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Abstract 
During the first weeks of life, microbial colonization of the gut impacts human immune 
system maturation and other developmental processes. In premature infants, aberrant 
colonization has been implicated in the onset of necrotizing enterocolitis (NEC), a life-
threatening intestinal disease. To study variability in the premature infant gut 
colonization process, genome-resolved metagenomics was conducted on 343 fecal 
samples collected during the first three months of life from 35 premature infants, 14 of 
which developed NEC, and metaproteomic measurements were made on 87 samples. 
Microbial proteomic profiles and community composition remained relatively stable on 
the time scale of a week, but the proteome was more variable than community 
composition. Although genetically similar organisms colonized many infants, most 
infants were colonized by distinct strains with metabolic profiles that could be 
distinguished using metaproteomics. Microbiome composition correlated with infant, 
antibiotics administration, and NEC diagnosis. Communities were found to cluster into 
seven primary types, and community type switched within infants, sometimes multiple 
times. Interestingly, some communities sampled from the same infant at subsequent time 
points clustered with those of other infants. In some cases, switches preceded onset of 
NEC; however, no species or community type could account for NEC across the majority 
of infants. In addition to a correlation of protein abundances with organism replication 
rates, we find that organism proteomes correlate with overall community composition. 
Thus, this genome-resolved proteomics study demonstrates that the contributions of 
individual organisms to microbiome development depend on microbial community 
context. 
 
Introduction 
Infants have been characterized as having high levels of between-individual variation in 
microbiome composition compared with adult humans (Costello et al. 2009; Palmer et al. 
2007). Variation in the infant microbiome exists at both the species and strain level 
(Raveh-Sadka et al. 2015; 2016). During the first one to two years of life the gut 
microbiomes of infants begin to converge upon an adult-like state (Palmer et al. 2007; 
Bokulich et al. 2016). However, aberrations in this process may contribute to diseases 
such as type 1 and 2 diabetes, irritable bowel disease, and necrotizing enterocolitis (NEC) 
in premature infants (Xavier and Podolsky 2007; Brown et al. 2011; Qin et al. 2012; 
Mshvildadze et al. 2010; Mai et al. 2011; Morrow et al. 2013). Because establishment of 
the microbiome is a key driver of immune system development, changes in the process of 
colonization may have life-long implications, even if they do not result in a drastically 
different microbiome composition later in life (Maslowski et al. 2009; Lathrop et al. 
2011). 
 
Infants born prematurely have low-diversity microbial communities compared with full 
term infants, and are susceptible to life-threatening diseases such as NEC (Neu and 
Walker 2011; Sharon et al. 2012; Brown et al. 2013; Raveh-Sadka et al. 2016; Pammi et 
al. 2017). While it has long been thought that bacterial infection may contribute to NEC 
pathogenesis, strain-resolved microbial community analysis has not identified a single 
pathogen that is responsible for the disease (Raveh-Sadka et al. 2015). However, it is still 
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likely that microbial communities play an important role, with the context-dependent 
metabolism of specific strains potentially critical to infant health and disease. Recent 
studies have applied proteomics and metabolomics to premature infant gut microbiomes 
to measure functional profiles in healthy premature infants and those that went on to 
develop NEC (Xiong et al. 2017; Stewart et al. 2016). These studies reported temporal 
variation in the infant proteome and identified metabolites associated with NEC. 
However, further study is required to better understand the range of functional and 
developmental patterns during the microbial colonization process. 
 
To investigate microbial community assembly, and how microbes modulate their 
metabolisms and replication rates during the colonization process, we conducted a 
combined metagenomics and metaproteomics study of the microbiome of both healthy 
premature infants and infants that went on to develop NEC. Microbiome samples were 
collected during the first three months of life with the goal of measuring the physiological 
changes of dominant and ubiquitous bacterial species. Genomes assembled from 
metagenomes enabled analysis of microbial community membership and tracking of 
community composition and replication rates over time. The availability of genome 
sequences made it possible to map protein abundance measurements to bacterial species 
and strains. Microbial communities were clustered into distinct types in order to provide 
context for proteomics analyses. Statistical analyses showed that, while overall 
community composition was correlated with species and strain-specific proteomic 
profiles, the proteomes of members of the same species and strain were largely infant-
specific. These analyses also show that bacterial proteome features are correlated with 
infant development, health status, and antibiotics administration. 
 
Results 

Metagenome sequencing and genome binning 
In order to study the developing gut microbiome, stool samples were collected during the 
first three months of life for 35 infants born prematurely. Two of the infants in the study 
cohort developed sepsis (N1_017 and N1_019) and 14 infants developed necrotizing 
enterocolitis (NEC; Table 1). To study the gut microbiome, we analyzed 1,149 Gbp of 
DNA sequences generated by our laboratory (Raveh-Sadka et al. 2015; 2016; Brooks et 
al.). These sequences were from 343 metagenomes (average of 3.3 Gbp sequencing per 
sample; Supplemental Figure 1 and Supplemental Table 1). Metagenomes were 
assembled into 6.79 Gbp of scaffolds ≥1 Kbp that represented 92% of all sequenced 
DNA. 
 
Table 1 | Infant medical information. 

infant campaign sex delivery mult. gest. 

gestational 
age 

(weeks) 
birth 

weight  (g) feeding  condition 

NEC 
diagnosis 

(DOL) 
infection 
(DOL) 

