M C-section Single 29 1820 Combination control n/a 
N1_011 NIH1 M C-section N1_012 26 523 Combination NEC 34, 62 
N1_014 NIH1 M Vaginal Single 32 2035 Combination control n/a 

N1_017 NIH1 F Vaginal Single 26 748 Combination NEC 11 
N1_018 NIH1 M C-section Single 29 1133 Combination control n/a 
N1_019 NIH1 F C-section N1_020, N1_021 24 731 Combination control n/a 

N1_021 NIH1 F C-section N1_019, N1_020 24 697 Breast NEC 32 
N1_023 NIH1 F Vaginal Single 27 875 Breast control n/a 
N2_031 NIH2 M C-section Single 26 773 Formula control n/a 
N2_035 NIH2 M Vaginal Single 25 795 Breast control n/a 

N2_038 NIH2 F C-section N2_039 30 1381 Combination control n/a 
N2_039 NIH2 F C-section N2_038 30 1470 Combination NEC 24 
N2_060 NIH2 M C-section Single 30 1878 Combination control n/a 
N2_061 NIH2 M Vaginal Single 28 1184 Combination NEC 9, 34 
N2_064 NIH2 M Vaginal Single 28 1100 Combination control n/a 

N2_065 NIH2 F Vaginal Single 25 841 Combination control n/a 
N2_066 NIH2 F Vaginal Single 28 1028 Breast control n/a 
N2_069 NIH2 M C-section N2_070 26 637 Breast NEC 32 

N2_070 NIH2 F C-section N2_069 26 633 Combination control n/a 
N2_071 NIH2 M C-section Single 25 754 Combination NEC 31 
N2_088 NIH2 F C-section N2_089 28 1057 Formula control n/a 
N2_093 NIH2 M C-section Single 26 924 Breast NEC 12 

N3_172 NIH3 M C-section Single 28 1250 Breast NEC 37, 54 
N3_173 NIH3 M C-section Single 29 1530 Breast NEC 25 
N3_174 NIH3 F C-section Single 30 980 Breast control n/a 

N3_175 NIH3 M Vaginal Single 29 1480 Combination control n/a 
N3_176 NIH3 M C-section Single 28 990 Combination control n/a 
N3_177 NIH3 F Vaginal Single 28 900 Combination control n/a 
N3_178 NIH3 M Vaginal Single 32 2050 Combination NEC 16 
N3_182 NIH3 M C-section Single 39 3010 Combination NEC 6 

N3_183 NIH3 M Vaginal Single 32 2410 Combination NEC 11 
S2_010 NIH3 M C-section Single 32 1810 Combination control n/a 

 615 
Supplemental Materials 616 

Supplemental Figures 617 

Supplemental Figure 1 | Metagenome sequencing and metaproteomics conducted on 618 

microbiome samples collected from premature infants. Frequency of sample 619 

collection for metagenomics (a) and metaproteomics (b) based on infant day of life 620 
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(DOL). c, Metagenome sequencing, and d, the percentage of each metagenome 621 

represented by assembled genome sequences ≥50% complete with ≤5% contamination. e, 622 

The number of proteomics spectral counts that could be uniquely assigned to human or 623 

bacterial proteins. f, The percent of predicted proteins that could be detected in each 624 

sample. g, The percent of species-specific proteomes that could be detected for species 625 

where ≥10% of the proteome could be detected in at least one sample. h, Histogram 626 

showing the distribution of the maximum percent of the proteome detected for all species 627 

present in each sample. 628 

Supplemental Figure 2 | ESOM genome binning. Genome binning was conducted 629 

based on Emergent Self-Organizing Map (ESOM) clustering of scaffolds assembled from 630 

individual metagenomes. Data points represent 3 Kbp fragments of assembled scaffolds. 631 

Coloring is based on the species-level assignment of reconstructed genomes. The map is 632 

periodic, and red boxes indicate a single period. 633 

Supplemental Figure 3 | Infants that developed NEC and healthy controls are 634 

colonized by genetically similar bacteria. Presence (dark boxes) and absence (white 635 

boxes) of members of bacterial sub-species in microbial communities from different 636 

infants. Sub-species were identified based on sharing ≥98% genome average nucleotide 637 

identity (ANI), and were determined to be present if ≥97% of the genome was covered by 638 

an average of ≥2 reads. Hierarchical clustering was conducted based on unweighted 639 

