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Great Lakes coastal wetland microbial communities 

Originality-Significance Statement 14 

 This research is original in providing an initial, geographically wide-ranging 15 

characterization of microbial communities of the Great Lakes coastal wetlands, an understudied 16 

system of wetlands directly bordering the North American Laurentian Great Lakes. Relationships 17 

between microbial communities within coastal wetland soils and geochemistry highlighted that 18 

anthropogenic impacts may be significantly influencing microbial community structure, as well 19 

as unique subnetworks of microbial taxa. Negative anthropogenic impacts to these coastal 20 

wetland communities could influence natural biogeochemical cycles which occur within coastal 21 

wetland soils, and by extension would directly influence the Great Lakes themselves. 22 

 23 

Summary 24 

 Microbial communities within the soil of Great Lakes coastal wetlands drive 25 

biogeochemical cycles and provide several other ecosystems services. However, there exists a 26 

lack of understanding of how microbial communities respond to nutrient gradients and human 27 

activity in these systems. This research sought to address this lack of understanding through 28 

exploration of microbial community diversity and networks among coastal wetlands throughout 29 

the Great Lakes. Significant differences in microbial community structure were illuminated 30 

between Lake Erie and all other wetlands, and chemical and biological structure did not vary 31 

within Lake Erie with increasing soil depth. Beyond this, alpha diversity levels were highest 32 

within Lake Erie coastal wetlands. These diversity differences coincided with higher nutrient 33 

levels within the Lake Erie region. Site-to-site variability existed within Lake Erie, East and 34 

North Saginaw Bay regions, suggesting site-scale heterogeneity may impact microbial 35 

community structure. Several subnetworks of microbial communities and individual OTUs were 36 
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related to chemical gradients among wetland regions, revealing several candidate indicator 37 

communities and taxa which may be useful for Great Lakes coastal wetland management. This 38 

research provides an initial characterization of microbial communities among Great Lakes 39 

coastal wetlands, and demonstrates that microbial communities could be negatively impacted by 40 

anthropogenic activities. 41 

 42 

Introduction 43 

The Laurentian Great Lakes of North America are one of the largest freshwater systems 44 

on Earth, and are critical in supporting biogeochemical cycles, freshwater resources, 45 

biodiversity, and economic viability of the surrounding region. Coastal wetlands bordering the 46 

Great Lakes are integral in sustaining the proper functioning of the Great Lakes themselves, 47 

making up nearly 200,000 ha of habitat between the United States and Canada despite reduction 48 

of habitat by approximately 50% since European colonization (Dahl, 1990; Hecnar, 2004; 49 

Sierszen et al., 2012). In addition, Great Lakes coastal wetlands are vital in the retention of 50 

chemical pollutants (e.g., heavy metals), sediments, and excess nutrients (e.g., N and P) caused 51 

by anthropogenic activity, and provide critical habitat for countless biological species (Wang & 52 

Mitsch, 1998; Sierszen et al., 2012). The economy of the Great Lakes is contingent on the 53 

existence and proper functioning of coastal wetlands. In providing ecosystem services and 54 

promoting biodiversity, these wetlands have an estimated annual worth of $69 billion USD; the 55 

value of recreational fishing alone is valued at $7.4 billion USD per year (Krantzberg & de Boer, 56 

2008; Campbell et al., 2015). Notably, the Great Lakes region has been impacted by negative 57 

anthropogenic pressure, with cumulative stress having a particular impact on the western basin of 58 

Lake Erie (Danz et al., 2007; Uzarski et al., 2017). These negative impacts extend to the coastal 59 
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wetlands, as pressure from agricultural runoff, atmospheric deposition, and urbanization 60 

influence water chemistry, thereby reducing water quality and impairing wetlands (Trebitz et al., 61 

2007; Morrice et al., 2008). This has stoked a surge in research assessing biodiversity and 62 

anthropogenic pressure on coastal wetlands of the Great Lakes since the Great Lakes Water 63 

Quality Agreement (GLWQA) was established in 1972 (Hackett et al., 2017). While much 64 

research on coastal wetlands has flourished in the wake of this international agreement, microbial 65 

communities within Great Lakes coastal wetlands remain almost entirely uncharacterized 66 

(Hackett et al., 2017). 67 

As ecological transition zones between upland and aquatic environments (Uzarski, 2009), 68 

wetlands host a unique suite of chemical cycles while providing ecosystem services to bordering 69 

environments. Most notably, carbon mineralization occurs within wetland soils via redox 70 

processes mediated by microbial communities, and these processes contribute to pollution 71 

mitigation and atmospheric greenhouse gas flux (Conrad, 1996; Reddy & DeLaune, 2008). 72 

Wetland soil often becomes chemically structured with increasing depth through sequential 73 

reduction of electron acceptors that decrease in metabolic favorability to microbes due to 74 

thermodynamic constraints (Conrad, 1996; Reddy & DeLaune, 2008; Kögel-Knabner et al., 75 

2010). As microbial community metabolism will change in concert with soil chemical profiles, 76 

microbial community structural shifts commonly result (Lüdemann et al., 2000; Edlund et al., 77 

2008; Lipson et al., 2015). However, concentration of carbon electron donors can influence the 78 

vertical stratification of redox processes (Achtnich et al., 1995; Alewell et al., 2008), and by 79 

extension, vertical microbial community structure (defined as relative proportions of microbial 80 

taxa within a community). As an example of how this may apply to natural environments, 81 

increased nutrient influx from anthropogenic activities (such as agricultural pressure) may 82 
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impact microbial community structure within coastal wetlands, which may extend to redox 83 

processes. While sequential reduction chains and vertical microbial community structuring can 84 

be predictable in lab experiments, complex heterogeneity within wetland soil can often influence 85 

microbial community processes and structure to a large degree (Alewell et al., 2008; Lamers et 86 

al., 2012). As such, it is relevant to understand relationships between microbial community 87 

structure and vertical soil depth in situ along a gradient of nutrient input, as microbial community 88 

beta diversity could be indirectly linked to carbon mineralization. 89 

As the microbial communities within Great Lakes coastal wetlands have yet to be 90 

fundamentally described, it is of importance to gather baseline data on what microbes exist 91 

within these systems, elucidate how these microbes could be interacting, and determine to what 92 

extent microbial diversity may already be impacted by anthropogenic chemical disturbance. 93 

Additionally, if specific groups of microbial taxa are found to be predictive of environmental 94 

gradients, this could aid in understanding specific impacts of anthropogenic activity in 95 

generating these gradients and selecting for specific microbial networks or taxa (Sims et al., 96 