N1_003 NIH1 F C-section Single 26 822 Breast control n/a n/a 
N1_004 NIH1 F C-section N1_005 32 1450 Formula control n/a n/a 
N1_008 NIH1 F Vaginal Single 32 1230 Formula NEC 9 n/a 
N1_009 NIH1 M C-section Single 29 1820 Combination control n/a n/a 
N1_011 NIH1 M C-section N1_012 26 523 Combination NEC 34, 62 n/a 
N1_014 NIH1 M Vaginal Single 32 2035 Combination control n/a n/a 
N1_017 NIH1 F Vaginal Single 26 748 Combination NEC 11 11 
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N1_018 NIH1 M C-section Single 29 1133 Combination control n/a n/a 
N1_019 NIH1 F C-section N1_020, N1_021 24 731 Combination control n/a 23, 35 
N1_021 NIH1 F C-section N1_019, N1_020 24 697 Breast NEC 32 24 
N1_023 NIH1 F Vaginal Single 27 875 Breast control n/a n/a 
N2_031 NIH2 M C-section Single 26 773 Formula control n/a 39, 57 
N2_035 NIH2 M Vaginal Single 25 795 Breast control n/a n/a 
N2_038 NIH2 F C-section N2_039 30 1381 Combination control n/a n/a 
N2_039 NIH2 F C-section N2_038 30 1470 Combination NEC 24 n/a 
N2_060 NIH2 M C-section Single 30 1878 Combination control n/a n/a 
N2_061 NIH2 M Vaginal Single 28 1184 Combination NEC 9, 34 4 
N2_064 NIH2 M Vaginal Single 28 1100 Combination control n/a n/a 
N2_065 NIH2 F Vaginal Single 25 841 Combination control n/a n/a 
N2_066 NIH2 F Vaginal Single 28 1028 Breast control n/a n/a 
N2_069 NIH2 M C-section N2_070 26 637 Breast NEC 32 n/a 
N2_070 NIH2 F C-section N2_069 26 633 Combination control n/a 7 
N2_071 NIH2 M C-section Single 25 754 Combination NEC 31 n/a 
N2_088 NIH2 F C-section N2_089 28 1057 Formula control n/a n/a 
N2_093 NIH2 M C-section Single 26 924 Breast NEC 12 n/a 
N3_172 NIH3 M C-section Single 28 1250 Breast NEC 37, 54 n/a 
N3_173 NIH3 M C-section Single 29 1530 Breast NEC 25 n/a 
N3_174 NIH3 F C-section Single 30 980 Breast control n/a n/a 
N3_175 NIH3 M Vaginal Single 29 1480 Combination control n/a n/a 
N3_176 NIH3 M C-section Single 28 990 Combination control n/a n/a 
N3_177 NIH3 F Vaginal Single 28 900 Combination control n/a n/a 
N3_178 NIH3 M Vaginal Single 32 2050 Combination NEC 16 n/a 
N3_182 NIH3 M C-section Single 39 3010 Combination NEC 6 n/a 
N3_183 NIH3 M Vaginal Single 32 2410 Combination NEC 11 n/a 
S2_010 NIH3 M C-section Single 32 1810 Combination control n/a n/a 

 
Scaffolds assembled from metagenomes were grouped into 3,643 bins, 1,457 of which 
represented draft-quality genomes (≥50% complete with ≤5% contamination; 
Supplemental Figure 2, Supplemental File 1). These genomes were assigned to 270 
groups approximating different bacterial sub-species based on sharing ≥98% average 
nucleotide identity (ANI) (Supplemental Table 2). These genomes account for 91% of 
the total sequencing. High-quality draft genomes suitable for iRep replication rate 
analysis (≥75% complete with ≤175 fragments/Mbp and ≤5% contamination) were 
available for 193 genome clusters (Brown et al. 2016). 
 
Protein quantification by metaproteomics 
Across all metagenomes, 5,233,047 proteins were predicted, 897,520 of which were from 
a non-redundant set of representative genomes clustered at 98% ANI. Proteins clustered 
into 121,746 putative families (Supplemental File 2). Metaproteomics measurements 
were conducted on 87 metagenome-matched samples that spanned 16 infants, six of 
which developed NEC and one of which was diagnosed with sepsis (N1_019; 
Supplemental Figure 1). Each sample was analyzed in technical duplicate. Conducting 
metagenomics and metaproteomics on the same samples was critical for obtaining an 
appropriate database for matching peptides to proteins. On average 71,676 unique 
bacterial spectral counts were detected per sample, and an average of 33% of predicted 
bacterial proteins were identified (Supplemental Figure 1, Supplemental Table 2, and 
Supplemental File 3). 
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Premature infants are colonized by genetically similar organisms 
The majority of infants were colonized by Enterococcus faecalis, Klebsiella pneumoniae, 
and Staphylococcus epidermidis (Figure 1a,b). However, most genotypes were seen in 
only one infant. Interestingly, species presence and absence patterns correlated with NEC 
(unweighted UniFrac distance Permutational Multivariate Analysis of Variance, 
PERMANOVA, p-value = 6 x 10-3; Figure 1c), but no individual species was strongly 
associated with NEC (Supplemental Figure 3). We deduce that this correlation is 
primarily due to low species diversity in NEC cases. The principal coordinate analysis 
(PCoA; Figure 1c) shows that some infants that developed NEC had distinct genome 
inventories. However, hierarchical clustering indicates that infants that developed NEC 
are often colonized by organisms that are genetically similar to those colonizing other 
infants. Genome inventories were also correlated with gestational age and birth weight 
(Mantel test p-value = 2 x 10-3 and 3 x 10-3, respectively). 
 

 
Figure 1 | Premature infants are colonized by genetically similar bacteria. Genomes 
reconstructed from metagenomes were clustered into sub-species groups based on sharing 
98% average nucleotide identity (ANI). a, The number of genomes assigned to each 
group and b, the number of infants in the study with a reconstructed genome from the 
group. Shown are groups comprised of five or more genomes. c, Principal coordinate 
analysis (PCoA) clustering of infants based on unweighted UniFrac distances determined 
based on the ANI of assembled microbial genomes. Genome inventories from infants that 
developed NEC were significantly different from those that did not (PERMANOVA p-
value = 3 x 10-3). 
 
Microbial communities cluster into seven primary types 
The premature infant microbiome was found to be highly variable. In some cases, 
samples collected from an infant at subsequent time points were as different from earlier 
samples as those collected from other infants (Figure 2). Communities were clustered 
based on species membership and abundance in order to identify microbial consortia 
common during the colonization process. In order to account for both genomic 
differences and organism abundance, clustering was conducted based on weighted 
UniFrac distances, where the tree used for calculating UniFrac was constructed using 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/217950doi: bioRxiv preprint 

https://doi.org/10.1101/217950
http://creativecommons.org/licenses/by-nc/4.0/


 6 

genome ANI. Nine distinct community types were identified, seven of which were 
comprised of samples collected from multiple infants and were thus considered primary 
types  (Figure 2, Supplemental Figure 4, and Supplemental Figure 5). Each 
community type is characterized by the dominance of different community members 
(Supplemental Figure 6). Microbiomes from different infants clustered into the same 
community type, and the microbiome of individual infants was found to switch types, 
sometimes multiple times, during the colonization process (Figure 3). Although infants 
shared community types, overall colonization patterns were not replicated across infants. 
Microbiomes associated with infants that did and did not go on to develop NEC were 
often classified in the same community type. In some cases, switches preceded onset of 
NEC, but no type or switch could explain all cases of NEC. 
 