UniFrac distances calculated between infant genome inventories. 640 

Supplemental Figure 4 | Studied infant gut microbial communities associate into 641 

seven primary community types. a, Hierarchical clustering was conducted based on the 642 

abundance of bacterial sub-species using weighted UniFrac distances. Microbial 643 
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community types are identified by colored boxes. Metadata are shown for each sample, 644 

and indicated with an asterisk if significantly correlated with microbial community 645 

abundance data (PERMANOVA or Mantel test p-value ≤0.01). b-i, PCoA clustering of 646 

microbial communities with associated metadata: antibiotics administration (b), infant (c), 647 

developmental age (d; number of days since conception: gestational age + day of life, GA 648 

+ DOL), proteome type (e), iRep type (f), infant health (g), days prior to NEC diagnosis 649 

(h; DOL – NEC diagnosis), and human proteome type (i). 650 

Supplemental Figure 5 | Microbial community abundance and replication rate 651 

profiles. Relative abundance (bars) and iRep replication rate (scatter plot) values for 652 

bacterial sub-species colonizing studied premature infants. The five days following 653 

antibiotics administration are indicated with a color gradient. 654 

Supplemental Figure 6 | Microbial community types are distinguished by their 655 

abundant members. Rank abundance curves showing the average and range (95% 656 

confidence interval) of relative abundance values for sub-species groups associated with 657 

each community type. 658 

Supplemental Figure 7 | Hierarchical clustering of genomes for members of the 659 

same sub-species group. dRep results show ANI clustering of assembled genomes. 660 

Genome names indicate the metagenome that each genome was assembled from (see 661 

Supplemental File 1b). Clustering dendrograms show that most infants are colonized by 662 

different strains. 663 

Supplemental Figure 8 | Multiple species have infant-specific proteome profiles. a, 664 

Analysis of Veillonella spp. genomes shows the presence of four different species. b-e, 665 

Proteome profiles for different species colonizing premature infants. Hierarchical 666 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2018. ; https://doi.org/10.1101/217950doi: bioRxiv preprint 

https://doi.org/10.1101/217950
http://creativecommons.org/licenses/by-nc/4.0/


 31

clustering was conducted based on all detected protein families, and shows that strains 667 

colonizing different infants typically have distinct proteomic profiles. Infant and species 668 

metadata are shown for each sample. Metadata significantly correlated with the species 669 

proteome are indicated with an asterisk (PERMANOVA or Mantel test p-value ≤0.01). 670 

Protein families that correlated with at least one infant are shown in the heatmap (edgeR 671 

q-value ≤0.01). Samples colonized by the same strain are shown with colored text. 672 

Supplemental Figure 9 | Proteome types are distinguished by the abundance of 673 

proteins from different KEGG modules. Hierarchical clustering of proteome types was 674 

conducted based on the abundance of proteins associated with KEGG modules. The 675 

relative abundance of proteins associated with each module was summed for each sample, 676 

and then the average was taken across all samples associated with each proteome type.  677 

Supplemental Files 678 

Supplemental File 1a | DNA sequencing and metaproteomics statistics. 679 

Supplemental File 1b | Genomes reconstructed from metagenomes. 680 

Supplemental File 1c | Species iRep replication rates and statistical analysis. 681 

Supplemental File 1d | Species-specific microbial protein family abundance and 682 

statistical analysis. 683 

Supplemental File 1e | Correlation of species-specific protein family abundances 684 

with iRep replication rates and gestational age corrected day of life (GA + DOL). 685 

Supplemental File 1f | Species relative abundance and statistical analysis. 686 

Supplemental File 1g | Microbial protein family abundance and statistical analysis. 687 