2013; Urakawa & Bernhard, 2017). This study sought to provide an initial characterization of 97 

microbial communities within soils of Great Lakes coastal wetlands bordering the western basin 98 

of Lake Erie, Saginaw Bay of Lake Huron, and northern Lake Michigan. Additionally, this study 99 

explored how environmental conditions of these coastal wetlands could act as potential drivers of 100 

microbial community structure among and within wetlands. It was predicted that microbial 101 

community structure would be related to environmental gradients among and within coastal 102 

wetland regions of the Great Lakes. Further, it was anticipated that high nutrient levels within 103 

wetlands would decouple the relationship between microbial community structure and soil depth, 104 

as has been suggested in previous studies (Achtnich et al., 1995; Alewell et al., 2008). Through 105 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/217919doi: bioRxiv preprint 

https://doi.org/10.1101/217919
http://creativecommons.org/licenses/by-nc-nd/4.0/


Great Lakes coastal wetland microbial communities 

high-throughput sequencing of the 16S rRNA gene and network analyses, variations in key 106 

microbial taxa and subcommunities related to environmental gradients established by wetlands 107 

were identified. 108 

 109 

Results 110 

 Chemical analyses 111 

 Significant correlations (r > 0.7, p ≤ 0.001) were found among NH4
+, OM, OC, and TN. 112 

Thus, downstream analysis combined these values into one parameter, “NUTR”, represented by 113 

OM values as this variable was the most strongly correlated with each of the other variables. PC1 114 

and PC2 explained 56.2% and 20.6% of the variation among samples, respectively (Fig. 1). 115 

MANOVA found significant differences in physicochemical profiles based on region (F = 2.71, 116 

p ≤0.001) and depth (F = 6.85, p ≤ 0.01). Ninety-five percent confidence intervals suggested that 117 

significant variation among regions was driven primarily by physicochemical distinctness of 118 

Lake Erie coastal wetlands. This separation was related to increased NUTR, NO3
-, and S. 119 

 Increasing depth within cores showed a consistent shift in environmental variables, 120 

except those sites located in the western basin of Lake Erie (Supplemental Fig. 1). Specifically, 121 

OM, OC, and TN consistently decreased with increasing depths within all wetlands except Lake 122 

Erie sites. Similarly, C:N increased with depth in all wetlands except Lake Erie sites, where C:N 123 

ratio remained relatively low (~ 12) and stable with increasing soil depth. Within the Lake Erie 124 

wetland region, pH was more acidic in the overlying water with respect to all other wetland 125 

regions (Supplemental Table 1). However, pH was still relatively neutral within Lake Erie 126 

(average pH = 7.26, standard deviation = 0.24), where other wetland regions experienced slightly 127 

more basic pH, with averages ranging between 7.72 – 8.39. 128 
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 129 

 Alpha Diversity 130 

 Sufficient depth of sampling was also reinforced by rarefaction curve analysis 131 

(Supplemental Fig. 2). Good’s coverage reported averages ranging between 89.3 – 93.5% for 132 

each region at the subsampled value of 48,226 sequences. Chao 1 richness estimates varied 133 

significantly among wetland regions (F = 8.38, p ≤ 0.05), as well as wetland sites (F = 16.78, p ≤ 134 

0.001). Pairwise comparisons found that the LE region had significantly higher (p ≤ 0.01) Chao1 135 

estimates than NSB and WSB regions (Fig. 2; Supplemental Table 2). Additionally, pairwise 136 

comparisons found a high degree of significant variability (p ≤ 0.01) in Chao1 estimates among 137 

wetland sites (Supplemental Table 2). Further, Shannon diversity levels also significantly varied 138 

among wetland sites (F = 4.57, p ≤ 0.001), with site LE_D having significantly higher (p ≤ 0.01) 139 

Shannon diversity levels than sites ESBT_A and WSB_B (Supplemental Table 2). Soil depth 140 

was not found to be significant in influencing alpha diversity levels. 141 

Shannon diversity and Chao1 both significantly correlated with measured environmental 142 

variables (Table 1). Specifically, Chao1 estimates increased with NO3
-, P, and S concentrations 143 

(p ≤ 0.01), and were weakly positively correlated (p ≤ 0.05) with NUTR. Additionally, Shannon 144 

diversity levels increased alongside NUTR and S (p ≤ 0.001), and were weakly positively 145 

correlated with NO3
- (p ≤ 0.05). There were no significant relationships between alpha diversity 146 

and C:N, and there were no negative relationships between alpha diversity and any of the 147 

measured environmental variables. 148 

 149 

 Beta Diversity 150 

 Beta diversity among regions 151 
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NMDS demonstrated separation of microbial communities based on wetland site, region, 152 

and soil depth (Fig. 3). perMANOVA demonstrated that differences in microbial community 153 

structure were highly significantly related to wetland site (pseudo-F = 2.57, p ≤ 0.001), region 154 

(pseudo-F = 5.91, p ≤ 0.001), and soil depth (pseudo-F = 6.35; p ≤ 0.001). Post-hoc pairwise 155 

perMANOVA found that community structure within the LE region was significantly distinct (p 156 

≤ 0.01) from all other wetland regions (Table 2). No significant differences in community 157 

structure were found between any other wetland regions compared. Additionally, microbial 158 

community beta diversity was distinct (p ≤ 0.003) between the top soil depth and the middle and 159 

bottom soil depths. However, no significant differences in microbial community structure were 160 

found between the middle and bottom soil depths (Table 2). Variation in microbial community 161 

structure was strongly significantly correlated (p ≤ 0.001) to depth (r = 0.41), NO3
- (r = 0.20), 162 

NUTR (r = 0.60), and S (r = 0.41), and weakly correlated (p ≤ 0.016) with C:N (r = 0.11) and P 163 

(r = 0.14) (Supplemental Table 3). 164 

Beta dispersion tests suggested weakly significant variation in structural variance among 165 

regions (p ≤ 0.05), however, Tukey’s HSD test using adjusted p-values for multiple comparisons 166 

did not find any significance (p > 0.05) between pairwise comparisons of regional groups. There 167 

were no differences in community structural dispersion among soil depths. 168 

 169 

 Beta diversity within regions 170 

Individual NMDS plots of each region identified a high degree of variability of 171 

significant correlations (p ≤ 0.05) between microbial community structure and several 172 

environmental variables, as well as depth, dependent upon the wetland region explored (Fig. 4; 173 

Supplemental Table 3). Depth was significantly correlated with microbial community structure 174 
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in all wetland regions except NSB and LE. However, microbial community structure was more 175 

strongly related to depth in NSB (r = 0.35, p = 0.071) than LE (r = 0.19, p = 0.40). NUTR was 176 

significantly correlated (p ≤ 0.01) with community structure within regions BA (r = 0.82), ESBT 177 