 
Figure 2 | Premature infant gut microbial communities associate into seven primary 
types. a, Pairwise weighted UniFrac distances calculated between all microbiome 
samples based on genome sequence ANI and abundance. b, The gap statistic was used to 
determine that nine distinct community types exist. Hierarchical clustering based on 
UniFrac distances was used to delineate samples into community types (Supplemental 
Figure 4, Supplemental Figure 5, and Supplemental Figure 6). Seven primary 
community types were identified based on being represented by samples collected from 
multiple infants. c, PCoA clustering of samples based on weighted UniFrac distances. 
Samples are colored based on community type assignment. 
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Figure 3 | Microbial colonization patterns for preterm infants. Samples were 
clustered into types based on microbial community composition (“community type”), 
bacterial iRep profiles (“iRep type”), and overall bacterial proteome composition 
(“proteome type”). Microbial community type is shown along with iRep (a) and  
proteome (b) types. Infants are arranged based on hierarchical clustering of unweighted 
UniFrac distances calculated based on the set of genomes recovered from each infant 
(Supplemental Figure 3). Antibiotics administration is indicated with pink bars and 
NEC diagnoses with red bars. DOL stands for day of life. 
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Microbial community composition is correlated with infant health 
Premature infants that developed NEC had statically different microbial community 
abundance profiles (PERMANOVA p-value = 3 x 10-3; Supplemental Figure 4g). 
Interestingly, there was a variety of species that were detected in healthy infants, but 
never detected in those that developed NEC; however, the opposite was not true. It 
should be noted that species not detected in NEC infants were not consistently detected in 
healthy infants. No species identified five days prior to NEC diagnosis showed a 
significant difference in abundance, or was unique to NEC infants. Overall community 
composition was also correlated with each infant, antibiotics administration, birth weight, 
gestational age, and gestational age corrected day of life (GA + DOL; PERMANOVA or 
Mantel test p-value ≤0.01; Supplemental Figure 4). Several species were more abundant 
members of communities associated with infants that developed NEC: Pantoea sp., 
Pseudomonas aeruginosa, Enterobacter sp., Propionibacterium sp., Peptostreptococcus 
sp., and Klebsiella oxytoca (edgeR q-value ≤0.01; Supplemental Table 3), raising the 
question of whether or not these organisms are also replicating more quickly. 

 
Microbial replication rates and proteome composition 
iRep is a newly-developed method that enables measurement of bacterial replication rates 
based on metagenome sequencing data when high-quality draft genome sequences are 
available (Brown et al. 2016). We applied the iRep method using genomes recovered 
from metagenomes sequenced for each infant in the study, and quantified 1,328 iRep 
replication rates from 330 samples. Sample clustering was conducted based on 
community iRep profiles, identifying nine distinct iRep types that were correlated with 
community type (Mantel test p-value = 1 x 10-3, Figure 3a). Likewise, analysis of protein 
family abundance clustered samples into four distinct proteome types, which also 
correlated with community type (Mantel test p-value = 1 x 10-3, Figure 3b). Interestingly, 
there are several cases in which iRep and/or proteome type switched when community 
type was constant, or when community type switched but iRep and/or proteome type 
remained constant. 
 
Members of the same bacterial species replicate at different rates during colonization 
Across all infants, Streptococcus agalactiae, Pseudomonas aeruginosa, Klebsiella 
pneumoniae, and members of the genera Veillonella and Clostridium exhibited some of 
the highest replication rates (Supplemental Figure 7). Combined iRep values collected 
from infants that did and did not go on to develop NEC were not statistically different, 
even when considering only samples collected within the five days prior to NEC 
diagnosis (Figure 4a). However, iRep results show that populations of several individual 
species of bacteria were replicating more quickly in either infants that developed NEC or 
healthy controls (Supplemental Table 4). Veillonella sp. and Pantoea sp. were 
replicating faster in NEC infants, and K. oxytoca faster in control infants (Mann-Whitney 
U test, MW, p-value ≤0.01). Interestingly, Pantoea sp. were more abundant in infants 
that developed NEC. Several different species were active in control infants, but were not 
detected in infants that went on to develop NEC. 
 
The iRep values for organisms sampled in this cohort during or immediately after 
antibiotics administration were not significantly different from those at other time points 
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(Figure 4b). This indicates that populations present after antibiotics administration are 
both resistant to antibiotics and are continuing to replicate. Members of several species 
were replicating quickly during or immediately following antibiotic treatment 
(Veillonella sp., Streptococcus agalactiae, Finegoldia magna, and others; Supplemental 
Table 4). However, we did not detect overall higher iRep values following antibiotics 
administration, although this was reported previously (Brown et al. 2016). Most species 
were found only to be replicating in the absence of antibiotics, consistent with their 
susceptibility to the treatment. 
 

 
Figure 4 | Replication rates for bacteria colonizing premature infants. a, Replication 
rates for bacteria associated with infants that did and did not go on to develop NEC and b, 
sampled during periods with or without antibiotics administration. a, Overall replication 
rates were not statistically different between NEC and control samples or b, between 
samples collected during periods with or without antibiotics administration. Statistically 
significant differences between replication rates observed for individual species under 
different conditions are indicated with an asterisk (Mann-Whitney U Test p-value ≤0.01). 
Shown are all species with at least five observations. 
 
Low microbiome diversity is associated with NEC and antibiotics administration 
Microbial communities sampled from infants that developed NEC had significantly lower 
Shannon diversity compared with other infants (MW p-value = 4 x 10-4; Figure 5a). 
There was also a difference in diversity during and following antibiotics administration 
(MW p-value = 1.4 x 10-3). Analysis of Shannon diversity measurements indicate that 
lower diversity in NEC infant communities persists through the colonization period 
(Figure 5b). 
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Interestingly, microbiomes from both groups of infants increase in diversity during the 
first 20 days of life, and then decrease in diversity. This trend was also observed after 
correcting for gestational age (Figure 5c), and was also evident in healthy infants across 
samples where antibiotics were not administered (Figure 5d). Overall, differences in 
microbial community diversity are likely a driving factor in correlations between 
microbial community metrics and infant health. 
 