Supplemental File 2 | Scaffolds binned to reconstructed genomes. 688 

Supplemental File 3 | Proteins assigned to putative families. 689 
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Supplemental File 4 | Metaproteomics spectral counts. 690 
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Figure 6
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Threonine biosynthesis, aspartate => homoserine => threonine: semialdehyde dehydrogenase  3870
Threonine biosynthesis, aspartate => homoserine => threonine: aspartate kinase  421
Uridine monophosphate biosynthesis, glutamine (+ PRPP) => UMP: hypothetical protein  10796
Pyrimidine deoxyribonuleotide biosynthesis, CDP/CTP => dCDP/dCTP,dTDP/dTTP: ribonucleotide-diphosphate reductase subunit beta (EC:1.17.4.1)  2709
Purine degradation, xanthine => urea: hydroxyisourate hydrolase  5562
Purine degradation, xanthine => urea: OHCU decarboxylase  4736
Purine degradation, xanthine => urea: 5-hydroxyisourate hydrolase  7013
Adenine ribonucleotide biosynthesis, IMP => ADP,ATP: adk; adenylate kinase (EC:2.7.4.3)  557
GABA (gamma-Aminobutyrate) shunt: glutamate decarboxylase (EC:4.1.1.15)  2893
Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine: semialdehyde dehydrogenase  3870
Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine: dihydrodipicolinate synthase  5190
Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine: dihydrodipicolinate reductase (EC:1.3.1.26)  886
Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine: aspartate kinase  421
Lysine biosynthesis, DAP dehydrogenase pathway, aspartate => lysine: semialdehyde dehydrogenase  3870
Lysine biosynthesis, DAP dehydrogenase pathway, aspartate => lysine: dihydrodipicolinate synthase  5190
Lysine biosynthesis, DAP dehydrogenase pathway, aspartate => lysine: dihydrodipicolinate reductase (EC:1.3.1.26)  886
Lysine biosynthesis, DAP dehydrogenase pathway, aspartate => lysine: aspartate kinase  421
Lysine biosynthesis, DAP aminotransferase pathway, aspartate => lysine: semialdehyde dehydrogenase  3870
Lysine biosynthesis, DAP aminotransferase pathway, aspartate => lysine: dihydrodipicolinate synthase  5190
Lysine biosynthesis, DAP aminotransferase pathway, aspartate => lysine: dihydrodipicolinate reductase (EC:1.3.1.26)  886
Lysine biosynthesis, DAP aminotransferase pathway, aspartate => lysine: aspartate kinase  421
Histidine biosynthesis, PRPP => histidine: phosphoribosyl-AMP cyclohydrolase  971
Methionine biosynthesis, apartate => homoserine => methionine: semialdehyde dehydrogenase  3870
Methionine biosynthesis, apartate => homoserine => methionine: aspartate kinase  421
Pimeloyl-ACP biosynthesis, BioC-BioH pathway, malonyl-ACP => pimeloyl-ACP: short-chain dehydrogenase  2690
Pimeloyl-ACP biosynthesis, BioC-BioH pathway, malonyl-ACP => pimeloyl-ACP: enoyl-ACP reductase (EC:1.3.1.9)  1968
NAD biosynthesis, aspartate => NAD: nadE; NAD synthetase (EC:6.3.1.5)  1262
Menaquinone biosynthesis, chorismate => menaquinone: naphthoate synthase (EC:4.1.3.36)  276
Glutathione biosynthesis, glutamate => glutathione: glutamate--cysteine ligase (EC:6.3.2.2)  2462
Biotin biosynthesis, pimeloyl-ACP/CoA => biotin: 8-amino-7-oxononanoate synthase (EC:2.3.1.47)  314
Biotin biosynthesis, BioW pathway, pimelate => pimeloyl-CoA => biotin: 8-amino-7-oxononanoate synthase (EC:2.3.1.47)  314
Leucine biosynthesis, 2-oxoisovalerate => 2-oxoisocaproate: aconitate hydratase  1118
Tryptophan biosynthesis, chorismate => tryptophan: tryptophan synthase subunit beta (EC:4.2.1.20)  560
Tryptophan biosynthesis, chorismate => tryptophan: trpA; tryptophan synthase subunit alpha (EC:4.2.1.20)  744
Shikimate pathway, phosphoenolpyruvate + erythrose-4P => chorismate: 3-dehydroquinate dehydratase  1699
Phenylalanine biosynthesis, chorismate => phenylalanine: putative ABC-type amino acid transport/signal transduction systems periplasmic component  8342
Homoprotocatechuate degradation, homoprotocatechuate => 2-oxohept-3-enedioate: 4-hydroxyphenylacetate degradation protein  2633
Proline biosynthesis, glutamate => proline: glutamate 5-kinase  563
tyrosyl-tRNA synthetase  205
threonyl-tRNA synthetase (EC:6.1.1.3)  116
aspartyl-tRNA synthetase  169
30S ribosomal protein S14  2142
30S ribosomal protein S6  4560
30S ribosomal protein S5  705