(r = 0.51), and LE (r = 0.66). C:N was significantly correlated (p ≤ 0.01) with community 178 

structure within regions within Saginaw Bay (i.e., ESBT [r = 0.65], NSB [r = 0.58], and WSB [r 179 

= 0.58]). Beta diversity was not significantly associated with concentrations of NO3
- in any 180 

region. 181 

 To test for significant differences in microbial beta diversity within regions, 182 

perMANOVA was used to evaluate differences in microbial community structure among soil 183 

depths and sites within wetland regions (Supplemental Table 3). Depth did not significantly 184 

explain microbial community structure within the region LE (pseudo-F = 0.87; p = 0.65), 185 

however, it did explain differences in microbial community structure within the other wetland 186 

regions. Specifically, BA (pseudo-F = 2.12; p = 0.006), ESBT (pseudo-F = 2.49; p = 0.001), 187 

NSB (pseudo-F = 1.24; p = 0.093), and WSB (pseudo-F = 1.53; p = 0.014). Significant 188 

differences in microbial community structure were found among different wetland sites within 189 

regions ESBT (pseudo-F = 3.11; p = 0.001), LE (pseudo-F = 2.89; p = 0.004), and NSB (pseudo-190 

F = 2.16; p = 0.003). As only one site was sampled within the BA region, testing for differences 191 

among wetland sites within the BA region could not be accomplished. 192 

 193 

 Network Analyses 194 

 Weighted Correlation Network Analysis (WGCNA) was used to explore strong 195 

relationships between subcommunities and individual OTUs with environmental parameters 196 

within Great Lakes coastal wetlands. After removal of OTUs which did not have at least two 197 
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representative sequences in at least 10% of samples, a total of 7,562 OTUs remained for 198 

WGCNA. In determining scale-free topology of the OTU network, a soft power threshold of 4 199 

was reached, and an R2 of 0.87 was established as linear fit from the regression of the frequency 200 

distribution of node connectivity against node connectivity (Supplemental Fig. 3). Of the 33 201 

constructed subnetworks, the same one (subnetwork “orange”) was found to be most strongly 202 

correlated to both NUTR (r = 0.94) and NO3
- (r = 0.55) (Supplemental Fig. 4). A separate 203 

subnetwork (“pink”) was strongly correlated (r = 0.74) to C:N. All correlations of subnetworks to 204 

environmental variables were significant (p ≤ 0.001). OTU VIP values ≤ 1 were removed due to 205 

the large amount of OTUs within subnetworks correlated with C:N for visualization purposes. 206 

 For subnetwork relationships to NUTR (including OM, OC, NH4
+, and TN), partial least 207 

square analysis (PLS) found that 69 OTUs were 93.8% predictive of variance in NUTR 208 

(Supplemental Fig. 5). OTU co-correlation networks were constructed using an OTU co-209 

correlation threshold of 0.25, with strong correlations (r > 0.59) between all OTUs and NUTR 210 

(Fig. 5). Of the top 15 OTUs contributing to PLS regression by VIP score, seven were related to 211 

Betaproteobacteria, five were related to Anaerolineaceae (within Chloroflexi), and one 212 

representative OTU was related to each of Bellilinea (Chloroflexi), Desulfobacterales 213 

(Deltaproteobacteria), and Rhizobiales (Alphaproteobacteria). 214 

For subnetwork relationships to C:N, PLS found that 144 OTUs were 59.0% predictive of 215 

variance in C:N (Supplemental Fig. 6). Networks were constructed using an OTU co-correlation 216 

threshold of 0.1, within positive or negative correlations (r > +/- 0.2) between OTUs (VIP > 1) 217 

and C:N (Fig. 6). Of the top 15 OTUs by VIP score within the network, two OTUs related to 218 

Bacteroidetes were negatively correlated with C:N. Other top OTUs were positively related to 219 
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C:N, including seven OTUs related to Anaerolineaceae, four OTUs which were unclassified 220 

Bacteria, and one representative OTU related to each of Bacillus (Firmicutes) and Chloroflexi. 221 

While a correlation strength of r = 0.55 was found between a subnetwork and NO3
- 222 

concentrations, PLS did not find a strong relationship between predicted values and actual values 223 

of NO3
- (Supplemental Fig. 7). As such, individual OTUs were correlated to NO3

- (Fig. 7) and 224 

were further explored through this method rather than WGCNA. Correlation strength to NO3
-225 

ranged from +/-.37 to +/-.55 for positive and negative correlations, respectively. OTUs related to 226 

Anaerolineaceae simultaneously were most positively and most negatively related to NO3
- 227 

concentration. OTUs related to Acidobacteria, Chlorobi, Bacteroidetes, Proteobacteria, OP11, 228 

and Verrucomicrobia were predominantly positively related to NO3
-. OTUs related to 229 

Actinomycetales (Actinobacteria) and Euryarchaeota were negatively related to NO3
-. 230 

 231 

Discussion 232 

 Great Lakes coastal wetlands are biological diversity hotspots that mediate fluxes of 233 

biogeochemical cycles, as well as buffer the Great Lakes themselves from terrestrial pollutants. 234 

Despite the importance of coastal wetland microbial communities in mediating many of these 235 

ecosystem services, a lack of fundamental information on these communities has hindered full 236 

understanding of these critical environments (Hackett et al., 2017). Previous research on 237 

microbial communities in Great Lakes coastal wetlands has focused on the use of microbial 238 

enzymatic assays as a tool to explore decomposition rates and nutrient limitation in wetlands 239 

(Jackson et al., 1995; Hill et al., 2006). This study is the first to deeply characterize microbial 240 

communities among multiple regions across the Laurentian Great Lakes basin, while 241 

simultaneously delineating the importance of environmental conditions in structuring these 242 
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microbial communities. Additionally, this study highlights important keystone subcommunities 243 

of potentially interacting OTUs, which may serve as indicators of ecosystem health. 244 

 245 

Microbial diversity driven by chemistry within Great Lakes coastal wetlands 246 

Taxonomic groups such as plants, birds, fish, and invertebrates within the Great Lakes 247 

coastal wetlands have been impacted by human practices within the Great Lakes watershed 248 

(Howe et al., 2007; Tulbure et al., 2007; Uzarski et al., 2009; Cooper et al., 2012; Uzarski et al., 249 

2017). This study is the first to establish that these patterns appear consistent with microbial 250 

communities in these ecosystems as well. Microbial community structure was significantly 251 

dissimilar between LE and all other wetland regions. It is therefore likely that anthropogenic 252 

stressors related to nutrient loading (and potentially other pollutants) are driving these trends, as 253 

nutrient levels were substantially elevated within LE sites. Likewise, Lake Erie costal wetland 254 

sites had distinct microbial communities. Previous research has found that nutrient levels (e.g., 255 