 
Figure 5 | Microbial community diversity. a, Shannon diversity measurements for 
microbial communities associated with infants that did and did not go on to develop NEC, 
and sampled during periods with or without antibiotics administration. Significant 
differences are indicated with an asterisk (Mann-Whitney U Test p-value ≤0.01). 
Interpolated Shannon diversity for infants that did and did not go on to develop NEC (b, 
c), and for samples collected from control infants during periods with or without 
antibiotics treatment (d). Infants experienced an increase in diversity during the first two 
weeks of life, followed by a decrease (b); this pattern was apparent even after correcting 
for gestational age (c). Plots are shown with a 95% confidence interval (b-d). 
 
Different species express varying amount of their proteome in the infant gut 
Microbes present in the gut environment are not expected to express their complete 
complement of proteins at all times. In order to investigate the extent of proteome 
expression for different bacteria, we compared depth of proteome sampling for each 
organism to the percent of the predicted proteome that could be detected (Figure 6). The 
median proteome detection across all samples was 11%, but this was largely due to low 
sampling depth. Higher depth of proteome sampling corresponded with detection of a 
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larger fraction of the predicted proteins. The median percent of the proteome detected for 
organisms with the best detection in each sample was 31% (max. 48%). For several 
frequently detected colonists, including Klebsiella pneumoniae, Klebsiella oxytoca, and 
members of the genus Enterobacter, maximum proteome expression was ~50%. 
However, Propionibacterium sp., Anaerococcus vaginalis, and members of the genus 
Bifidobacterium expressed a greater proportion of their encoded genes than other 
organisms. We infer that these bacteria may be specifically adapted to environments and 
resource availability within the infant gut, whereas other bacteria may maintain capacities 
that enable adaption to other environments. 
 

 
Figure 6 | Proteome detection for species colonizing premature infants. Depth of 
proteome sampling for organisms in each sample is compared against the percent of 
predicted proteins that could be detected. Data point sizes and histograms are scaled 
based on organism abundance as determined by metagenome sequencing. 
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Microbiome development 
Peptide spectral counts were matched to infant-specific databases containing both human 
and microbial proteins. This allowed for the relative proportions of human and microbial 
proteins to be determined for each time point. Samples are dominated by human proteins 
during the first 10 days, and then microbial proteins become dominant around DOL 18. 
Ratios of human versus bacterial protein abundances show that the premature infant gut 
microbiome is established over a period of approximately two weeks (Figure 7a). 
 
The presence of multiple data types (microbial community abundance and iRep, 
microbial community proteome composition, and human proteome composition) enabled 
tracking of various aspects of human and microbiome development during the first 
months of life (Figure 7b,c). All measurements from an infant were stable within the 
time scale of a week, but diverged over time. Interestingly, communities from different 
infants neither converged nor diverged over time in terms of similarity based on three of 
these five metrics. However, we observed that the human proteome measurements and 
microbial protein family abundances from different infants became increasingly different 
when samples with time separations of greater than three weeks were compared. Overall, 
the microbial proteome was more variable (higher variance) than community composition 
(Figure 7d,e). After approximately two weeks, both microbial community abundance 
and proteome measurements collected from the same infant became as different from 
each other as samples collected from other infants. 
 
The majority of human and microbiome features recorded in our analyses were correlated 
with one another (Figure 7f). However, an exception is that microbial community 
abundance and iRep were not correlated with human proteome composition (Mantel test 
p-value >0.01). This is interesting in that it shows that there is no strong connection 
between the overall human proteome and either the composition or replication activity of 
the microbiome.  
 
As shown in Figure 7g, microbial features were also correlated with a variety of infant 
factors, including infant health and development (gestational age and weight), as well as 
antibiotics administration (Mantel or PERMANOVA p-value ≤0.01). Notably, whether or 
not an infant developed NEC (“condition”) correlated with several microbiome factors 
(infant genome inventory, and both community composition and iRep), but not with 
proteome measurements. 
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Figure 7 | Microbiome stability and correlations. 
a, The relative contribution of human and bacterial proteins to overall proteome 
composition during development of the premature infant gut. b, Similarity measurements 
for microbiomes sampled either from the same infant or c, from different infants. 
Comparison of similarity measurements calculated between samples collected either form 
the same or different infants based either on weighted microbial community UniFrac (d), 
or weighted microbial proteome BrayCurtis (e) measurements. Human proteome and 
microbial community correlations calculated between one another (f), with infant 
metadata (g), and determined based on microbial species (h). Shown are PERMANOVA 
or Mantel test p-values (f-h). 
 
Microbial proteins associated with proteome type, NEC, and antibiotics administration 
As described above, we used protein abundance patterns to cluster microbial community 
proteomes into functionally distinct proteome types. Statistical analysis identified 3,085 
differentially abundant proteins distinguish proteome types (edgeR q-value ≤ 0.01; 
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Supplemental Table 5). Of these, 461 were found to distinguish only one proteome type 
from all others. Notable amongst all of these proteins were those involved in central 
carbohydrate metabolism and energy metabolism (Supplemental Figure 8). Proteome 
types differ in terms of the amount and type of carbon degradation enzymes, as well as 
the propensity for aerobic versus anaerobic respiration (based on the abundance of 
oxidases and reductases). 
 
Although overall community proteome abundance profiles were not correlated with NEC, 
microbial proteins from 160 different protein families, many with no known function, 
were more abundant in samples from infants that went on to develop NEC (identified in 
more than one NEC infant, edgeR q-value ≤0.01; Supplemental Table 5). The proteins 
with known functions were dominantly involved in transport of ions, metals, and other 
substrates, iron acquisition, and both motility and chemotaxis. Among proteins 
responsible for iron scavenging was subunit E of enterobactin synthase, a high-affinity 
siderophore involved in iron acquisition, which is often used by pathogenic organisms. 
Also more abundant was outer membrane receptor FepA, which is involved in 
transporting iron bound by extracellular enterobactin. Subunit F of enterobactin synthase 
was also identified in NEC infants, as were an iron-enterobactin ABC transporter 
substrate-binding protein, and an enterobactin esterase. The abundance of this protein 
suggests a possible role for iron acquisition by organisms that may contribute to disease 
onset. 
 
Overall community proteome composition was correlated with antibiotics administration. 
Samples collected during treatment were enriched in 56 different proteins (identified in 
more than one treated infant, edgeR q-value ≤0.01; Supplemental Table 5). Amongst 
these proteins were those involved in secretion, transcription, and DNA degradation. 
Along with iRep results, the findings indicate that a subset of organisms remain active in 
the presence of antibiotics. 
 