50S ribosomal protein L34  11065
50S ribosomal protein L30  3340
50S ribosomal protein L24  8728
50S ribosomal protein L18  896
50S ribosomal protein L16  895
50S ribosomal protein L15  943
rplM  27206
50S ribosomal protein L13  558
50S ribosomal protein L6  537
50S ribosomal protein L31  5323
50S ribosomal protein L29  6730
50S ribosomal protein L1  388
30S ribosomal protein S7  725
30S ribosomal protein S17  1082
30S ribosomal protein S16  3104
RNA processing Ski complex protein  1885
rpoB; DNA-directed RNA polymerase subunit beta (EC:2.7.7.6)  685
Cell division protein FtsH (EC:3.4.24.-)  4919
DNA polymerase III complex: ribosomal-protein-alanine acetyltransferase  976
DNA polymerase III complex protein  12022
DNA polymerase III subunit alpha (EC:2.7.7.7)  57
PgtB-PgtA (phosphoglycerate transport) two-component regulatory system: transcriptional regulator  9749
CitA-CitB (citrate fermentation) two-component regulatory system: signal transduction histidine kinase  824
CitA-CitB (citrate fermentation) two-component regulatory system: dpiA  3707
PTS system mannose/fructose/sorbose transporter subunit IIA (EC:2.7.1.69)  5503
PTS system galactitol-specific transporter subunit IIB  3409
PTS system lactose/cellobiose-specific transporter subunit IIB  893
PTS system lactose/cellobiose-specific transporter subunit IIA  335
phosphate transport system regulatory protein PhoU  809
D-Methionine transport system: NLPA lipoprotein  67
Spermidine/putrescine transport system: bacterial extracellular solute-binding family protein  197
Osmoprotectant transport system: osmoprotectant uptake system substrate-binding protein  3203
Iron III transport system: Ferric iron ABC transporter  7297
Nickel transport system: anaerobic cobalt chelatase (EC:4.99.1.3)  1348
Iron complex transport system: iron-hydroxamate transporter substrate-binding subunit  2784
Cobalt/nickel transport system: anaerobic cobalt chelatase (EC:4.99.1.3)  1348
Type VI secretion system: ATPase AAA  13
Type II general secretion pathway: type IV pilin biogenesis protein  358
Type II general secretion pathway: pullulanase  6218
Type II general secretion pathway: pullulanase  17135
Type II general secretion pathway: pullulanase  15660
Type II general secretion pathway: pullulanase  15342
Type II general secretion pathway protein  6987
Type II general secretion pathway protein  150
Type II general secretion pathway: protein M  11340
Type II general secretion pathway: protein GspL  15346
Type II general secretion pathway: protein GspI  19722
Type II general secretion pathway: protein G  6194
Type II general secretion pathway: protein D  2725
Sec system: preprotein translocase subunit SecA  63
cysN; sulfate adenylyltransferase subunit 1 (EC:2.7.7.4)  1883
nitrite reductase  462
beta-lactamase  437
Reductive pentose phosphate cycle: transketolase (EC:2.2.1.1)  120
succinate dehydrogenase flavoprotein subunit (EC:1.3.99.1)  803
C5 isoprenoid biosynthesis: rpsA; 30S ribosomal protein S1  187
C5 isoprenoid biosynthesis: ispG; 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (EC:1.17.7.1)  621
C5 isoprenoid biosynthesis: ispF; 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (EC:4.6.1.12)  974
C5 isoprenoid biosynthesis: 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase  2940
Glyoxylate cycle: aconitate hydratase (EC:4.2.1.3)  2487
Glyoxylate cycle: aconitate hydratase (EC:4.2.1.3)  419
Galactose degradation, Leloir pathway, galactose => alpha-D-glucose-1P: galM; galactose-1-epimerase (EC:5.1.3.3)  747
D-Galacturonate degradation, D-galacturonate => pyruvate + D-glyceraldehyde 3P: altronate hydrolase  838
Fatty acid biosynthesis, elongation: short-chain dehydrogenase  2690
Fatty acid biosynthesis, elongation enoyl-ACP reductase (EC:1.3.1.9)  1968
Pyruvate oxidation, pyruvate => acetyl-CoA pyruvate dehydrogenase E1 component subunit alpha  1247
Pentose phosphate pathway, non-oxidative phase, fructose 6P => ribose 5P: transketolase (EC:2.2.1.1)  120
Pentose phosphate pathway: transketolase (EC:2.2.1.1)  120
Citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate: aconitate hydratase (EC:4.2.1.3)  2487
Citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate: aconitate hydratase (EC:4.2.1.3)  419
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