C, N, P, etc.), to varying degrees, can influence microbial community composition and structure 256 

(Hartman et al., 2008; Peralta et al., 2013; Ligi et al., 2014; Arroyo et al., 2015). Indeed, PCA 257 

and MANOVA found that Lake Erie coastal wetlands were chemically distinct from all other 258 

wetland regions, primarily driven by elevated nutrient (C, N, P), NO3
-, and S concentrations 259 

within the soil. Additionally, Lake Erie coastal wetlands (and the watershed which drains into 260 

them) have been historically impacted by anthropogenic pollution and agricultural practices, 261 

particularly in comparison to other coastal wetlands within the Laurentian Great Lakes region. 262 

This has been demonstrated by multiple ecological indices (e.g., Cvetkovic & Chow-Fraser, 263 

2011; Uzarski et al., 2017) and physicochemical uniqueness (increased levels of nutrients and 264 

particulate matter) within the western basin of Lake Erie (Danz et al., 2007; Trebitz et al., 2007; 265 
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Cvetkovic & Chow-Fraser, 2011; Uzarski et al., 2017). Data presented in this study corroborate 266 

this historical evidence of human impact and nutrient loading in the western basin of Lake Erie.  267 

 High nutrient influx could also be influencing chemical and microbial vertical structure 268 

within coastal wetland soils. Vertical microbial community structure was not evident within the 269 

first 6 cm of soil of Lake Erie coastal wetlands, unlike other coastal wetlands regions. Also 270 

unique to Lake Erie, vertical chemical structure was not evident for nutrient levels (C, N, P) or 271 

C:N. These data provide evidence that microbial community structural shifts corresponding to 272 

wetland vertical profiles are related to concentrations of organic carbon and other nutrients (e.g., 273 

NO3
-, NUTR, P, S). This is meaningful, as it has been previously postulated that concentrations 274 

of carbon electron donors may influence redox gradients within wetland soils (Achtnich et al., 275 

1995). Redox gradients are uniquely tied to carbon cycling rates, and as microbial community 276 

structure corresponds with redox gradients (Lüdemann et al., 2000; Edlund et al., 2008; Lipson 277 

et al., 2015), distinct patterns of vertical community structure within the soil may be indicative of 278 

biogeochemical processes being affected within Great Lakes coastal wetlands. Connections 279 

between microbial community metabolic shifts with soil depth and levels of dissolved organic 280 

carbon in situ were incompletely resolved (Alewell et al., 2008). The results presented here 281 

suggest that a connection between microbial community metabolism and organic carbon 282 

concentration may exist within Great Lakes coastal wetlands, however, it is necessary to better 283 

link microbial community diversity, microbial activity, and chemical cycles to establish this 284 

connection. As a caveat, it is possible that chemical and microbial structuring still existed within 285 

Lake Erie wetlands, yet they were not evident within the first 6 cm of soil or at the spatial scale 286 

measured. Nevertheless, microbial communities within Lake Erie coastal wetlands did not follow 287 

the same pattern of vertical structure, either chemically or biologically, evident in other regions, 288 
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suggesting that the biological integrity of coastal wetland systems is susceptible to negative 289 

anthropogenic pressure. Furthermore, carbon and nutrient levels are stable with increasing soil 290 

depth in Lake Erie coastal wetlands, which could be indicative of low carbon cycling rates or 291 

elevated sedimentation rates. 292 

Similar to beta diversity, patterns in alpha diversity of microbial communities may also 293 

be related to soil chemical characteristics within the sampled freshwater coastal wetlands. 294 

Microbial community alpha diversity was highest within Lake Erie soils, which experienced the 295 

highest levels of nutrient concentrations of the sampled wetland regions. Significant correlations 296 

between alpha diversity and physicochemical properties (Table 1) suggest that the higher 297 

diversity in Lake Erie coastal wetlands could be driven by its distinct soil characteristics. It has 298 

been established in some cases that productivity and alpha diversity increase in a linear 299 

relationship on regional scales, but not at local scales (Chase & Leibold, 2002). This pattern of 300 

diversity is commonly the result of relatively few species existing within productive habitats on 301 

the local scale, while dissimilarity in beta diversity among productive habitat patches increases 302 

alpha diversity at larger spatial resolution. It is possible that this relationship exists within our 303 

data, with the Lake Erie region being the most OTU-diverse, coinciding with high nutrient 304 

concentrations. Habitat patches within Lake Erie wetlands may be smaller in spatial scale than 305 

was sampled within this study (where we might expect lower alpha diversity), and high 306 

dissimilarity in OTU composition among these hypothetical habitat patches may be responsible 307 

for higher alpha diversity in Lake Erie coastal wetlands. Substantiating this, taxa-area 308 

relationships have been established for microbial communities which suggest that microbial 309 

community turnover can occur at distances as short as millimeters to centimeters within soils and 310 

sediments (Grundmann & Debouzie, 2000; Ettema & Wardle, 2002; Horner-Devine et al., 2004; 311 
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Martiny et al., 2011). Microbial diversity has also been found to have a strong relationship with 312 

pH within forest and wetland soils (Fierer & Jackson, 2005; Hartman et al., 2008; Lauber et al., 313 

2009). The water directly above the soil in the LE region had a pH that was relatively more 314 

acidic (although circumneutral) with respect to other sampled wetland regions. This may suggest 315 

that more OC was being oxidized as CO2 reacts with water to form carbonic acid. This idea 316 

would then suggest that LE sites had a higher deposition rate replacing OC as oxidation 317 

occurred. While previous research has recognized links between pH and microbial community 318 

diversity within wetland soils, these relationships have been highly variable, ranging from a lack 319 

of relationship to a strong predictive relationship (Hartman et al., 2008; Peralta et al., 2013; Ligi 320 

et al., 2014; Arroyo et al., 2015). To date, research has been variable with respect to 321 

environments studied and methods by which pH was measured; this may partly explain the wide 322 

range of estimates of relationships between wetland soil pH and microbial community structure. 323 

As such, more research is needed to appreciate the influence of pH on microbial communities 324 

within wetland soils. Standardization of methodology for assessing environmental characteristics 325 

such as pH may also be required. 326 

 327 

Relationships between microbial subnetworks and environmental gradients 328 

Development of biological indices and establishment of indicator taxa have been 329 

suggested as necessary for microbial communities within wetlands, particularly through the use 330 

of high-throughput sequencing technologies which now allow for deep assessment of microbial 331 

community composition and structure within environmental samples (Sims et al., 2013; Urakawa 332 