Species-specific metabolic profiles are associated with specific infants, infant 
development, microbial community composition, and replication rate 
Normalization of proteome data for each genome indicates relative protein abundance 
levels, which can then be tracked across samples. Using this approach, we identified 
population-specific proteome profiles and tested whether or not they correlate with 
various human and microbial properties (Figure 7h, Supplemental Figure 1, and 
Supplemental Table 6). Veillonella spp., Klebsiella pneumoniae, Escherichia coli, and 
Propionibacterium sp. were all correlated with infant (PERMANOVA p-value ≤0.01), 
indicating that although similar organisms are colonizing different infants, each 
population is expressing a different complement of proteins. K. pneumoniae and 
Veillonella spp. proteomes also correlated with community type, as did the 
Bifidobacterium breve proteome (Mantel test p-value ≤0.01). This shows that populations 
are responding to their overall microbial community context. Interestingly, both 
Enterococcus faecalis and Propionibacterium sp. exhibited proteomes that were also 
correlated with infant development. Although overall microbial proteome correlated with 
antibiotics administration, species-specific proteome profiles did not; however, this may 
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be due to a lack of available data for the same species in multiple samples with and 
without antibiotics. 
 
Because of the existence of 35 samples in which ≥10% of the K. pneumoniae proteome 
could be detected (max. = 38%, median = 25%), correlations between individual protein 
abundances and iRep could be determined. The K. pneumoniae proteome correlated with 
iRep and infant health. Amongst proteins positively correlated with iRep were a 
transcriptional regulator (LysR), proteins involved in cell wall biogenesis, and ribosomal 
proteins (Pearson ≥0.5, q-value ≤0.01, observed in ≥15 samples; Supplemental Table 7). 
 
Species-specific proteins correlated with NEC 
Propionibacterium sp. was found to be more abundant in microbiomes from infants that 
developed NEC; however, its proteome composition did not correlate with disease, and 
only three proteins were strongly correlated with NEC: glyceraldehyde-3-phosphate 
dehydrogenase (family 123), and two hypothetical proteins (family 9917 and 12000). 
 
Interestingly, 21 K. pneumoniae proteins were correlated with NEC, including a ferrous 
iron transporter (family 2834) that was 3.9-fold more abundant in two infants that 
developed NEC. The abundance of this protein was also correlated with infant, proteome 
type, community type, and antibiotics administration. 
 
Pantoea sp. was more abundant and replicating more quickly in infants that developed 
NEC. However, not enough samples were available to draw conclusions about proteins 
associated with NEC. 
 
Different infants are colonized by different strains with distinct proteomes 
The finding that K. pneumoniae, E. coli, Propionibacterium sp., and Veillonella spp. have 
infant-specific proteomes raised the question of whether or not each infant was being 
colonized by different strains. All draft-quality genome sequences assembled for each 
species from each infant were compared with one another, and hierarchical clustering 
conducted on pairwise ANI values was used to delineate strains (Supplemental Figure 
9). Clustering showed that in most cases each infant was indeed colonized by distinct 
strains, which proteomics analysis showed are functionally distinct. However, there were 
a few notable exceptions. Twin infants N2_069 and N2_070, as well as infant N1_003 
were all colonized by the same strain of K. pneumoniae. The proteomic profiles for the 
strains colonizing N2_069 and N2_070 were more similar to one another than they were 
to profiles recovered from other strains; however, they were still distinguishable (Figure 
8). Likewise, the same strain of Propionibacterium sp. colonized twin infants N2_038 
and N2_039. As with shared strains of K. pneumoniae, their functional profiles clustered 
together but were still distinguishable from one another (Supplemental Figure 10). 
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Figure 8 | Klebsiella pneumonia proteins with infant-specific abundance profiles.  
Hierarchical clustering was conducted on all K. pneumonia protein families, showing that 
strains colonizing different infants have distinct proteomic profiles. Infant and species 
metadata are shown for each sample. Metadata significantly correlated with the K. 
pneumonia proteome are indicated with an asterisk (PERMANOVA or Mantel test p-
value ≤0.01). Protein families that correlated with at least one infant are shown in the 
heatmap (edgeR q-value ≤0.01). Samples colonized by the same K. pneumonia strain are 
shown with red text. 
 
Analysis showed that few proteins were responsible for distinguishing proteomes of the 
same bacterial types in different infants (Figure 8, Supplemental Figure 10, and 
Supplemental Table 6). Common amongst these were proteins involved in nucleotide, 
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amino acid, carbohydrate and lipid metabolism. Also notable were several proteins 
produced by K. pneumoniae involved in central carbohydrate metabolism and both 
galactose degradation and D-galacturonate degradation, indicating different carbon 
preferences for strains colonizing different infants (Figure 8). Several proteins involved 
in bacterial secretion were different between K. pneumonia colonizing different infants, 
indicating differences in secretion potential that could affect human-microbe interactions. 
Relatedly, the abundance of proteins involved in transport of metals, ions, citrate, and 
several sugars also differed between infants. 
 
Discussion 

Most studies to date have focused on the composition of the gut microbiome, typically at 
the low-resolution afforded by 16S rRNA gene amplicon methods. We used genome-
resolved time-series metagenomics in conjunction with iRep replication rate and 
metaproteomics measurements to obtain a more comprehensive view of the colonization 
process. The dataset included information about the gut colonization trajectories of both 
healthy infants and infants that went on to develop NEC, enabling exploration of 
microbiome variability, at both the community composition and organism functional 
levels. 
 
Microbial communities were classified into types based on the mixture of organisms 
present. Interestingly, most types occurred in multiple infants, a result that indicates the 
tendency of gut colonizing bacteria to form networks of interaction, possibly based on 
metabolic complementarity. An important factor determining the community type present 
may be the specific organisms that are introduced, and the extent to which they are able 
to colonize. Other factors that may dictate the community type include human genetic 
selection, diet, and antibiotics administration. Within a single infant, community types 
often switched several times over the observation period. Given the lack of evidence for 
consistent transitions from one type to another across multiple infants, the high degree of 
variation in iRep replication rates observed for members of the same species, and a lack 
of convergence of communities in different infants, we conclude that colonization is a 
chaotic process. 
 
Overall microbial physiology, as measured by whole proteome abundance patterns, was 
more dynamic than community composition. Thus, metagenomics-enabled proteomic 
analyses indicate functional flexibility that does not depend on addition or loss of 
organisms. Shifts in the importance of specific pathways or metabolisms with 
environmental conditions would not be apparent in studies that only use organism 
identification or metabolic potential predictions. 
 
An unexpected finding was that the microbiomes from all infants increase in diversity 
during the first 20 days of life, but then decrease in diversity. To some extent this could 
be an artifact of the study design, because infants that were hospitalized for longer may 
have been sicker and thus contributed substantially to the later time points. Alternatively, 
spatial heterogeneity in the gut may have reduced niche diversity, or decreasing diversity 
could reflect stabilization of the community. Investigation of infants over longer time 
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periods is required to clarify the extent of fluctuation along the path to establishment of 
diverse infant gut communities that are characteristic of older infants. 
 
It is possible that onset of NEC is due to fast growth rates of potential pathogens within 
communities that are imbalanced due to low species richness, ultimately resulting in 
overgrowth by a pathogen. For this reason, we compared microbial community diversity 
and composition, growth rates, and metabolic features in infants that did and did not 
develop NEC. A clear finding of this study, and evident from prior research (Pammi et al. 
2017), is that microbial communities associated with infants that develop NEC are of 
lower diversity compared with control infants at the same developmental age. Microbial 
community composition was correlated with NEC, but this may be largely due to lower 
diversity. Several different species have higher relative abundance in infants that 
developed NEC, but none of these species were consistently associated with the disease. 
The correlation could be the consequence of the loss of other organisms from the 
community rather than their higher absolute abundance. Thus, low community diversity 
may be a confounding factor in studies that have associated specific organisms with NEC. 
 
The difference in diversity between healthy infants and those that develop NEC raises the 
question of how specific organisms modulate their behavior over the colonization period. 
We noted that specific bacteria had iRep values that, prior to onset of NEC, were 
anomalously high relative to values for the same organism in control infants (Veillonella 
sp. and Pantoea sp.). This may be medically important, but additional examples are 
needed to establish a link between rapid growth and NEC. 
 
Interestingly, whether or not an infant developed NEC was not correlated with overall 
proteome composition. However, there were specific proteins that were associated with 
NEC, notably several involved in iron scavenging. Given that this is an important process 
often associated with pathogenesis, it is possible that increased activity of iron 
scavenging pathways could contribute to organism proliferation and onset of NEC. In 
addition, the Klebsiella pneumoniae proteome was correlated with NEC, including a 
protein involved in transport of iron. This is intriguing considering the prior finding that 
supplementation of lactoferrin, an abundant breast milk protein involved in modulating 
iron levels in the gut, decreases risk of developing necrotizing enterocolitis (Manzoni 
2016; Raghuveer et al. 2002). Overall, these findings indicate that fine-scale, species-
specific proteins are important for understanding disease onset. Although the microbial 
community, and specific microbial proteins were correlated with NEC, no individual 
organism or protein was significantly more abundant in all cases. This finding supports 
the hypothesis that NEC is a multifaceted disease with multiple routes that lead to onset. 
 
Although species-specific proteome profiles were correlated with community 
composition, they were largely infant specific. This is an interesting observation because 
it implies a feedback between human physiological conditions in the gut, which likely 
vary substantially from infant to infant and over time, and microbiome function. 
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Methods 
Sample collection and metagenome sequencing 
Samples were collected, processed for metagenome sequencing, and sequenced as part of 
three prior studies (accession numbers in Supplemental Table 1) (Raveh-Sadka et al. 
2015; 2016; Brooks et al.). Stool samples were collected from infants and stored at 
−80°C. DNA was extracted from frozen fecal samples using the MO BIO PowerSoil 
DNA Isolation Kit, with modifications (Raveh-Sadka et al. 2016). DNA libraries were 
sequenced on an Illumina HiSeq for 100 or 150 cycles (Illumina, San Diego, CA). All 
samples were collected with parental consent. 
 
Metagenome assembly and genome binning 
We re-assembled and analyzed metagenomes generated as part of a prior study, referred 
to as NIH1 (Raveh-Sadka et al. 2016). The data were processed in a manner consistent 
with the two other prior studies analyzed, referred to as NIH2 (Brooks et al.) and NIH3 
(Raveh-Sadka et al. 2015). All raw sequencing reads were trimmed using Sickle 
(https://github.com/najoshi/sickle). Each metagenome was assembled separately using 
IDBA_UD (Peng et al. 2012). Open reading frames (ORFs) were predicted using 
Prodigal (Hyatt et al. 2010) with the option to run in metagenome mode. Predicted 
protein sequences were annotated based on USEARCH (–ublast) (Edgar 2010) searches 
against UniProt (The UniProt Consortium 2015), UniRef100 (Suzek et al. 2007), and 
KEGG (Kanehisa et al. 2012; Minoru Kanehisa 2000). Scaffold coverage was calculated 
by mapping reads to the assembly using Bowtie2 (Langmead and Salzberg 2012) with 
default parameters for paired reads. 
 
Scaffolds from NIH1 infants were binned to genomes using Emergent Self-Organizing 
Maps (ESOMs) generated based on time-series abundance profiles (Dick et al. 2009; 
Sharon et al. 2012). Reads from every sample were mapped independently to every 
assembly using SNAP (Zaharia et al. 2011), and the resulting coverage data were 
combined. Coverage was calculated over non-overlapping 3 Kbp windows. Coverage 
values were normalized first by sample, and then the values for each scaffold fragment 
were normalized from 0-1. Combining coverage data from scaffolds assembled from 
different samples prior to normalization made it possible to generate a single ESOM map 
for binning genomes assembled independently from each sample. ESOMs were trained 
for 10 epochs using the Somoclu algorithm (Wittek et al. 2013) with the option to 
initialize the codebook using Principal Component Analysis (PCA). Genomes were 
binned by manually selecting data points on the ESOM map using Databionics ESOM 
Tools (Ultsch 2005). Binning was aided by coloring scaffold fragments on the map based 
on BLAST (Altschul et al. 1990) hits  to the genomes assembled in the prior study. 
 