& Bernhard, 2017). In addition to their importance as biological signals for environmental 333 

health, indicator taxa may play prominent roles in bioremediation of excess nutrients and 334 
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pollutants found within anthropogenically impacted coastal wetlands. Through network analyses, 335 

we have delineated multiple subcommunities which were significantly related to environmental 336 

gradients (such as nutrients C, N, and P) measured by Uzarski et al. (2017) among coastal 337 

wetlands sampled in this study. Specifically, a subnetwork of 69 microbial taxa was 93.8% 338 

predictive of nutrient level variation among coastal wetland soils. Several microbial taxa within 339 

this subcommunity were individually predictive of nutrient levels to a high degree, including 340 

several OTUs related to Anaerolineaceae, one OTU related to genus Anaerolinea, and another 341 

related to genus Bellilinea. From the genus Anaerolinea, two thermophilic chemoorganotrophs 342 

(Anaerolinea thermophila and Anaerolinea thermolimosa) have been isolated (Sekiguchi et al., 343 

2003; Yamada et al., 2006). Only one isolated member has been established within the genus 344 

Bellilinea (Bellilinea caldifistulae); it has been described as a thermophilic, fermentative, 345 

obligate anaerobe which thrives in co-culture with methanogens (Yamada et al., 2007). It is 346 

unlikely that the OTUs found in our study are the same species as the isolated Anaerolinea and 347 

Bellilinea species, as coastal wetland soils are not high-temperature environments necessary for 348 

thermophilic species. Additionally, no OTUs related to methanogenic archaea were found within 349 

this subnetwork, suggesting that Anaerolineacea OTUs within coastal wetland soils may 350 

fluctuate independently of any specific methanogenic OTUs. It is possible that the Bellilinea 351 

OTU found within the subnetwork is related to nutrient level concentrations. This would support 352 

fermentative metabolism as noted within Bellilinea caldifistulae. It is important to note that 353 

several other studies have discovered OTUs related to Anaerolineaceae within wetland soils, 354 

with upwards of 90% relative abundance among Chloroflexi OTUs within these systems (Ansola 355 

et al., 2014; Deng et al., 2014; Hu et al., 2016). This suggests that there are probable mesophilic 356 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/217919doi: bioRxiv preprint 

https://doi.org/10.1101/217919
http://creativecommons.org/licenses/by-nc-nd/4.0/


Great Lakes coastal wetland microbial communities 

species yet to be isolated within this ubiquitous family of bacteria, which may be of high 357 

importance within wetland soils.  358 

Betaproteobacteria were also found to significantly predict nutrient levels among coastal 359 

wetlands. Hu et al. (2016) found that both Betaproteobacteria and Anaerolineae were positively 360 

related to TN levels, which is consistent with the data presented here, and these two taxa were 361 

suggested to contribute to higher levels of heterotrophic activity. Further, Anaerolineaceae 362 

OTUs were consistently related to increasing C:N, suggesting that many taxa within this family 363 

have preference for recalcitrant carbon sources. As C:N also tends to increase with soil depth, it 364 

is also probable that the putatively obligate anaerobic Anaerolineaceae are coinciding with 365 

decreasing oxygen levels and/or changing metabolism requirements with increasing soil depth. 366 

While there was no subnetwork of microbial taxa predictive of NO3
- in the studied coastal 367 

wetland systems, there were several taxonomic groups that were either positively or negatively 368 

related to NO3
- independently. Taxa spanning ten phyla were found to either positively or 369 

negatively correlate to NO3
- gradients (Fig. 8). As nitrate reduction is a process which is 370 

undertaken by a wide breadth of phylogenetic groups (Reddy & DeLaune, 2008), it is possible 371 

that several taxa are capable of nitrate respiration within Great Lakes coastal wetlands. Notably, 372 

some taxa which positively related to NO3
- are known nitrate reducers in other systems, such as 373 

members of Deltaproteobacteria, including Myxococcales and Anaeromyxobacter (Sanford et 374 

al., 2002). Also noteworthy are the high number of OTUs within Anaerolineaceae which 375 

positively correlated with NO3
- . However, several Anaerolineaceae OTUs were negatively 376 

related to NO3
- gradients, suggesting that functional idiosyncrasy may exist among members of 377 

this family. 378 

 379 
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Conclusions 380 

This study marks the first characterization of microbial communities within Great Lakes 381 

coastal wetlands. Coastal wetlands are integral in the proper functioning of biogeochemical 382 

cycles and environmental sustainability of the Great Lakes. While it has long been known that 383 

anthropogenic pressure can impact animal and plant communities within these coastal wetlands, 384 

this is the first evidence that these pressures may also be influencing microbial communities, and 385 

may be influencing biogeochemical cycles by extension. Alpha and beta diversity were both 386 

related to nutrient gradients among and within regions, suggesting that variability in microbial 387 

community structure is highly coupled to geochemistry within wetland soil. Further, this study 388 

provides insight on microbial community subnetworks and individual OTUs, which were 389 

predictive of chemical concentrations, and may be useful for future management of Great Lakes 390 

coastal wetland systems. 391 

Beyond taxonomic assessments of microbial communities with relation to wetland 392 

monitoring, we propose that wetland microbial community structure can also potentially be used 393 

to assess a wetland for management purposes. As illustrated within this study, wetland microbial 394 

community structure and depth are decoupled within the wetlands experiencing the highest 395 

nutrient levels, likely originating from terrestrial inputs due to human activity. As such, 396 

multivariate statistics (as used in the methods of this study) may prove useful in examining 397 

relationships between wetland soil depth and microbial community structure alongside 398 

taxonomic analyses, which could provide indicators of nutrient loading stress on coastal wetland 399 

habitats. 400 

 401 

Experimental Procedures 402 
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In the summer of 2014, wetland soil cores were collected within Laurentian Great Lakes 403 

coastal wetland ecosystems across several sites within several regions. Specifically, soil cores 404 

were collected from ten sites across five regions, including two sites in the western basin of Lake 405 

Erie (LE), three sites in eastern Saginaw Bay (ESBT), two sites in northern Saginaw Bay (NSB), 406 

two sites in western Saginaw Bay (WSB) in Lake Huron, and one site in the Beaver Island 407 

archipelago (BA) in Lake Michigan (Fig. 8). These sites were selected as they corresponded to 408 

environmental gradients, as well as a human impact gradients based upon SumRank scores as 409 

described in Uzarski et al. (2017) (Supplemental Fig. 8). Soil cores were collected by hand-410 

driving plastic core tubes (~ 5 cm diameter) vertically into the soil. Among wetlands, samples 411 

were collected within the same vegetation zone (either dominated by cattails, genus Typhus, or 412 

bulrush, genus Shoenoplectus) as an attempt to control for collection bias across sites. Cores 413 

were sampled to a depth of at least 6 cm (except for one core which was sampled to a depth of 4 414 

cm) and were immediately flash frozen in a dry ice ethanol bath. Samples were transported on 415 

dry ice to Central Michigan University wherein they were stored at -80 ˚C. 416 

Triplicate cores were taken at five wetland sites while duplicate cores were taken at five 417 

other wetland sites. For sample extraction and sectioning, cores were extruded while still frozen 418 

via a custom-built core extruder. The edge of the core was warmed with a heat gun to allow the 419 

soil core to pass efficiently through the plastic container, however, the inner-core did not thaw 420 

during extrusion. Ice was applied to the plastic core liner to prevent accelerated thawing. 421 

Beginning from the top surface of soil, 2 cm sections were cut via an ethanol and flame-sterilized 422 

hacksaw blade and the sectioned core samples were placed into whirl pak bags and stored at -80 423 

˚C. The extruder face plate was sterilized between cuts of the same core with ethanol. The 424 
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extruder device was fully cleaned and sterilized between cores with physical scrubbing and 425 

ethanol sterilization. 426 

 427 

Microbial community analysis 428 

Each soil sample was analyzed independently for microbial community analyses. DNA 429 

was extracted from ~ 0.25 g of soil using a MoBio PowerSoil DNA Isolation Kit (Mo Bio, 430 

Carlsbad, CA) following the standard manufacturer’s protocol. Concentrations of extracted DNA 431 

were assessed using a Qubit® 2.0 fluorometer (Life Technologies, Carlsbad, CA) to ensure 432 

successful DNA extraction and quantification for sequence library preparation. DNA samples 433 

were sent to Michigan State University (East Lansing, MI) for library preparation and sequence 434 

analysis at the Research Technology Support Facility. The V4 region of the 16S rRNA gene was 435 

amplified for downstream sequencing with commonly used primers 16Sf-V4 (515f) and 16Sr-V4 436 

(806r) and a previously developed protocol (Caporaso et al., 2012; Kozich et al., 2013). Paired-437 

end 250 bp sequencing was accomplished via a MiSeq high-throughput sequencer (Illumina, San 438 

Diego, CA). Acquired DNA sequences were filtered for quality and analyzed using MOTHUR v 439 

1.35.1 (Schloss et al., 2009) following the MiSeq SOP (available at https://www.mothur.org/) 440 

with modifications. Scripts used for sequence processing can be found at the GitHub repository 441 

associated with this study (https://github.com/horto2dj/GLCW/). Briefly, paired end sequences 442 

were combined into single contigs. Sequences that contained homopolymers > 8 bases, and those 443 

less than 251 or greater than 254 bp were removed. Sequences were aligned against the Silva (v. 444 

119) rRNA gene reference database (Quast et al., 2012). Sequences which did not align with the 445 

V4 region were also subsequently removed from analysis. Chimeric DNA was searched for and 446 

removed via UCHIME (Edgar et al., 2011). Sequences were classified via the Ribosomal 447 
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Database Project (training set v. 9; Cole et al., 2013) using the ‘wang’ method with a confidence 448 

threshold of 80. Sequences classified as chloroplast, mitochondria, eukaryotic, or unknown were 449 

removed. Remaining sequences were clustered into Operational Taxonomic Units (OTUs) at 450 

0.03 sequence dissimilarity using the opticlust clustering algorithm. Sequence data associated 451 

with this research have been submitted to the GenBank database under accession numbers 452 

SRR6261304 – SRR6261377. 453 

 454 

Chemical analysis 455 

Each soil layer (top, middle, and bottom) was analyzed separately for local chemistry at 456 

each site. Within each site, soil samples of the same depth (i.e., top, middle, and bottom soil 457 

samples) among duplicate/triplicate cores were combined and homogenized to obtain enough 458 

soil for chemical analyses. Soil samples were analyzed for percent total N (“TN”), total P (“TP”, 459 

ppm), total S (“TS”, ppm), NO3
- (ppm), NH4

+ (ppm), percent organic matter (“OM”), percent 460 

organic carbon (“OC”), and C:N at the Michigan State University Soil & Plant Nutrient Lab 461 

(East Lansing, MI). A YSI multiprobe (YSI Inc., Yellow Springs, OH) was used to measure pH 462 

of the water residing directly above each collected soil core. 463 

 464 

Statistical analyses 465 

Statistical analyses were completed using R statistical software version 3.2.2 (R Core 466 

Team, 2015) unless otherwise stated. Code used for statistical analyses (and bioinformatic 467 

workflow) in this study can be found in the associated GitHub repository 468 

(https://github.com/horto2dj/GLCW/). 469 

 470 
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Physicochemical Analysis 471 

Differences in chemical profiles between samples within and among wetland regions 472 

were visualized using Principal Component Analysis (PCA). Prior to PCA, percentages were 473 

arcsin square root transformed and ratios were log transformed. Additionally, Pearson correlation 474 

analyses were performed to search for significant correlations between chemical variables. 475 

Collinearity in the dataset was addressed by combining highly correlated environmental 476 

variables (r > 0.7, p ≤ 0.001). Only one of the correlated variables was included in PCA to 477 

remove exaggeration of correlated variables in PCA structure. MANOVA was used to determine 478 

the influences of region and soil depth on physicochemical composition of samples, and 95% 479 

confidence intervals were established to compare differences among groups. Chemical depth 480 

profiles were also visualized for each wetland site to understand shifts in measured 481 

environmental variables with increasing soil depth. 482 

 483 

Alpha-diversity Analysis 484 

Alpha diversity analyses were performed to explore variation in OTU richness and 485 

evenness among wetland sites, regions, and soil depths, as well as to determine whether observed 486 

trends were driven by environmental variables. Prior to alpha diversity analyses, sequence 487 

abundance for each sample was subsampled to the lowest sequence abundance for any one 488 

sample (n = 48,226 sequences). Singletons were maintained within the sequence dataset for 489 

alpha diversity analyses, as alpha diversity indices can be reliant on the presence of singletons 490 

for proper estimation. Alpha diversity was calculated for each site using MOTHUR, including 491 

Chao 1 richness, non-parametric Shannon diversity, and Good’s coverage indices. Linear mixed-492 

effect models and ANOVAs were used to test influences of wetland site, region, and soil depth 493 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/217919doi: bioRxiv preprint 

https://doi.org/10.1101/217919
http://creativecommons.org/licenses/by-nc-nd/4.0/


Great Lakes coastal wetland microbial communities 

on alpha diversity, controlling for wetland site as a random effect. Linear models and ANOVAs 494 

were used to test for variation in alpha diversity among wetland sites. If significant variation was 495 

found within an ANOVA result, post-hoc comparisons were implemented between sample 496 

groups using Tukey’s Honest Significant Differences (HSD) tests with Bonferroni adjustments 497 