As part of the NIH2 and NIH3 studies, scaffolds were binned based on their GC content, 
DNA sequence coverage, and taxonomic affiliation using ggKbase tools 
(ggkbase.berkeley.edu). Genome bins from all three datasets were classified based on the 
consensus of taxonomic assignments for predicted protein sequences. Genome 
completeness and contamination were estimated for all genomes using CheckM with the 
taxonomy_wf option (Parks et al. 2015). Genomes with extra single copy genes, but with 
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≤175 fragments/Mbp (normalized for contamination) that were estimated to be ≥75% 
complete were manually curated based on scaffold GC content and coverage. 
 
Clustering genomes into sub-species groups 
Genomes were clustered into sub-species groups based on sharing ≥98% average 
nucleotide identity (ANI), as estimated by MASH (Ondov et al. 2016). Representative 
genomes were selected for each cluster as the largest genome with the highest expected 
completeness and smallest amount of contamination. Genomes were classified based on 
the lowest possible consensus of taxonomic assignments for predicted protein sequences. 
Taxonomic assignments for representative genomes were checked manually based on hits 
to ribosomal protein S3, or visual inspection of protein taxonomic assignments. In order 
to identify cases in which the same bacterial strain was present in multiple samples, sub-
species groups were further analyzed with the ANIm algorithm (Richter and Rossello-
Mora 2009) implemented in dRep (Olm et al. 2017). 
 
Measuring microbial community abundance and replication rates 
In order to achieve accurate abundance and replication rate measurements from read 
mapping, databases of representative genomes were created for each sample. Each 
database was constructed in order to include a representative genome from important sub-
species groups. Priority was given to high-quality draft genome sequences reconstructed 
from the same sample. Genomes were classified as high-quality draft based on the 
requirements for iRep replication rate analysis 
(https://github.com/christophertbrown/iRep): ≥75% complete, ≤2.5% contamination, and 
≤175 scaffolds per Mbp of sequence (Brown et al. 2016). Genomes were selected to 
represent sub-species groups using the following priority scheme: 1) high-quality draft 
genome assembled from the same sample, 2) high-quality draft genome from the same 
infant, 3) high-quality draft genome representative of sub-species group from any infant 
(if group had ≥5 representatives), 4) best genome from infant (if a genome was available). 
iRep was conducted using reads that mapped to genome sequences with ≤1 mismatch per 
read sequence. In cases where iRep values were ≥3, coverage plots were inspected and 
values were removed if there was evidence of strain variation. 
 
We considered bacterial sub-species to be present in a sample if ≥97% of the genome was 
covered by an average of ≥2 reads. Abundance and iRep measurements were compared 
across samples by linking sample-specific representative genomes to sub-species groups. 
Relative abundance measurements for each sub-species group were calculated by 
converting DNA sequencing coverage values to a percentage. UniFrac (Lozupone and 
Knight 2005) analysis was conducted based on rarefied abundance data and a tree 
constructed based on pairwise genome ANI values measured using MASH (-ms 
5000000). 
 
Metaproteomics analysis 
Metaproteomics sequencing was conducted on 0.3 g of stool as previously described 
(Xiong et al. 2017). Each sample was suspended in 10 mL cold phosphate buffered saline. 
Samples were filtered through a 20 µm size filter to enrich for microbial cells and 
proteins. Microbial cells were collected by centrifugation, boiled in 4% sodium dodecyl 
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sulfate for 5 minutes, and sonicated to lyse cells. The resulting protein extract was 
precipitated with 20% trichloroacetic acid at -80°C overnight. The protein pellet was 
washed with ice-cold acetone, solubilized in 8 M urea, reduced with 5 mM dithiothreitol, 
and cysteines were blocked with 20 mM iodoacetamide. Then sequencing grade trypsin 
was used to digest the proteins into peptides. Proteolyzed peptides were then salted and 
acidified by adjusting the sample to 200 mM NaCl, 0.1% formic acid, followed by 
filtering through a 10 kDa cutoff spin column filter to collect tryptic peptides. 
 
Peptides were quantified by BCA assay and 50 µg peptides of each sample were analyzed 
via two-dimensional nanospray LC-MS/MS system on an LTQ-Orbitrap Elite mass 
spectrometer (Thermo Scientific). Each peptide mixture was loaded onto a biphasic back 
column containing both strong-cation exchange and reverse phase resins (C18). As 
previously described, loaded peptides were separated and analyzed using a 11-salt-pusle 
MudPIT protocol over a 22-h period (Xiong et al. 2015). Mass spectra were acquired in a 
data-dependent mode with following parameters: full scans were acquired at 30 k 
resolution (1 microscan) in the Orbitrap, followed by CID fragmentation of the 20 most 
abundant ions (1 microscan). Charge state screening and monoisotopic precursor 
selection were enabled. Unassigned charge and charge state +1 were rejected. Dynamic 
exclusion was enabled with a mass exclusion width of 10 ppm and exclusion duration of 
30 seconds. Two technical replicates were conducted for each sample. 
 
Protein databases were generated for each infant from protein sequences predicted from 
assembled metagenomes. The database also included human protein sequences (NCBI 
Refseq_2011), common contaminants, and reverse protein sequences, which were used to 
control the false discovery rate (FDR). Collected MS/MS spectra were matched to 
peptides using MyriMatch v2.1 (Tabb et al. 2007), filtered, and assembled into proteins 
using IDPicker v3.0 (Ma et al. 2009). All searches included the following peptide 
modifications: a static cysteine modification (+57.02 Da), an N-terminal dynamic 
carbamylation modification (+43.00 Da), and a dynamic oxidation modification (+15.99). 
A maximum 2% peptide spectrum match level FDR and a minimum of two distinct 
peptides per protein were applied to achieve confident peptide identifications (FDR <1%). 
To alleviate the ambiguity associated with shared peptides, proteins were clustered into 
protein groups by 100% identity for microbial proteins and 90% amino acid sequence 
identity for human proteins using USEARCH (Edgar 2010). Spectral counts were 
balanced between shared proteins. 
 
Identification of putative protein families 
Putative protein families were identified in order to track the presence and abundance of 
different protein types across samples. ORFs were first pre-clustered at 95% identity 
using USEARCH (-cluster_smallmem -target_cov 0.50 -query_cov 0.95 -id 0.95), and 
then all-versus-all protein searches were conducted (–ublast -evalue 10e-10 -strand both). 
Protein families were delineated from within the all-versus-all network graph using the 
MCL clustering algorithm (-I 2 -te 10) (Enright et al. 2002). The most common 
annotation observed across all protein sequences in the group was selected as the 
annotation for the putative protein family. 
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Tracking human and bacterial protein abundances 
Human and bacterial protein abundances were normalized using the weighted trimmed 
mean method from EdgeR (Robinson et al. 2009). Species-specific proteomic profiles 
were normalized as the percent of total balanced spectral counts.  
 