(p-values obtained by number of comparisons) for pairwise comparisons. 498 

 499 

Beta diversity Analysis 500 

Beta diversity analyses were used to evaluate variation in microbial community structure 501 

among wetland sites, regions, and soil depths, and to assess the extent to which observed 502 

variation was explained by environmental conditions. Singletons and doubletons were removed 503 

from the dataset for beta diversity analyses. All sequence data were maintained for beta diversity 504 

analyses and transformed using the DeSeq2 (Love et al., 2014) package, which normalized OTU 505 

abundances among samples using a variance stabilizing transformation (VST) (McMurdie & 506 

Holmes, 2014). The phyloseq (McMurdie & Holmes, 2013) and Vegan (Oksanen et al., 2007) 507 

packages were used to compare beta diversity among samples. Dissimilarity in microbial 508 

community structure among samples within and among sites was visualized using Non-metric 509 

Multidimensional Scaling (NMDS) plots based on pairwise Bray-Curtis dissimilarity estimates. 510 

The function envfit of the Vegan package was used to evaluate correlation between chemical 511 

parameters and microbial community structure among samples according to NMDS. “Depth” 512 

was also implemented as a dummy variable to test correlation between depth and microbial 513 

community structure. 514 

To test for significant differences in beta diversity among wetland sites, regions, and soil 515 

depth, Permutational Multivariate Analysis of Variance (perMANOVA) (Anderson, 2001) were 516 
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implemented. Specifically, these tests evaluate significant variation among within group and 517 

between group means (Clarke, 1993; Anderson, 2001; Anderson & Walsh, 2013). If 518 

perMANOVA found significant differences among groups at the global level, pairwise 519 

perMANOVA tests between groups were implemented with Bonferroni significance adjustments 520 

to control for multiple pairwise comparisons. Anderson’s permutation of dispersions test 521 

(PERMDISP; Anderson, 2006; Anderson et al., 2006) was used to test for differences in variance 522 

of community structure among sample groups (i.e. sites, regions, soil depths). Tukey’s Honest 523 

Significant Difference (HSD) tests were implemented with adjusted p-values for multiple 524 

pairwise comparisons if significant differences in dispersion were found among groups. 525 

To explore relationships between regional microbial community structure and 526 

environmental variables, NMDS plots were generated for each individual region. Applying 527 

NMDS to each region also allowed for the assessment of the correlational relationship between 528 

community structure and soil depth (as a dummy variable) and other environmental variables 529 

(using the envfit function) within individual regions. To test for differences in microbial 530 

community structure between/among sites within a region, as well as among depths within a 531 

region, perMANOVA was implemented individually for each region. 532 

 533 

Network and OTU Correlation Analyses 534 

To explore relationships between microbial sub-communities and OTUs to environmental 535 

variables, Weighted Correlation Network Analysis (WGCNA) was implemented on OTU 536 

relative abundances using the WGCNA package (Langfelder & Horvath, 2008; Langfelder & 537 

Horvath, 2012), executed as previously described (Guidi et al., 2016; Henson et al., 2016) with 538 

modifications. OTUs which did not possess at least 2 sequences across 10% of samples were 539 
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removed from network analyses. These OTUs were removed to eliminate OTUs with potentially 540 

spurious correlations to environmental variables or other OTUs, as well as to reduce 541 

computational stress of analyses. Remaining OTU abundances across samples were normalized 542 

using variance stabilizing transformation (VST) performed as described previously for beta 543 

diversity analyses. To ensure scale-free topology of the network, the dissimilarity matrix 544 

generated through VST was transformed to an adjacency matrix by raising this dissimilarity 545 

matrix to a soft threshold power. A threshold power of p = 4 was chosen to meet scale-free 546 

topology assumptions based upon criterion established by Zhang & Horvath (2005). Scale-free 547 

topology of network relationships was further ensured through regression of the frequency 548 

distribution of node connectivity against node connectivity; a network is scale-free if an 549 

approximate linear fit of this regression is evident (see Zhang & Horvath, [2005] for more in-550 

depth explanation). A topological overlap matrix (TOM) was generated using the adjacency 551 

matrix, and subnetworks of highly connected and correlated OTUs were delineated with the 552 

TOM and hierarchical clustering. Representative eigenvalues of each subnetwork (i.e., the first 553 

principal component) were correlated (Pearson) with values of measured environmental variables 554 

to identify the subnetworks most related to said environmental variables. The subnetworks with 555 

the highest positive correlations to environmental variables of interest (e.g., NO3
-, C:N, etc.) 556 

were selected for further analyses of relationships among subnetwork structure, individual 557 

OTUs, and environmental variables. Partial Least Square regression (PLS) was used to test 558 

predictive ability of subnetworks in estimating variability of environmental parameters, which 559 

allowed for delineation of potential indicator subnetworks and OTUs. Pearson correlations were 560 

calculated between response variables and leave-one-out cross-validation (LOOCV) predicted 561 

values. If PLS found that regression between actual and predicted values was below minimum 562 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/217919doi: bioRxiv preprint 

https://doi.org/10.1101/217919
http://creativecommons.org/licenses/by-nc-nd/4.0/


Great Lakes coastal wetland microbial communities 

threshold of R2 = 0.3, WGCNA analysis was halted for that network, as the network was deemed 563 

to lack predictive ability of that environmental variable. Variable Importance in Projection (VIP) 564 

(Chong & Jun, 2005) analysis was used to determine the influence of individual OTUs in PLS. A 565 

high VIP value for an OTU indicates high importance in prediction of the environmental 566 

response variable for that OTU. For network construction and visualization purposes, the 567 

minimum correlation value required between two OTUs to constitute an “edge” between them 568 

was delineated at different r values for each network related to an individual environmental 569 

variable (ranging between 0.1 – 0.25), as co-correlations between OTUs within some networks 570 

were stronger than others. The number of co-correlations an OTU has with other OTUs within a 571 

network is defined as “node centrality” (as described by Henson et al., 2016). 572 

If an environmental variable of interest was not found to have a network strongly 573 

associated with it, Spearman’s correlations were implemented between individual OTUs and that 574 

environmental variable. Significance was only considered for OTUs with strong relationships (r 575 

> 0.3, p ≤ 0.001) to environmental variables to limit the impact of potentially spurious 576 

correlations. Correlations to OTUs with unknown taxonomic identification were excluded from 577 

correlational analysis. 578 

 579 
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 865 

Tables 866 

Table 1. Correlations between alpha diversity metrics and measured environmental variables. 867 

Asterisks represent significance values where p ≤ 0.001 (***), p ≤ 0.01 (**), and p ≤ 0.05 (*). 868 

  Chao 1 Shannon 
P 0.31** -0.09 
S 0.42*** 0.45*** 
NO3 0.42*** 0.24* 
C:N -0.03 -0.2 
NUTR 0.24* 0.41*** 
 869 

Table 2. Pairwise perMANOVA results comparing pairwise differences between wetland regions 870 

and differences between wetland soil depths. Asterisks represent significance values where p ≤ 871 

0.001 (***), p ≤ 0.01 (**), p ≤ 0.05 (*), and n.s. representing ‘not significant’ below p-value 872 

thresholds. 873 

Region BA ESBT LE NSB WSB 
BA -         
ESBT n.s. - 

  LE ** ** - 
 NSB n.s. n.s. ** - 

WSB n.s. n.s. ** n.s. - 
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Depth Top Middle Bottom 
 Top - 

   Middle ** - 
  Bottom ** n.s. - 

  874 

 875 

 876 

 877 

 878 

 879 

Figures 880 

Figure 1. Principal Component Analysis (PCA) illustrating separation of samples based upon soil 881 

geochemistry. Shapes and colors correspond to different wetland depths and regions, 882 

respectively, as listed in the legend. Percentages on axes represent explained variance of that 883 

principal component. Vectors represent impact of specific environmental variables on sample 884 

distribution. NUTR represents OM values, which correlated significantly (p ≤ .01, r > 0.56) to 885 

NO3
-, OC, OM, S, and TN. Ellipses represent 95% confidence intervals of region groupings. 886 

 887 

Figure 2. Boxplot diagram comparing Chao1 diversity among wetland regions. Boxes with the 888 

same letter are not significantly different, while those with no common letters are significantly 889 

different (p ≤ 0.01). Lines within boxes represent the median, hinges represent +/- 25% quartiles, 890 

whiskers represent up to 1.5x the interquartile range. Colors represent wetland region. 891 

 892 

Figure 3. Nonmetric Multidimensional Scaling (NMDS) plot illustrating separation of samples 893 

based upon differences in microbial community structure. Shapes and colors correspond to 894 
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different depths and wetland regions, respectively, as listed in the legend. Vectors represent 895 

correlations of environmental variables to the distribution of the microbial communities 896 

represented in the plot. 897 

 898 

Figure 4. NMDS plots of each wetland region demonstrating separation of samples based upon 899 

differences in microbial community structure, including a. BA, b. ESBT, c. LE, d. NSB, and e. 900 

WSB. Shapes and colors correspond to different depths and wetland sites, respectively, as listed 901 

in the legends. Vectors represent correlations of environmental variables to the distribution of 902 

microbial communities represented in the plots.  903 

 904 

Figure 5. Network visualization and results of partial least squares analysis on the subnetwork 905 

most correlated with NUTR. The y-axis represents correlation of OTU to OC values, whereas the 906 

x-axis represents the node centrality. Points represent OTUs, and the color of points corresponds 907 

to the phylum to which an OTU belongs. Point size corresponds to VIP score of that OTU. The 908 

top 15 OTUs are labeled within the graph with corresponding lowest taxonomic identification 909 

possible, and the level of that classification. D = Domain; P = Phylum, C = Class, O = Order, F = 910 

Family, G = Genus. 911 

 912 

Figure 6. Network visualization and results of partial least squares analysis on the subnetwork 913 

most correlated with C:N. The y-axis represents correlation of OTU to C:N, whereas the x-axis 914 

represents the node centrality. Points represent OTUs, and the color of points corresponds to the 915 

phylum to which an OTU belongs. Point size corresponds to VIP score of that OTU. Only OTUs 916 

with a VIP score > 1 were displayed for visualization purposes. The top 15 OTUs are labeled 917 
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within the graph with corresponding lowest taxonomic identification possible, and the level of 918 

that classification. D = Domain; P = Phylum, C = Class, O = Order, F = Family, G = Genus. 919 

 920 

Figure 7. Significant (p ≤ 0.001) positive and negative correlations between microbial taxonomic 921 

groups and NO3
-. Abundance of OTUs corresponding to taxonomic groups is plotted on the y-922 

axis. Positive correlations are plotted above the “0” line, while negative correlations are plotted 923 

below the “0” line. Colors of bars correspond to associated phylum of the taxonomic group on 924 

the x-axis. 925 

 926 

Figure 8. Geographic map displaying location of sites sampled within this study. Colors of points 927 

correspond to region sampled. 928 

 929 

Supplemental Material 930 

 931 

Supplemental Figure 1. Depth profiles demonstrating trends in measured environmental 932 

variables with increasing depth among wetland regions and sites. Colors represent wetland 933 

regions, whereas point shapes represent distinct wetland sites. 934 

 935 

Supplemental Figure 2. Rarefaction curve analysis demonstrating sequencing depth for alpha 936 

diversity analyses. Different colored lines represent different samples. The vertical black line 937 

represents the sequencing depth used to standardize all samples for alpha diversity analysis. The 938 

dashed line represents the 1:1 slope. 939 

 940 
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Great Lakes coastal wetland microbial communities 

Supplemental Figure 3. Plots demonstrating regression of the frequency distribution of node 941 

connectivity against node connectivity. 942 

 943 

Supplemental Figure 4. Individual correlations of established subnetworks with environmental 944 

parameters. 945 

 946 

Supplemental Figure 5. Partial least squares analysis results predicting OC (NUTR) values using 947 

relative abundance values of OTUs within the module most connected to OC (NUTR). 948 

 949 

Supplemental Figure 6. Partial least squares analysis results predicting C:N values using relative 950 

abundance values of OTUs within the module most connected to C:N. 951 

 952 

Supplemental Figure 7. Partial least squares analysis results predicting NO3
- values using relative 953 

abundance values of OTUs within the module most connected to NO3
-. 954 

 955 

Supplemental Figure 8. Principal Components Analysis demonstrating separation of coastal 956 

wetland sampling locations by site water quality data. Points are color-coded by region. 957 

Percentages on axes represent explained variance of that principal component. Vectors represent 958 

impact of specific environmental variables on sample distribution. Choloro.a = chlorophyll A, 959 

DO = dissolved oxygen, Temp = water temperature, Turb = water turbidity. SumRank represents 960 

SumRank values calculated for each wetland site as outlined by Uzarski et al. (2017). DO also 961 

represents redox potential values, which correlated significantly (r > 0.7, p ≤ .001). Temp also 962 
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Great Lakes coastal wetland microbial communities 

represents conductivity and total dissolved solids values, which correlated significantly (r > 0.7, 963 

p ≤ .001). 964 
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