Sample clustering and statistical analyses 
Sample clustering was conducted based on microbial community abundance and iRep 
profiles, and bacterial protein family abundance profiles. In each case, the number of 
clusters was determined using the gap statistic (Tibshirani et al. 2001), and then samples 
were grouped into the appropriate number of clusters using hierarchical clustering 
(average linkage method). Microbial community data was clustered based on weighted 
UniFrac distances, and protein data using Bray-Curtis distance. EdgeR was used to 
calculate statistically significant differences between conditions using quasi-likelihood 
linear modeling (glmQLFTest). 
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Supplemental Materials 
Supplemental Figures 
 
Supplemental Figure 1 | Metagenome sequencing and metaproteomics conducted on 
microbiome samples collected from premature infants. Frequency of sample 
collection for metagenomics (a) and metaproteomics (b) based on infant day of life 
(DOL). c, Metagenome sequencing, and d, the percentage of each metagenome 
represented by assembled draft-quality genome sequences. e, The number of proteomics 
spectral counts that could be uniquely assigned to human or bacteria. f, The percent of 
predicted proteins that could be detected in each sample. g, The percent of species-
specific proteomes that could be detected for species where ≥10% of the proteome could 
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be detected in at least one sample. h, Histogram showing the distribution of the maximum 
percent of the proteome detected for all species present in each sample. 
 
Supplemental Figure 2 | ESOM genome binning. Genome binning was conducted 
based on Emergent Self-Organizing Map (ESOM) clustering of scaffolds assembled from 
individual metagenomes. Data points represent three Kbp fragments of assembled 
scaffolds. Coloring is based on the species-level assignment of reconstructed draft-quality 
genomes. The map is periodic, and red boxes indicate a single period. 
 
Supplemental Figure 3 | Infants that developed NEC and healthy controls are 
colonized by genetically similar bacteria. Presence (dark boxes) and absence (white 
boxes) of members of bacterial sub-species in microbial communities from different 
infants. Sub-species were identified based on sharing ≥98% genome average nucleotide 
identity (ANI), and were determined to be present if ≥97% of the genome was covered by 
an average of ≥2 reads. Hierarchical clustering was conducted based on unweighted 
UniFrac distances calculated between infant genome inventories. 
 
Supplemental Figure 4 | Studied infant gut microbial communities associate into 
seven primary community types. a, Hierarchical clustering was conducted based on the 
abundance of bacterial sub-species using weighted UniFrac distances. Microbial 
community types are identified by colored boxes. Metadata are shown for each sample, 
and indicated with an asterisk if significantly correlated with microbial community 
abundance data (PERMANOVA or Mantel test p-value ≤0.01). b-i, PCoA clustering of 
microbial communities with associated metadata: antibiotics administration (b), infant (c), 
developmental age (d; number of days since conception: gestational age + day of life, GA 
+ DOL), proteome type (e), iRep type (f), infant health (g), days prior to NEC diagnosis 
(h; DOL – NEC diagnosis), and human proteome type (i). 
 
Supplemental Figure 5 | Microbial community abundance and replication rate 
profiles. Relative abundance (bars) and iRep replication rate (scatter plot) values for 
bacterial sub-species colonizing studied premature infants. The five days following 
antibiotics administration are indicated with a color gradient. 
 
Supplemental Figure 6 | Microbial community types are distinguished by their 
abundant members. Rank abundance curves showing the average and range (95% 
confidence interval) of relative abundance values for sub-species groups associated with 
each community type. 
 
Supplemental Figure 7 | iRep replication rates for members of bacterial species 
colonizing premature infants. Shown are all species with at least five observations.  
 
Supplemental Figure 8 | Proteome types are distinguished by the abundance of 
proteins from different KEGG modules. Hierarchical clustering of proteome types was 
conducted based on the abundance of proteins associated with KEGG modules. The 
relative abundance of proteins associated with each module was summed for each sample, 
and then the average was taken across all samples associated with each proteome type.  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/217950doi: bioRxiv preprint 

https://doi.org/10.1101/217950
http://creativecommons.org/licenses/by-nc/4.0/


 24 

 
Supplemental Figure 9 | Hierarchical clustering of genomes for members of the 
same sub-species group. dRep results show ANI clustering of assembled genomes. 
Genome names indicate the metagenome that each genome was assembled from (see 
Supplemental Table 2). Clustering dendrograms show that most infants are colonized by 
different strains. 
 
Supplemental Figure 10 | Multiple species have infant-specific proteome profiles. a, 
Analysis of Veillonella spp. genomes shows the presence of four different species. b-e, 
Proteome profiles for different species colonizing premature infants. Hierarchical 
clustering was conducted based on all detected protein families, and shows that strains 
colonizing different infants typically have distinct proteomic profiles. Infant and species 
metadata are shown for each sample. Metadata significantly correlated with the species 
proteome are indicated with an asterisk (PERMANOVA or Mantel test p-value ≤0.01). 
Protein families that correlated with at least one infant are shown in the heatmap (edgeR 
q-value ≤0.01). Samples colonized by the same strain are shown with colored text. 
 
Supplemental Tables 
 
Supplemental Table 1 | DNA sequencing and metaproteomics statistics. 
 
Supplemental Table 2 | Genomes reconstructed from metagenomes. 
 
Supplemental Table 3 | Species relative abundance and statistical analysis. 
 
Supplemental Table 4 | Species iRep replication rates and statistical analysis. 
 
Supplemental Table 5 | Microbial protein family abundance and statistical analysis. 
 
Supplemental Table 6 | Species-specific microbial protein family abundance and 
statistical analysis. 
 
Supplemental Table 7 | Correlation of species-specific protein family abundances 
with iRep replication rates and gestational age corrected day of life (GA + DOL). 
 
Supplemental Files 
 
Supplemental File 1 | Scaffolds binned to reconstructed genomes. 
 
Supplemental File 2 | Proteins assigned to putative families. 
 
Supplemental File 3 | Metaproteomics spectral counts. 
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